
Purpose:
How to train an MLP neural network in MATLAB

environment!

that is

For good computations,
we need good formulae

for good algorithms;
and good visualization

for good illustration
and proper testing
of good methods

and succesfull applications!

Critical values:

0 2 4 6 8 10 12 14 16 18 20

−0.4

−0.2

0

0.2

0.4

0.6 ← Global max

Global min →

 ← Local max

 ← Local max

Local min →
Local min →

 f(x)

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
 f’(x)

Theoretical bases of optimization problems:

Minimize
�������

where
��� 	

����...
���
���
����� ��� (1)

� � � � ��� � cost function(al) measuring the goodness of a solution candidate:
NOTICE: good measure good problem useful solution (!" # $ %&# � %�! !)� we assume that

�������('*) +,� ��� �� NOTICE: -/.1032 ������� $ -54763298 ���:���� we are seeking the values of
�
� �<; �=�=� ; ���

�
(unknowns)� through the following definitions we introduce precise characterization of the visual

intuition of the previous (and the following) figures

Definition 1. Vector
�?>

is the (strict) global minimum of problem (1) if�@��� > �(A �CBD�E�������
for all

� �F� �3�
Definition 2. Vector

� >
is the (strict) local minimum of problem (1) if there exists a GIH)

such that ���:� > �(A �CBD�E�������
; for all

� �F� � such that J � 8 � > J A G �
Theorem 1. (Weierstraas) If function

�
in problem (1) is continuous, then there exists a

minimum solution
�?> �

Definition 3. Function
�

is convex if���LKNMPO"�RQ 8 KS�UT?�(AVK����WMX��OV�RQ 8 KY�R���ZT�� +YM
;
T �F� � and

)[A�K\A Q �
Strict convexity requires

B
instead of

A
for

M^]�*T �
Theorem 2. For (locally) convex (and bounded from below) function

�
there exists a (local)

minimum. If
�

is (locally) strictly convex, then the minimum point is (locally) unique.

Theoretical bases of gradient methods:

)

y ξ x

f(y)

f(x)

f ’(ξ

1D mean value theorem of differential calculus:
� ��� � � � ��� �,O ��� ��� � ��� 8 �N�

for some
� � ���

;
� � �� through the following definitions we generalize both the concept of derivative and its

relation to local function approximation in 1D into higher-order spaces

Theoretical bases of gradient methods II:

Definition 4. Function
�

is (continuously) differentiable at
�

(
� ��� � � � � �), if there exists

vector � � �:��� ��� � and function � � � � � � such that������?�&����������O � ���������E���� 8 ����O J �� 8 � J�� ��� ;
�� 8 ��� (2)

for all
�� ��� � and � ��� ;

�� 8 ��� �)
when

�� � � �
Vector � � �:��� is the gradient of

�
at
�

consisting of the partial derivatives:

� ������� �
	

�
	�
� 2��	����

...	�
� 2��	����

� �
���

	

�

		����
...		����

� �
� ������� � (3)

Definition 5. Function
�

is twice (continuously) differentiable at
�

(
� ����� � � � �), if there

exists vector � ���:��� ��� � and symmetric ����� -matrix � �:���
, the so-called Hessian matrix,

and function � � � � � � such that��� ��?� ��������� O � ������� � � �� 8 ����O Q
� � �� 8 ��� � � ����� � �� 8 ���YO J �� 8 � J���� ��� ;

�� 8 ��� ; (4)

where (again) � ��� ;
�� 8 ��� �)

when
�� � � �

Hessian matrix consists of the second-order partial derivatives
	��
!� 2��	���"#	��%$ �

� �:���'& � � � � � ������� � � � � �@������(�
	

�
	 �
� 2��)� � � �=� � 	 �
� 2��	�� � 	����

...	 �
� 2��	�� � 	���� �=� � 	 �
� 2��)� ��

����
� �

Definition 6. Vector * � � � is descent direction for function
�

at
��
; if there exists G H)

such that ������ O,+ * � B^������?�
for all

+ � ��)
; G�- �Definition 7. Let

�
be differentiable at

�� � If there exists a direction * � � � such that
� � � ���� � * B)

; then * is descent direction for
�

at
�� �

Theorem 3. Let
�

be differentiable at
��>

. If
�X>

is local minimum, then � ������><� �)
(i.e.,� >

is a critical value of
�

).

Theorem 4. Let
�

be twice differentiable at
� >

. If
� >

is local minimum, then � ����� > �9�)
and the Hessian matrix � ���?><�

is positive semidefinite. If � � ����><�&�)
and � ���?><�

is positive
definite, then

�?>
is strict local minimum.

Two examples:

As an example, we consider a few least-mean-squares (LMS) (quadratic) cost functionals
and the corresponding optimization problems. Let � M � ; �=�=� ; M���� be a given set of (random)
vectors such that

M�� �F� � for all
Q A�� A
	 �

i) Mean:

���:��� � �� ��
�
Q
� J � 8 M � J � � �� ��

�
Q
� ��� 8 M � � � ��� 8 M � �&� �� ��

�
Q
� � �� � �

�
�
�
� 8 �WM � � � � � � �

Because �� 	 �#� $�� ��� " � $ � �	�� $ � ��� 8 M � � � for all
�
;
�
; we obtain

� ������� �
�� ���
�
�:� 8 M��Z� ��	"� 8

�� ��
�
M�� �

When
�

is solved from � ����� > �&�)
; we get the sample mean

� > � Q	 �� ��
�
M�� � �M �

Notice that if there is some (measurement, quantization) error like
M � � �M � O � � ; then�X>5� ���� ��� � �M�� O ���� ���� � � � � Hence, when

	 � � or � � ��� �:)
; G �
�

(in general,
any symmetric error distribution with “enough samples”),

� >
is a good estimate for the

average behaviour of the given sample.

Finally, � �:� > �&� � � � � ��� �
� ����	��

; so that
�M

is always unique.

ii) Linear fit: let � � �
and

������� � Q
�
�� ��
�
 �WM��W�

� 8 �
� �
�ZM��Z�

�
O
� �
� � �

Then ! �������!
� �

� 8
�� ��
�
�R�WM � �

� 8 �
� �
�WM � �

�
O
���
� �! �������!

� �
� 8

�� ��
�
�R�WM � �

� 8 �
� �
�WM � �

�
O
���
� � �WM � �

�
and

� �����&� " 	 � ��� � �WM � � �� ���� � �ZM��W� � � ��� � �WM�� � � �
#

Error in lecture notes!!! �

Basic Algorithm:

1. Choose a starting point
���

. Set iteration counter
� �)

.

2. Generate a descent direction *�� .
3. Generate a step length

+
� such that

�����
�
O,+

��*�� � B^�����
�
� �

4. Update
�
��� � � �

�
O,+

��*�� �
5. Stopping test. If need to continue, set

� � � OVQ
and go to 2.

When to Stop?

For chosen � H) �
� (Absolute) critical point: J � � �:� ��� � � J A � �� (Relative) critical point: J � ����� ��� � � J A � J � � ������ J �� Change of solution: J � ��� � 8 � � J � +

� J�* � J A � �� (Relative) change of cost functional:���
� ��� �

� 8 ����� � �- . 0 � G ;
 �����

�
�
;
 �����

��� � � A � ; where G H) �

Qualities of a good algorithm?

1. convergence (it solves the problem. . .)

2. speed of convergence (fastly. . .)

3. memory efficiency (with low memory consumption; usually contradicts 2.)

Stepsize determination:

� assume that a descent direction * � is given� we review different possibilities for selecting
+
� appropriately� starting point is to consider the following 1D minimization problem

-/4 6�����
����� � O + * � �&� � � + � ; (5)

where
�

is a priori given search interval, usually
�[� �)

;
Q - (cf. Definition 3 of convex-

ity)� in principle, any minimization method for (5) is sufficient (halfing method(?), regula-
falsi, golden search, etc.), but one must try to cope with previous quality attributes of a
good overall method compromise: compute quickly “good enough” solution for (5)!

Basic approaches:

� Fixed stepsize: choose by hand some stepsize
) B + > B Q

and use it throughout the
optimization iterations. Convergence questionable and slow, usual values, e.g.

+ > �) �) Q ;
) �)�� ;

) � Q �� Armijo-rule: Search smaller stepsizes consequtively by testing the sufficient decrease
of cost functional)
	

Fix constants � ;
�

; such that � H)
;
� � �:) ;

Q �
and � ��) ; ��

� �Q�	
Try consequtively

� � �) ; Q ; � ; �=�=� � and set
+ � +

�
� �����

; where � � is the first
non-negative integer � ; for which the so-called Wolfe-condition is satisfied:����� � � 8 ����� � O � �

� * � �(' 8 � �
�!� ����� � ��� * � �

Choice of free parameters, e.g., as �
� Q �) ;

� �V) � � and ��) � � � �

Basic approaches (cont.):

� Quadratic interpolation: Approximate function
�

using second-order polynomial� � + � ��� � +<� ��� + � O��)+ O�� � Setting � � � + �&� � � +�O�� ��)
yields to stepsize

+R> � 8 �	� � � � �
when

��]��) �
For determining the coefficients

�
;
�

and
�

usually two basic methods are applied.

1. first approach is based on using values of
�

at three points, e.g.
�� + � ��)[� � � �V�����
�
�

+
�
� �� � �

�
�V�����

�
O ���� * � �+

�
� Q � �

�
�V�����

�
O Q � * � �

Second-order polynomial that goes through the points
� + �
;
� � �
;
� � Q

;
�
;��N; is recov-

ered by solving the resulting linear problem, whose solution
� � � � � �� � � � � � 8 � �
�
O �

�
�� � 8 � � � O � �

� 8
�
�

yields
+R> � ���

��� � � ��� ��� � � �
�
���� � � � �

�
�
�

�
� � �

2. if gradient of
�

is also available, then by using
� � � + � �9� � ����� � � � *�� (cf. Defini-

tion 7), choosing
)[B +

�
A Q

and setting
�
�
�V�����

�
O�+

� *��
�
; we get
��� ���

� � � �� � ����� � ��� * �� � �
� 8

�)+
� 8

�
+ � �

�
Notice that if

� B)
then quadratic approximation is insufficient (too large search

interval, bad search direction, etc.). Usually one then tries to decrease
��� 8) � ��� �and repeat the process.� Cubic interpolation: like the quadratic, but based on third-order polynomial approxi-

mation, which can be determined using four values of
�

or two set of value-derivative
pairs. Notice the more restrictive conditions for appropriate values of coefficients.� more advanced example routine in lecture notes, see also MATLAB Optimization Tool-
box

Descent direction:

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

2

4

6

8

10

12

14

16

18

x−axisy−axis

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x−axis

y−
ax

is

Descent direction (cont.):

� Starting point: from Theorem 7 it follows that

8 � ����� � � � � ���:� � �&� 85J � � ��� � � J � B) �� in fact, 8 � ����� � � points to the direction of the most rapid decrease good direction, but usually not the best length!� Newton’s method:
� ��� � � * � � 8 � ����� � � � 8�� �

– well-defined when � ���
�
�

positive definite (i.e.,
�

strictly convex):

� ����� � � � * � � 8�� � � � � �:� � � - � � � � B)
– BUT: analytic determination of � ���

�
�

for real problems problematic!

– BUT: Inversion of � �:�
�
�

for real problems expensive!� BFGS quasi-Newton method: approximate
� � ���

��� � � � � � by� ��� � ��� � O � Q O � � � � �� � � � �	� �� � � 8 � � � � � O � �
� � � � �� � � ;
where � � � ��� � 8 � � ;� � � ��� � 8�� � ;and usually

� � ��� � � � �
– due to cumulation of errors reinitialization of

�
�
� �

after suitable number of
iterations (usually after 20–50 iters.)

Some additional stuff:

� Finite difference approximation of the gradient:

� �� �
�@���

�
O�� G � � 8 ����� � �� forward difference, 1st order accuracy wrt

�
;� �� �

�@���
�
O�� G � � 8 ����� � 8 � G � �� � central difference, 2nd order accuracy �

– the usual choice
� � � � ; � is the machine epsilon (MATLAB eps).

– G � is the so-called Knonecker’s delta

G � � Q �
th index ;)

for other indeces ;� Levenberg-Marquart-method:

minimize
���:��� � Q

�
�� ��
�
� �U�:��� � � Q

��� ������� � ����� ; where � �:��� �
	

� � �

�����
...� � �����

���
�

– gradient: � ������� � � � �� � ��� � ����� � �&� � � � � � ����� � � � ����� �	� ����� � � ����� ;where
� �:���

is the so-called Jacobian matrix

� ����� � 	

�
	�
 � � 2 �	 2 � �=� � 	�
 � � 2��	 2 �

...	�
� � 2��	 2 � �=� � 	�
� � 2 �	 2 �
� �
� ��� ��� � �

– iteration:
��� ���

�
� � � ��� � � O��

�
� � * � � 8 � ��� � � � � ��� � � for suitable

�
� H) �

Some additional stuff (cont.):

� Conjugate gradient method á la Polak-Ribière:

* � ��� � � 8 � ����� � � (initialization)+ � � 1D minimization of function
����� � O + � * � �� ��� � ��� � O,+ � * �� ��� � � 8 � ����� ��� � �

� ��� � � - . 0 � ��� ��� � � � ��� ��� � 8 �
�
����

�
� � � � ;

)��
* ��� � ��� ��� � O � ��� � * �

– better control of search directions on (nearly) flat error surface

– de facto -method for solving SPD linear problems� About constrained optimization

– in many cases solution of an optimization problem should be constrained to a given
admissible set �

– e.g., production costs always positive �
� ') + �

(inequality constraint), eigen-
vector’s norm always one J � > J � Q

i.e. J � > J(8 Q ��)
(equality constraint) etc.

– most common approach is to complement the basic algorithm with a projection
step:

4.5 Project
�
��� � into � by setting

�
��� � ���
	 ���

��� � � �
Here

�
	 � � � � � � is a projetion-operator, e.g.��� 2� ��� ����� $�- . 0 �:� ;
)��

(componentwise) ;� ��� 2 � � � � ����� $ � � �
J � J �

– generally constraint optimization is a hard discipline

– Other basic approach is to use the so-called (augmented) Lagrangian (merit) func-
tion for combining cost function and constraints into one functional which is then
minimized. This needs appropriate update rules for the resulting Lagrangian coef-
ficients.

