## Purpose:

How to train an MLP neural network in MATLAB environment!

## that is

> For good computations, we need good formulae for good algorithms; and good visualization for good illustration of good methods and succesfull applications!

## Course structure:

- lectures 7 weeks 2 h/week: 22.10.-3.12. Ag Beeta (TK, room Ag C415.1)
- exercises 7 weeks 4 h/week: 23.10.-12.12. (EH, room Ag C424.1):

1. Wednesday $8-10 \mathrm{Ag}$ B212.1 (until 4.12.2002 saakka),
2. Thursday $14-16 \mathrm{Ag}$ B211.1 (untila 12.12.2002, week 50 concerning seminar works)

- preparation of seminar works, period III 2003, weeks 2-9:

1. weekly tutoring session on Thursday $14-16 \underline{\text { Ag B212.1 }}$

- presentation and evaluation seminar 6-8 h: week 10, 2003.
- final examination by the end of period III 2003
- course evaluation:
from the obligatory seminar work 3-12 points (coinciding with the grades 1- 3 ) for the final examination: all other groups evaluate the work and presenation of one group, Erkki\&Tommi can increase or decrease this evaluation by $+-\frac{1}{2}$


## Lecture Topics:

- Introduction, about matrices and vectors
- Introcution to MATLAB graphics
- Introduction to Optimization
- MLP-networks I-III
- API/MEX and GUIs for MatLab
- Seminar works


#### Abstract

About MatLab: - Matrix Laboratory - astonishingly complete environment for computational prototyping - good build-in graphics - possibility to link own external (sub)routines in C and Fortran - poor man's version OcTAVE (http: //www.octave.org/) - extension possibilities using multiple toolboxes - for our purposes: - definition of matrices and utilization of basic operations in linear algebra - fundamentals of optimization methods and their usage - data manipulation - testing and visualization of implemented operations using MATLAB graphics


## About matrices and vectors (in MATLAB):

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right] \in \mathbf{R}^{n \times m} \\
\text { can represent, e.g. } \\
\left\{\begin{array}{c}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=y_{1} \\
\vdots \\
a_{n 1} x_{1}+\ldots+a_{n n} x_{n}= \\
\vdots
\end{array} \quad y_{n}\right.
\end{gathered} \Leftrightarrow \mathbf{A x}=\mathbf{y} .
$$

and as a linear transformation $\mathbf{A}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ simply means

$$
\mathbf{y}=\mathbf{A} \mathbf{x} \Leftrightarrow y_{i}=\sum_{j=1}^{m} a_{i j} x_{j} .
$$

## Matrix operations (in MATLAB):

(Identity matrix: $\mathbf{B}=\mathbf{I} \Leftrightarrow b_{i i}=1 \forall i ; b_{i j}=0 \forall i \neq j$ (MATLAB $\left.\mathrm{b}=\mathrm{eye}(\mathrm{n})\right)$ )
Transpose: $\mathbf{B}=\mathbf{A}^{T} \Leftrightarrow b_{i j}=a_{j i}$ (MATLAB $\quad \mathrm{b}=\mathrm{a}^{\prime}$ ).
Scalar multiplication: $\mathbf{B}=t \mathbf{A} \Leftrightarrow b_{i j}=t a_{i j}$ (MATLAB $\mathrm{b}=t * a$ ).
Addition: $\mathbf{C}=\mathbf{A}+\mathbf{B} \Leftrightarrow c_{i j}=a_{i j}+b_{i j}$ (MATLAB $\left.\quad \mathbf{c}=\mathrm{a}+\mathrm{b}\right)$.
Matrix multiplication: $\mathbf{C}=\mathbf{A B} \Leftrightarrow c_{i j}=\sum_{k} a_{i k} b_{k j}$ (MATLAB $\quad \mathrm{c}=\mathrm{a} * \mathrm{~b}$ ).
Componentwise multiplication: $c_{i j}=a_{i j} b_{i j}$ (MATLAB $\mathrm{c}=\mathrm{a} . * \mathrm{~b}$ ).
Componentwise quotient: $c_{i j}=\frac{a_{i j}}{b_{i j}}\left(\mathbf{b}_{i j} \neq 0\right)$ (MATLAB $\mathrm{c}=\mathrm{a} . / \mathrm{b}$ ).
Matrix inverse: $\mathbf{B}=\mathbf{A}^{-1} \Leftrightarrow \mathbf{B A}=\mathbf{A B}=\mathbf{I}$ (MATLAB $\mathrm{b}=\operatorname{inv}$ (a)).
Note: only when $\mathbf{A}^{-1}$ exists, i.e. $\mathbf{A}$ is nonsingular (MatLab $\left.\operatorname{det}(a) \sim=0\right)$.

## Solution of linear equations:

left inverse: $\mathbf{A x}=\mathbf{y} \Leftrightarrow \mathbf{x}=\mathbf{A}^{-1} \mathbf{y}$ (MATLAB $\mathbf{x}=a \backslash y$ ), right inverse: $\mathbf{x A}=\mathbf{y} \Leftrightarrow \mathbf{x}=\mathbf{y A}^{-1}$ (MAtLAB $\mathbf{x}=\mathrm{y} / \mathrm{a}$ ).

