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Supporting Differentiated Service Classes: Queue Scheduling Disciplines

                 
Executive Summary

This is part of a series of publications from Juniper Networks that describe the mechanisms 
that allow you to support differentiated service classes in large IP networks. This paper 
provides an overview of a number of popular queue scheduling disciplines: first-in-first-out 
queuing (FIFO), priority queuing (PQ), fair queuing (FQ), weighted fair queuing (WFQ), 
weighted round-robin queuing (WRR)—or class-based queuing (CBQ) as it is sometimes 
called—and deficit weighted round robin queuing (DWRR). The other papers in this series 
provide technical discussions of active queue memory management, host TCP 
congestion-avoidance mechanisms, and a number of other issues related to the deployment of 
differentiated service classes in your network.

Perspective

A router is a shared resource in your network. Many of the problems that you face in your 
network are related to the allocation of a limited amount of shared resources (buffer memory 
and output port bandwidth) to competing users, applications, and service classes. A queue 
scheduling discipline allows you to manage access to a fixed amount of output port bandwidth 
by selecting the next packet that is transmitted on a port. As you will see, there are many 
different queue scheduling disciplines, each attempting to find the correct balance between 
complexity, control, and fairness. The queue scheduling disciplines supported by router 
vendors are implementation-specific, which means that there are no real industry standards. 
However, a vendor sometimes refers to its own implementation as the standard. The difficulty 
with recognizing any implementation as a standard is that each vendor combines features from 
a number of well-known generic queue scheduling disciplines to provide the total 
functionality that they believe their customers need to manage output port congestion. 

Congestion occurs when packets arrive at an output port faster than they can be transmitted. 
This means that a router interface is considered mildly congested if just a single packet has to 
wait for another packet to complete its transmission. The amount of delay introduced by 
congestion can range anywhere from the amount of time that it takes to transmit the last bit of 
the previously arriving packet to infinity, where the packet is dropped due to buffer exhaustion. 
It is important to minimize the amount of congestion in your network, because congestion 
reduces packet throughput, increases end-to-end delay, causes jitter, and can lead to packet loss 
if there is insufficient buffer memory to store all of the packets that are waiting to be transmitted. 

There are several tasks that any queue scheduling discipline should accomplish:

� Support the fair distribution of bandwidth to each of the different service classes competing 
for bandwidth on the output port. If certain service classes are required to receive a larger 
share of bandwidth than other service classes, fairness can be supported by assigning 
weights to each of the different service classes. 

� Furnish protection (firewalls) between the different service classes on an output port, so 
that a poorly behaved service class in one queue cannot impact the bandwidth and delay 
delivered to other service classes assigned to other queues on the same output port. 

� Allow other service classes to access bandwidth that is assigned to a given service class if 
the given service class is not using all of its allocated bandwidth.

� Provide an algorithm that can be implemented in hardware, so it can arbitrate access to 
bandwidth on the highest-speed router interfaces without negatively impacting system 
forwarding performance. If the queue scheduling discipline cannot be implemented in 
hardware, then it can be used only on the lowest-speed router interfaces, where the 
reduced traffic volume does not place undue stress on the software implementation. 
Copyright © 2001, Juniper Networks, Inc. 4
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When considering the deployment of differentiated service classes in your network, you need 
to understand the capabilities that each router vendor supports and why they made their 
specific design decisions. This paper describes the operation, benefits, limitations, and 
applications for a number of classic queue scheduling disciplines to help you better 
understand the range of options that are available. The traditional queue scheduling 
disciplines that we’ll consider here include:

� First-in-first-out queuing (FIFO),

� Priority queuing (PQ),

� Fair queuing (FQ),

� Weighted fair queuing (WFQ),

� Weighted round-robin queuing (WRR), also known as class-based queuing (CBQ), and 

� Deficit weighted round robin queuing (DWRR) 

Router vendors use various combinations of these terms to describe their implementations. Be 
careful not to confuse the theoretical scheduling algorithms described in this paper with a 
specific vendor’s implementation, and do not make the assumption that all queue scheduling 
disciplines behave as their names might suggest. Rather than simply relying on the name that 
the vendor uses to describe its queue scheduling discipline, you need to carefully examine each 
vendor’s implementation, so that you can fully understand how it operates and determine if it 
provides the features that you need to support your subscriber requirements.

First-in, First-out (FIFO) Queuing 

First-in, first-out (FIFO) queuing is the most basic queue scheduling discipline. In FIFO 
queuing, all packets are treated equally by placing them into a single queue, and then servicing 
them in the same order that they were placed into the queue. FIFO queuing is also referred to 
as First-come, first-served (FCFS) queuing. (See Figure 1.)

Figure 1:  First-in, First-out (FIFO) Queuing
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FIFO Benefits and Limitations

FIFO queuing offers the following benefits:

� For software-based routers, FIFO queuing places an extremely low computational load on 
the system when compared with more elaborate queue scheduling disciplines.

� The behavior of a FIFO queue is very predictable—packets are not reordered and the 
maximum delay is determined by the maximum depth of the queue.

� As long as the queue depth remains short, FIFO queuing provides simple contention 
resolution for network resources without adding significantly to the queuing delay 
experienced at each hop.

FIFO queuing also poses the following limitations:

� A single FIFO queue does not allow routers to organize buffered packets, and then service 
one class of traffic differently from other classes of traffic. 

� A single FIFO queue impacts all flows equally, because the mean queuing delay for all 
flows increases as congestion increases. As a result, FIFO queuing can result in increased 
delay, jitter, and loss for real-time applications traversing a FIFO queue.

� During periods of congestion, FIFO queuing benefits UDP flows over TCP flows. When 
experiencing packet loss due to congestion, TCP-based applications reduce their 
transmission rate, but UDP-based applications remain oblivious to packet loss and 
continue transmitting packets at their usual rate. Because TCP-based applications slow 
their transmission rate to adapt to changing network conditions, FIFO queuing can result in 
increased delay, jitter, and a reduction in the amount of output bandwidth consumed by 
TCP applications traversing the queue.

� A bursty flow can consume the entire buffer space of a FIFO queue, and that causes all 
other flows to be denied service until after the burst is serviced. This can result in increased 
delay, jitter, and loss for the other well-behaved TCP and UDP flows traversing the queue.

FIFO Implementations and Applications

Generally, FIFO queuing is supported on an output port when no other queue scheduling 
discipline is configured. In some cases, router vendors implement two queues on an output 
port when no other queue scheduling discipline is configured: a high-priority queue that is 
dedicated to scheduling network control traffic and a FIFO queue that schedules all other types 
of traffic. 

Priority Queuing (PQ)

Priority queuing (PQ) is the basis for a class of queue scheduling algorithms that are designed 
to provide a relatively simple method of supporting differentiated service classes. In classic 
PQ, packets are first classified by the system and then placed into different priority queues. 
Packets are scheduled from the head of a given queue only if all queues of higher priority are 
empty. Within each of the priority queues, packets are scheduled in FIFO order. (See Figure 2.)
Copyright © 2001, Juniper Networks, Inc. 6
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Figure 2:  Priority Queuing
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PQ Implementations and Applications

Typically, router vendors allow PQ to be configured to operate in one of two modes:

� Strict priority queuing

� Rate-controlled priority queuing

Strict PQ ensures that packets in a high-priority queue are always scheduled before packets in 
lower-priority queues. Of course, the challenge with this approach is that an excessive amount 
of high-priority traffic can cause bandwidth starvation for lower priority service classes. 
However, some carriers may actually want their networks to support this type of behavior. For 
example, assume a regulatory agency requires that, in order to carry VoIP traffic, a service 
provider must agree (under penalty of a heavy fine) not to drop VoIP traffic in order to 
guarantee a uniform quality of service, no matter how much congestion the network might 
experience. The congestion could result from imprecise admission control leading to an 
excessive amount of VoIP traffic or, possibly, a network failure. This behavior can be supported 
by using strict PQ without a bandwidth limitation, placing VoIP traffic in the highest-priority 
queue, and allowing the VoIP queue to consume bandwidth that would normally be allocated 
to the lower-priority queues, if necessary. A provider might be willing to support this type of 
behavior if the penalties imposed by the regulatory agency exceed the rebates it is required to 
provide other subscribers for diminished service. 

Rate-controlled PQ allows packets in a high-priority queue to be scheduled before packets in 
lower-priority queues only if the amount of traffic in the high-priority queue stays below a 
user-configured threshold. For example, assume that a high-priority queue has been 
rate-limited to 20 percent of the output port bandwidth. As long as the high-priority queue 
consumes less than 20 percent of the output port bandwidth, packets from this queue are 
scheduled ahead of packets from lower-priority queues. However, if the high-priority queue 
consumes more than 20 percent of the output port bandwidth, packets from lower-priority 
queues can be scheduled ahead of packets from the high-priority queue. When this occurs, 
there are no standards, so each vendor determines how its implementation schedules 
lower-priority packets ahead of high-priority packets. 

There are two primary applications for PQ at the edges and in the core of your network:

� PQ can enhance network stability during periods of congestion by allowing you to assign 
routing-protocol and other types of network-control traffic to the highest-priority queue.

� PQ supports the delivery of a high-throughput, low-delay, low-jitter, and low-loss service 
class. This capability allows you to deliver real-time applications, such as interactive voice 
or video, or to support TDM circuit emulation or SNA traffic by giving priority to these 
services before all other applications. 

However, support for these types of services requires that you effectively condition traffic at 
the edges of your network to prevent high-priority queues from becoming oversubscribed. If 
you neglect this part of the design process, you will discover that it is impossible to support 
these services. The real challenge lies in the fact that it is much easier to condition traffic and 
allocate bandwidth to a queue for certain applications than for other applications. For example, 
it is much easier to provision resources for a well-defined application, such as VoIP, where you 
know the packet size, traffic volume, and traffic behavior, than it is to provision resources for 
other types of applications, such as interactive video, where there are just too many variables. 
It is the presence of these unknowns that makes it extremely difficult to configure traffic 
conditioning thresholds, maximum queue depths, and bandwidth limits for high-priority 
queues.
Copyright © 2001, Juniper Networks, Inc. 8
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Fair Queuing (FQ)

Fair queuing (FQ) was proposed by John Nagle in 1987.  FQ is the foundation for a class of 
queue scheduling disciplines that are designed to ensure that each flow has fair access to 
network resources and to prevent a bursty flow from consuming more than its fair share of 
output port bandwidth. In FQ, packets are first classified into flows by the system and then 
assigned to a queue that is specifically dedicated to that flow. Queues are then serviced one 
packet at a time in round-robin order. Empty queues are skipped. FQ is also referred to as 
per-flow or flow-based queuing. (See Figure 3.)

Figure 3:  Fair Queuing (FQ)
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� FQ does not provide a mechanism that allows you to easily support real-time services, such 
as VoIP.  

� FQ assumes that you can easily classify network traffic into well-defined flows. In an IP 
network, this is not as easy as it might first appear. You can classify flows based on a 
packet’s source address, but then each workstation is given the same amount of network 
resources as a server or mainframe. If you attempt to classify flows based on the TCP 
connection, then you have to look deeper into the packet header, and you still have to deal 
with other issues resulting from encryption, fragmentation, and UDP flows. Finally, you 
might consider classifying flows based on source/destination address pairs. This gives an 
advantage to servers that have many different sessions, but still provides more than a fair 
share of network resources to multitasking workstations. 

� Depending on the specific mechanism you use to classify packets into flows, FQ generally 
cannot be configured on core routers, because a core router would be required to support 
thousands or tens of thousands of discrete queues on each port. This increases complexity 
and management overhead, which adversely impacts the scalability of FQ in large IP 
networks. 

FQ Implementations and Applications

FQ is typically applied at the edges of the network, where subscribers connect to their service 
provider. Vendor implementations of FQ typically classify packets into 256, 512, or 1024 queues 
using a hash function that is calculated across the source/destination address pair, the 
source/destination UDP/TCP port numbers, and the IP ToS byte. FQ requires minimal 
configuration (it is either enabled or disabled) and is self-optimizing—each of the n active 
queues is allocated 1/n of the output port bandwidth. As the number of queues changes, the 
bandwidth allocated to each of the queues changes. For example, if the number of queues 
increases from n to (n+1), then the amount of bandwidth allocated to each of the queues is 
decreased from 1/n of the output port bandwidth to 1/(n+1) of the output port bandwidth. 

FQ provides excellent isolation for individual traffic flows because, at the edges of the network, 
a typical subscriber has a limited number of flows, so each flow can be assigned to a dedicated 
queue, or else a very small number of flows, at most, are assigned to each queue. This reduces 
the impact that a single misbehaving flow can have on all of the other flows traversing the 
same output port. 

In class-based FQ, the output port is divided into a number of different service classes. Each 
service class is allocated a user-configured percentage of the output port bandwidth. Then, 
within the bandwidth block allocated to each of the service classes, FQ is applied. As a result, 
all of the flows assigned to a given service class are provided equal shares of the aggregate 
bandwidth configured for that specific service class. (See Figure 4.) 
Copyright © 2001, Juniper Networks, Inc. 10
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Figure 4:  Class-based Fair Queuing
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the fair allocation of bandwidth, because it takes packet length into account. As a result, at any 
moment in time, each queue receives its configured share of output port bandwidth. Although 
transmitting packets from different queues one bit at a time can be supported by a TDM 
network, it cannot be supported by a statistically multiplexed network. However, if you 
imagine the placement of a packet reassembler at the far end of the link, the order in which 
each packet would eventually be fully assembled is determined by the order in which the last 
bit of each packet is transmitted. This is referred to as the packet’s finish time. 

Figure 5 shows a weighted bit-by-bit round-robin scheduler servicing three queues. Assume 
that queue 1 is assigned 50 percent of the output port bandwidth and that queue 2 and queue 3 
are each assigned 25 percent of the bandwidth. The scheduler transmits two bits from queue 1, 
one bit from queue 2, one bit from queue 3, and then returns to queue 1. As a result of the 
weighted scheduling discipline, the last bit of the 600-byte packet is transmitted before the last 
bit of the 350-byte packet, and the last bit of the 350-byte packet is transmitted before the last 
bit of the 450-byte packet. This causes the 600-byte packet to finish (complete reassembly) 
before the 350-byte packet, and the 350-byte packet to finish before the 450-byte packet. 

Figure 5:  A Weighted Bit-by-bit Round-robin Scheduler with a Packet Reassembler

WFQ approximates this theoretical scheduling discipline by calculating and assigning a finish 
time to each packet. Given the bit rate of the output port, the number of active queues, the 
relative weight assigned to each of the queues, and the length of each of the packets in each of 
the queues, it is possible for the scheduling discipline to calculate and assign a finish time to 
each arriving packet. The scheduler then selects and forwards the packet that has the earliest 
(smallest) finish time from among all of the queued packets. It is important to understand that 
the finish time is not the actual transmission time for each packet. Instead, the finish time is a 
number assigned to each packet that represents the order in which packets should be 
transmitted on the output port (Figure 6). 
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Figure 6:  Weighted Fair Queuing (WFQ)—Service According to Packet Finish Time

When each packet is classified and placed into its queue, the scheduler calculates and assigns a 
finish time for the packet. As the WFQ scheduler services its queues, it selects the packet with 
the earliest (smallest) finish time as the next packet for transmission on the output port. For 
example, if WFQ determines that packet A has a finish time of 30, packet B has a finish time of 
70, and packet C has a finish time of 135, then packet A is transmitted before packet B or packet 
C. In Figure 6, observe that the appropriate weighting of queues allows a WFQ scheduler to 
transmit two or more consecutive packets from the same queue.

WFQ Benefits and Limitations

Weighted fair queuing has two primary benefits:

� WFQ provides protection to each service class by ensuring a minimum level of output port 
bandwidth independent of the behavior of other service classes. 

� When combined with traffic conditioning at the edges of a network, WFQ guarantees a 
weighted fair share of output port bandwidth to each service class with a bounded delay.

However, weighted fair queuing comes with several limitations:

� Vendor implementations of WFQ are implemented in software, not hardware. This limits 
the application of WFQ to low-speed interfaces at the edges of the network.

� Highly aggregated service classes means that a misbehaving flow within the service class 
can impact the performance of other flows within the same service class. 

� WFQ implements a complex algorithm that requires the maintenance of a significant 
amount of per-service class state and iterative scans of state on each packet arrival and 
departure.

� Computational complexity impacts the scalability of WFQ when attempting to support a 
large number of service classes on high-speed interfaces.

� On high-speed interfaces, minimizing delay to the granularity of a single packet 
transmission may not be worth the computational expense if you consider the insignificant 
amount of serialization delay introduced by high-speed links and the lower computational 
requirements of other queue scheduling disciplines. 

� Finally, even though the guaranteed delay bounds supported by WFQ may be better than 
for other queue scheduling disciplines, the delay bounds can still be quite large.
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Enhancements to WFQ

Since WFQ was initially proposed in 1989, many variations of WFQ have been developed with 
different trade-offs attempting to balance complexity, accuracy, and performance. Among the 
well-known WFQ variants are these four:

� Class-based WFQ assigns packets to queues based on user-defined packet classification 
criteria. For example, packets can be assigned to a particular queue based on the setting of 
the IP precedence bits. After packets are assigned to their queues, they can receive 
prioritized service based upon user-configured weights assigned to the different queues. 

� Self-clocking Fair Queuing (SCFQ) is an enhancement to WFQ that simplifies the 
complexity of calculating the finish time in a corresponding GPS system. The decrease in 
complexity results in a larger worse-case delay and the delay increases with the number of 
service classes.   

� Worst-case Fair Weighted Fair Queuing (WF2Q) is an enhancement to WFQ that uses both 
the start and finish times of packets to achieve a more accurate simulation of a GPS system.   

� Worst-case Fair Weighted Fair Queuing+ (WF2Q+) is an enhancement to WF2Q which 
implements a new virtual time function that results in lower complexity and higher 
accuracy.

WFQ Implementations and Applications

WFQ is deployed at the edges of the network to provide a fair distribution of bandwidth 
among a number of different service classes. WFQ can generally be configured to support a 
range of behaviors: 

� WFQ can be configured to classify packets into a relatively large number of queues using a 
hash function that is calculated across the source/destination address pair, the 
source/destination UDP/TCP port numbers, and the IP ToS byte. 

� WFQ can be configured to allow the system to schedule a limited number of queues that 
carry aggregated traffic flows. For this configuration option, the system uses QoS policy or 
the three low-order IP precedence bits in the IP ToS byte to assign packets to queues. Each 
of the queues is allocated a different percentage of output port bandwidth based on the 
weight that the system calculates for each of the service classes. This approach allows the 
system to allocate different amounts of bandwidth to each queue based on the QoS policy 
group or to allocate increasing amounts of bandwidth to each queue as the IP precedence 
increases.

� An enhanced version of WFQ, sometimes referred to as class-based WFQ, can alternately 
be used to schedule a limited number of queues that carry aggregated traffic flows. For this 
configuration option, user-defined packet classification rules assign packets to queues that 
are allocated a user-configured percentage of output port bandwidth. This approach allows 
you to determine precisely what packets are grouped in a given service class and to specify 
the exact amount of bandwidth allocated to each service class. 
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Weighted Round Robin (WRR) or Class-based Queuing (CBQ)

Weighted round robin (WRR) is the foundation for a class of queue scheduling disciplines that 
are designed to address the limitations of the FQ and PQ models.

� WRR addresses the limitations of the FQ model by supporting flows with significantly 
different bandwidth requirements. With WRR queuing, each queue can be assigned a 
different percentage of the output port’s bandwidth.

� WRR addresses the limitations of the strict PQ model by ensuring that lower-priority 
queues are not denied access to buffer space and output port bandwidth. With WRR 
queuing, at least one packet is removed from each queue during each service round.

WRR Queuing Algorithm

In WRR queuing, packets are first classified into various service classes (for example, real-time, 
interactive, and file transfer) and then assigned to a queue that is specifically dedicated to that 
service class. Each of the queues is serviced in a round-robin order. Similar to strict PQ and FQ, 
empty queues are skipped. Weighted round robin queuing is also referred to as class-based 
queuing (CBQ) or custom queuing.

WRR queuing supports the allocation of different amounts of bandwidth to different service 
class by either:

� Allowing higher-bandwidth queues to send more than a single packet each time that it 
visited during a service round, or

� Allowing each queue to send only a single packet each time that it is visited, but to visit 
higher-bandwidth queues multiple times in a single service round. 

In Figure 7, the real-time traffic queue is allocated 25 percent of the output port bandwidth, the 
interactive traffic queue is allocated 25 percent of the output port bandwidth, and the file 
transfer traffic queue is allocated 50 percent of the output port bandwidth. WRR queuing 
supports this weighted bandwidth allocation by visiting the file transfer queue two times 
during each service round. 

Figure 7:  Weighted Round Robin (WRR) Queuing 
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To regulate the amount of network resources allocated to each service class, a number of 
parameters can be tuned to control the desired behavior of each queue:

� The amount of delay experienced by packets in a given queue is determined by a 
combination of the rate that packets are placed into the queue, the depth of the queue, the 
amount of traffic removed from the queue at each service round, and the number of other 
service classes (queues) configured on the output port.

� The amount of jitter experienced by packets in a given queue is determined by the 
variability of the delay in the queue, the variability of delay in all of the other queues, and 
the variability of the interval between service rounds. 

� The amount of packet loss experienced by each queue is determined by a combination of the 
rate that packets are placed into the queue, the depth of the queue, the aggressiveness of the 
RED profiles configured for the queue, and the amount of traffic removed from the queue at 
each service round. The fill rate can be controlled by performing traffic conditioning at 
some upstream point in the network. 

WRR Queuing Benefits and Limitations

Weighted round robin queuing includes the following benefits:

� WRR queuing can be implemented in hardware, so it can be applied to high-speed 
interfaces in both the core and at the edges of the network.

� WRR queuing provides coarse control over the percentage of output port bandwidth 
allocated to each service class. 

� WRR queuing ensures that all service classes have access to at least some configured 
amount of network bandwidth to avoid bandwidth starvation. 

� WRR queuing provides an efficient mechanism to support the delivery of differentiated 
service classes to a reasonable number of highly aggregated traffic flows.

� Classification of traffic by service class provides more equitable management and more 
stability for network applications than the use of priorities or preferences. For example, if 
you assign real-time traffic strict priority over file-transfer traffic, then an excessive amount 
of real-time traffic can eliminate all file-transfer traffic from your network. WRR queuing is 
based on the belief that resource reduction is a better mechanism to control congestion than 
resource denial. Resource denial not only blocks all traffic from lower-priority service 
classes but also obstructs all signaling regarding the denial of resources. As a result, TCP 
applications and externally clocked UDP applications are unable to correctly adapt their 
transmission rates to respond to the denial of network resources. 

The primary limitation of weighted round-robin queuing is that it provides the correct 
percentage of bandwidth to each service class only if all of the packets in all of the queues are 
the same size or when the mean packet size is known in advance. For example, assume that 
you are using WRR to service four queues that are assigned the following percentages of 
output port bandwidth: queue 1 is allocated 40 percent, queue 2 is allocated 30 percent, queue 
3 is allocated 20 percent, and queue 4 is allocated 10 percent. Assume also that all of the packets 
in all of the queues are 100 bytes. (See Figure 8.)
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Figure 8:  WRR Queuing Is Fair with Fixed-length Packets

At the end of a single service round, queue 1 transmits 4 packets (400 bytes), queue 2 transmits 
3 packets (300 bytes), queue 3 transmits 2 packets (200 bytes), and queue 4 transmits one 
packet (100 bytes). Since a total of 1000 bytes are transmitted during the service round, queue 1 
receives 40 percent of the bandwidth, queue 2 receives 30 percent of the bandwidth, queue 3 
receives 20 percent of the bandwidth, and queue 4 receives 10 percent of the bandwidth. In this 
example, WRR queueing provides a perfect distribution of output port bandwidth. This 
behavior is similar to what you would expect to find in a fixed-length, cell-based ATM 
network, because all packets are the same size. 

However, if one service class contains a larger average packet size than another service class, 
the service class with the larger average packet size obtains more than its configured share of 
output port bandwidth. Assume that the WRR scheduler is configured exactly as in the 
previous example. However, all of the packets in queue 1 have an average size of 100 bytes, all 
of the packets in queue 2 have an average size of 200 bytes, all of the packets in queue 3 have 
an average packet size of 300 bytes, and all of the packets in queue 4 have an average packet 
size of 400 bytes. (See Figure 8.) 

Figure 9:  WRR Queuing is Unfair with Variable-length Packets
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Assuming these average packet sizes, at the end of a single service round, queue 1 transmits 4 
packets (400 bytes), queue 2 transmits 3 packets (600 bytes), queue 3 transmits 2 packets (600 
bytes), and queue 4 transmits 1 packet (400 bytes). Since a total of 2000 bytes are transmitted 
during the service round, queue 1 receives 20 percent of the bandwidth, queue 2 receives 30 
percent of the bandwidth, queue 3 receives 30 percent of the bandwidth, and queue 4 receives 
20 percent of the bandwidth. When faced with variable length packets, WRR queueing does 
not support the configured distribution of output port bandwidth. 

WRR Implementations and Applications

Because the WRR scheduling discipline can be implemented in hardware, it can be deployed in 
both the core and at the edges of the network to arbitrate the weighted distribution of output 
port bandwidth among a fixed number of service classes. WRR effectively overcomes the 
limitations of FQ by scheduling service classes that have different bandwidth requirements. 
WRR also overcomes the limitations of strict PQ by ensuring that lower-priority queues are not 
bandwidth-starved. However, WRR’s inability to support the precise allocation of bandwidth 
when scheduling variable-length packets is a critical limitation that needs to be addressed. 

Deficit Weighted Round Robin (DWRR)

Deficit weighted round robin (DWRR) queuing was proposed by M. Shreedhar and G. 
Varghese in 1995. DWRR is the basis for a class of queue scheduling disciplines that are 
designed to address the limitations of the WRR and WFQ models.

� DWRR addresses the limitations of the WRR model by accurately supporting the weighted 
fair distribution of bandwidth when servicing queues that contain variable-length packets. 

� DWRR addresses the limitations of the WFQ model by defining a scheduling discipline that 
has lower computational complexity and that can be implemented in hardware. This allows 
DWRR to support the arbitration of output port bandwidth on high-speed interfaces in 
both the core and at the edges of the network. 

In DWRR queuing, each queue is configured with a number of parameters:

� A weight that defines the percentage of the output port bandwidth allocated to the queue.

� A DeficitCounter that specifies the total number of bytes that the queue is permitted to 
transmit each time that it is visited by the scheduler. The DeficitCounter allows a queue that 
was not permitted to transmit in the previous round because the packet at the head of the 
queue was larger than the value of the DeficitCounter to save transmission “credits” and 
use them during the next service round.

� A quantum of service that is proportional to the weight of the queue and is expressed in 
terms of bytes. The DeficitCounter for a queue is incremented by the quantum each time 
that the queue is visited by the scheduler. If quantum[i] = 2*quantum[x], then queue i will 
receive twice the bandwidth as queue x when both queues are active. 

DWRR Algorithm

In the classic DWRR algorithm, the scheduler visits each non-empty queue and determines the 
number of bytes in the packet at the head of the queue. The variable DeficitCounter is 
incremented by the value quantum. If the size of the packet at the head of the queue is greater 
than the variable DeficitCounter, then the scheduler moves on to service the next queue. If the 
size of the packet at the head of the queue is less than or equal to the variable DeficitCouner, 
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then the variable DeficitCounter is reduced by the number of bytes in the packet and the 
packet is transmitted on the output port. The scheduler continues to dequeue packets and 
decrement the variable DeficitCounter by the size of the transmitted packet until either the size 
of the packet at the head of the queue is greater than the variable DeficitCounter or the queue is 
empty. If the queue is empty, the value of DeficitCounter is set to zero. When this occurs, the 
scheduler moves on to service the next non-empty queue. (See Figure 9.) 

Figure 10:  Deficit Weighted Round Robin Queuing

DWRR Pseudo Code

The pseudo code in this section does not describe the operation of any specific vendor’s DWRR 
implementation. Although  each vendor’s implementation will differ from this model, 
reviewing the examples and tracing the pseudo code will make it easier for you to understand 
the specific design decisions that router vendors are required to make in their 
implementations.

The array variable DeficitCounter is initialized to zero. In this example, the queues are 
numbered 1 to n, where n is the maximum number of queues on the output port:

FOR i = 1 to n                  /* Visit each queue index */
DeficitCounter[i] = 0       /* Initialize DeficitCounter[i] to 0 */

ENDIF

The function Enqueue(i) places newly arriving packets into its correct queue and manages 
what is known as the ActiveList. The ActiveList is maintained to avoid examining empty 
queues. The ActiveList contains a list of the queue indices that contain at least one packet. 
Whenever a packet is placed in a previously empty queue, the index for the queue is added to 
the end of the ActiveList by the function InsertActiveList(i). Similarly, whenever a queue 
becomes empty, the index for the queue is removed from the ActiveList by the function 
RemoveFromActiveList(i).

Enqueue(i)
i = the index of the queue that will hold the new packet
IF (ExistsInActiveList(i) = FALSE) THEN /*IF i not in ActiveList */

InsertActiveList(i)        /* Add i to the end of ActiveList */
DeficitCounter[i] = 0  /*Initialize queue DeficitCounter[i] to 0*/

ENDFOR
Enqueue packet to Queue[i] /* Place packet at end of queue i */

END Enqueue
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Whenever an index is at the head of the of the ActiveList, the function Dequeue() transmits up 
to DeficitCounter[i] + Quantum[i] worth of bytes from queue. If, at the end of the service round 
Queue[i] still has packets to send, the function InsertActiveList(i) moves the index i to the end 
of the ActiveList. However, if Queue[i] is empty at the end of the service round, the 
DeficitCounter[i] is set to zero and the function RemoveFromActiveList(i) removes the index i 
from the ActiveList. 

Dequeue()
While (TRUE) DO 

IF (ActiveList is NotEmpty) THEN
i = the index at the head of the ActiveList
DeficitCounter[i] = DeficitCounter[i] + Quantum[i]
WHILE (DeficitCounter[i] > 0 AND NOT Empty(Queue[i])) DO

PacketSize = Size(Head(Queue[i]))
IF (PacketSize <= DeficitCounter[i]) THEN

Transmit packet at head of Queue[i]
DeficitCounter[i] = DeficitCounter[i] - PacketSize

ELSE
Break /*exit this while loop*/

ENDIF
ENDWHILE
IF (Empty(Queue[i])) THEN

DeficitCounter[i] = 0
RemoveFromActiveList(i)

ELSE
InsertActiveList(i)

ENDIF
ENDIF

ENDWHILE
END Dequeue

Using this pseudo code to implement a DWRR queue scheduling discipline for deployment in 
a production network has inherent limitations:

� Continuing to service multiple packets from a single queue until DeficitCounter[i] is less 
than the size of the packet at the head of the Queue[i] can introduce jitter, making it difficult 
for this implementation to support real-time traffic.

� The inability of the model to support a negative DeficitCounter[i] means that if Queue[i] 
does not have enough credits to transmit a packet, then the queue may experience 
bandwidth starvation, because it is not allowed to transmit during the current nor, perahps,  
subsequent service rounds until it has accumulated enough credits. 

DWRR Example

For this example, assume that DWRR scheduling is enabled on an output port that is 
configured to support 3 queues. Queue 1 is allocated 50 percent of the bandwidth, while queue 
2 and queue 3 are each allocated 25 percent of output port bandwidth. 

Initially, the array variable DeficitCounter is initialized to 0. Assume that the round robin 
pointer points to queue 1, which is at the top of the ActiveList. Before the DWRR scheduling 
discipline begins to service queue 1, Quantum[1] = 1000 is added to DeficitCounter[1], giving it 
a value of 1000. (See Figure 11.)
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Figure 11:  DWRR Example — Round 1 with Round Robin Pointer = 1

Because the 600-byte packet at the head of queue 1 is smaller than the value of 
DeficitCounter[1] = 1000, the 600-byte packet is transmitted. This causes the DeficitCounter[1] 
to be decremented by 600 bytes, resuling in a new value of 400. Now, since the 300-byte packet 
at the head of queue 1 is smaller than DeficitCounter[1] = 400, the 300-byte packet is also 
transmitted, and this causes DeficitCounter[1] to be decremented by 300 bytes, creating a new 
value of 100. Because the 400-byte packet at the head of queue 1 is larger than the value of 
DeficitCounter[1] = 100, the 400-byte packet cannot be transmitted. This causes the round robin 
pointer to point to queue 2, which is now at the top of the ActiveList. (See Figure 12.)

Figure 12:  DWRR Example — Round 1 with Round Robin Pointer = 2

Before the DWRR scheduling discipline starts to service queue 2, Quantum[2] = 500 is added to 
DeficitCounter[2] giving it a value of 500. Since the 400-byte packet at the head of queue 2 is 
smaller than the value of DeficitCounter[2] = 500, the 400-byte packet is transmitted. This 
causes DeficitCounter[2] be decremented by 400 bytes and thus have a new value of 100. 
Because the 300-byte packet at the head of queue 2 is larger than the value of DeficitCounter[2] 
= 100, the 300-byte packet cannot be transmitted. This causes the round robin pointer to point 
to queue 3, which is now at the top of the ActiveList. (See Figure 13.)
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Figure 13:  DWRR Example — Round 1 with Round Robin Pointer = 3

Before the DWRR scheduling discipline starts to service queue 3, Quantum[3] = 500 is added to 
DeficitCounter[3], giving it a value of 500. Since the 600-byte packet at the head of queue 2 is 
larger than the value of DeficitCounter[3] = 500, the 600-byte packet cannot be transmitted. 
This causes the round robin pointer to point to queue 1, which is now at the top of the 
ActiveList. (See Figure 14.)

Figure 14:  DWRR Example — Round 2 with Round Robin Pointer = 1

Before the DWRR scheduling discipline starts to service queue 1, Quantum[1] = 1000 is added 
to DeficitCounter[1] giving it a value of 1100. Since the 400-byte packet at the head of queue 1 is 
smaller than the value of DeficitCounter[1] = 1100, the 400-byte packet is transmitted. This 
causes DeficitCounter[1] be decremented by 400 bytes and have a new value of 700. Now 
queue 1 is empty. This causes DeficitCounter[1] to be set to zero, queue 1 to be removed from 
the ActiveList, and the round robin pointer to point to queue 2, which is now at the top of the 
ActiveList. (See Figure 15.)
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Figure 15:  DWRR Example — Round 2 with Round Robin Pointer = 2

Before the DWRR scheduling discipline starts to service queue 2, Quantum[2] =  500 is added 
to DeficitCounter[2], giving it a value of 600. Since the 300-byte packet at the head of queue 2 is 
smaller than the value of DeficitCounter[2] = 600, the 300-byte packet is transmitted. This 
causes DeficitCounter[2] to be decremented by 300 bytes, to a new value of 300. Since the 
400-byte packet at the head of queue 2 is larger than the value of DeficitCounter[2] = 300, the 
400-byte packet cannot be transmitted. This causes the round robin pointer to point to queue 3, 
which is now at the top of the ActiveList. (See Figure 16.)

Figure 16:  DWRR Example — Round 2 with Round Robin Pointer = 3

Before the DWRR scheduling discipline starts to service queue 3, Quantum[3] = 500 is added to 
DeficitCounter[3] giving it a value of 1000. Since the 600-byte packet at the head of queue 3 is 
smaller than the value of DeficitCounter[3] = 1000, the 600-byte packet is transmitted. This 
causes DeficitCounter[3] be decremented by 600 bytes and have a new value of 400. Since the 
300-byte packet at the head of queue 3 is smaller than the value of DeficitCounter[3] = 400, the 
300-byte packet is transmitted, and this causes DeficitCounter[3] to be decremented by 300 
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bytes, to a new value of 100. Since the 400-byte packet at the head of queue 3 is larger than the 
value of DeficitCounter[3] = 100, the 400-byte packet cannot be transmitted. This causes the 
round robin pointer to point to queue 2, which is now at the top of the ActiveList. (Figure 17.)

Figure 17:  DWRR Example — Round 3 with Round Robin Pointer = 2

Before the DWRR scheduling discipline starts to service queue 2, Quantum[2] =  500 is added 
to DeficitCounter[2], giving it a value of 800. At this point, the DWRR scheduling discipline 
continues to service queues by providing the user-configured percentage of output port 
bandwidth to each service class. 

DWRR Benefits and Limitations

The benefits of DWRR queuing are that it:

� Provides protection among different flows, so that a poorly behaved service class in one 
queue cannot impact the performance provided to other service classes assigned to other 
queues on the same output port;

� Overcomes the limitations of WRR by providing precise controls over the percentage of 
output port bandwidth allocated to each service class when forwarding variable-length 
packets;

� Overcomes the limitations of strict PQ by ensuring that all service classes have access to at 
least some configured amount of output port bandwidth to avoid bandwidth starvation; 
and 

� Implements a relatively simple and inexpensive algorithm, from a computational 
perspective, that does not require the maintenance of a significant amount of per-service 
class state.

As with other models, DWRR queuing has limitations:

� Highly aggregated service classes mean that a misbehaving flow within a service class can 
impact the performance of other flows within the same service class. However, in the core 
of a large IP network, routers are required to schedule aggregate flows, because the large 
number of individual flows makes it impractical to support per-flow queue scheduling 
disciplines.
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� DWRR does not provide end-to-end delay guarantees as precise as other queue scheduling 
disciplines do.

� DWRR may not be as accurate as other queue scheduling disciplines. However, over 
high-speed links, the accuracy of bandwidth allocation is not as critical as over low-speed 
links.

DWRR Implementations and Applications

Because the DWRR queue scheduling discipline can be implemented in hardware, it can be 
deployed in both the core and at the edges of the network to arbitrate the weighted 
distribution of output port bandwidth among a fixed number of service classes. DWRR 
provides all of the benefits of WRR, while also addressing the limitations WRR by supporting 
the accurate allocation of bandwidth when scheduling variable-length packets. 

Conclusion

In this paper, we described the operation, benefits, and limitations of a number of classic queue 
scheduling disciplines:

� First-in, first-out (FIFO)

� Priority queuing (PQ)

� Fair queuing (FQ)

� Weighted fair queuing (WFQ)

� Weighted round robin (WRR) or class-based queuing (CBQ)

� Deficit weighted round robin (DWRR)

The very nature of large IP production networks requires that router vendors offer a 
combination of these approaches if they are to provide a solution that allows you to accurately 
arbitrate service-class access to output port bandwidth during periods of congestion. Each 
vendor’s implementation seeks to find the correct balance between performance, accuracy, and 
simplicity.

For example, one possible solution combines rate-controlled PQ with DWRR queuing. In this 
hardware-based approach, high priority queues are serviced strictly before low-priority 
queues, as long as high-priority queues do not exceed their allocated bandwidth. If a 
high-priority queue is rate-controlled, it cannot exceed its allocated bandwidth, so it is 
impossible for it to starve low-priority queues. Consequently, a high-priority queue is treated 
preferentially only as long as it stays within its allocated bandwidth. Within a priority, queues 
can be serviced in a DWRR manner to provide accurate control over the percentage of output 
port bandwidth allocated to each queue within the priority. This combination of 
rate-controlled PQ and DWRR is computationally inexpensive, can be implemented in 
hardware, and allows high-priority, delay-sensitive traffic to be serviced quickly while 
avoiding bandwidth starvation for other types of low-priority traffic. 
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