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1 INTRODUCTION

Resource allocation in the multiservice communication networks presents a very
important problem in the design of the future multiclass IP networks. The main
motivation for the research in this field lies in the necessity for structural changes
in the way the Internet is designed. The current Internet offers a single class of
best-effort service, although some traffic prioritization will be active in the new
network router implementations. However, the Internet is changing and it is be-
coming an important channel for critical information and the fundamental tech-
nology for information systems of most advanced companies and organizations.
Users are becoming increasingly reliant on the Internet for up-to-date personal,
professional and business information. The substantial changes transforming the
Internet from a communication and browsing infrastructure to a medium for con-
ducting personal business and e-commerce are making the Quality of Service
(QoS) an increasingly critical issue. Meanwhile, to realize the above changes, the
future IP networks must be able to support a wide range of different traffic types
with different QoS requirements. For example, new sophisticated real-time ap-
plications such as Voice over IP (VoIP), Video-on-Demand (VoD) and Video- Con-
ferencing require firm performance guarantees from the network where certain
resources should be reserved for them. Hence, efficient resource allocation mech-
anisms are needed to distribute network resources among all competing service
classes for achieving their QoS requirements.

The current architecture of the Internet assumes the best-effort model which
means "as much as possible as soon as possible". According to this definition,
each packet has the same expectation of treatment as it transits a network. This
has sufficed for traditional Internet applications, such as Web, E-mail, news groups
etc. However, new multimedia applications and services create a strong impetus
to bring different levels of service to packet traffic. The reason is that depend-
ing on a service, the traffic characteristics and, as a result, requirements for net-
work transport functionality may vary. Some services may be long-lived telnet
logins with a little traffic sent but needing interactive response. Some may be the
File Transfer Protocol (FTP) sessions with bursts of kilobytes or even megabytes.
Some may be the Hypertext Transfer Protocol (HTTP) transactions that open a
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transport connection to transmit a handful of packets. Some may be audio or
video streams with the fixed rates and no way to slow down. If the Internet han-
dles all data in the same way, then it can result in unacceptable, if not completely
unusable, service. For instance, if telephony and file transfer traffic are mixed
together in the same part of the network, then the file transfer may experience
congestions and packet losses due to the telephony applications that send data
at the constant rate. In turn, the telephony traffic will not slow down, but will
experience losses and poor voice quality due to the presence of the bursty file
transfer operations. Thus, the enhanced Internet architecture should provide dif-
ferent service classes to indicate the treatment of individual packets and flows
and to allocate resources among them.

These tasks are solved within the Quality-of-Service (QoS) research area.
The objective of network QoS is to quantify the treatment a particular packet can
expect. A workable QoS architecture must provide a means for specifying per-
formance objectives for different classes of packets as well as means of delivering
on those performance objectives. It should be noted that QoS cannot create ad-
ditional bandwidth. When some packets get better treatment, other packets will
get worse treatment. Thus, the task of QoS is to distribute resources in such a
way that all the performance objectives are met.

The premise of QoS is that some traffic is more important and should be
treated appropriately. Furthermore, there are also economical reasons because the
Internet has become mission-critical to many companies. In such a framework a
provider can offer services with specific performance with cost linked to quality.
Further, as the QoS becomes available in the general Internet, more companies
and end-users can migrate to the Internet increasing a provider’s revenue while
decreasing network purchasing costs.

From the viewpoint of a customer (either a user, or an organization, or an-
other provider), the first step towards the QoS is the Service Level Agreement
(SLA), which is negotiated with a provider. The SLA defines the QoS require-
ments, the anticipated load, actions to take if the load increases the negotiated
value, pricing etc. Since the SLA includes rules and actions in the human read-
able form, it has to be translated into the machine readable representation. For
these purposes, the SLA is partitioned into several documents. The Service Level
Objectives (SLO) specifies metrics and operation information to enforce and mon-
itor the SLA. The Service Level Specification (SLS) specifies the handling of a cus-
tomer’s traffic by a service provider.

To characterize the QoS requirements and actions in the SLS, a provider and
a customer must specify them with a set of well-known parameters, or perfor-
mance metrics, so that a provider can translate them into the router configuration.
The fundamental parameters are throughput, delay, jitter, and packet loss.



21

1.1 QoS definitions

Quality of Service can be defined in various ways, most of which are equivalent
or complimentary. It is the ability of a network element (e.g. a router/switch or
Web server) to have some degree of assurance that its traffic and service require-
ments can be satisfied. It describes the assurance of sufficiently low delay and
packet loss for certain types of applications or traffic. The provision of QoS in a
network, especially one as large as the global Internet, is not a trivial matter. The
cooperation of all network layers from top-to-bottom (i.e. layer one to layer seven
of the ISO-OSI model) in addition to every network element from end-to-end (i.e.
from sender to receiver) is required. The need for QoS is becoming progressively
more evident daily. For example, many companies rely on the Internet for the
day-to-day management of their global enterprises. Many more also utilize the
Internet to conduct business (e.g. to place order with their suppliers, interact with
customers, etc.). These companies are willing to invest a substantial amount of
money for the best possible QoS from the Internet. After all, building and main-
taining private high-speed global communication networks would represent a
major capital investment for any multi-national corporation. On a potentially
much larger scale, there are myriads of individual users and organizations that
are willing to pay a higher Internet service fee for better QoS in order to take
advantage of demanding applications like IP-telephony, video-conferencing and
online games. Of course, there will always be a large constituency of users who
want to pay nothing at all (excluding Internet service provider fees) for the more
traditional services such as email and Web surfing. As is expected, applications
differ in their QoS requirements. A loss-sensitive application is one that cannot
accept the loss of data. For example, an ftp file transfer is loss-sensitive since
every bit is important while a telephony application can handle the loss of an
occasional packet (without retransmission). A delay-sensitive application is de-
pendant on the timely arrival of its packets. File transfers are not delay sensi-
tive although human patience places lower bounds on throughput. Multimedia
applications like streaming video and audio can only handle small delays with
predictable variation (jitter) and still maintain their utility. QoS has two compo-
nents: performance assurance and service differentiation. The former relates to
bandwidth, delay and jitter and packet loss. Bandwidth is the fundamental re-
source since it affects the other three. Service differentiation addresses providing
different QoS to different applications with differing requirements. In both cases,
this is also a way for Internet Service Providers (ISPs) to increase revenues. Ab-
solute QoS vs Relative QoS
Performance assurance typically relies on absolute (quantitative) QoS specifica-
tions that in some way deal with loss or delay bounds. As an example consider
the statements no packet will experience a delay greater than 200 ms or packet
loss will not exceed 1 percent. In the absolute model, if the network can guaran-
tee requested performance level of the user, he or she will be admitted access to
the network. Typically the user will be rejected if the network can not provide
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the requested assurances. It is an all or nothing proposition. This is typically
between specific endpoints. Relative QoS is precisely what service differentia-
tion addresses. The only assurance from the network is that a higher class will
receive better or at least no worse service than any lower class. This model can
not offer hard guarantees on delay or packet loss because the amount of service
received by a class and the resulting QoS perceived by an application depend on
the current network load in each class. This model also requires integration with
a pricing or policy-based scheme to make higher classes more costly than lower
classes. Disincentives (e.g. high cost) must exist so that everyone does not prefer
to use the higher priority classes since this would effectively shrink the relative
QoS differences between the classes. The existence of QoS classes supports the
dynamic change of classes by a user or application that is able to actively adapt
based on the observed performance. For example, a telephony application can
dynamically switch classes to find an acceptable QoS at the most economical cost
(i.e. no need to pay for a high priority class if a lower priority, and hence cheaper,
class meets its requirements). Typically, this model supports arbitrary endpoints.
End-to-End QoS
The QoS protocols of IntServ and DiffServ [16] are capable of furnishing a QoS
to flows or aggregates of flows in an end-to-end manner but it is unlikely that
either one will ever be ubiquitous enough to do that. Instead, they will likely
be used together in the real world to provide end-to-end QoS. By mixing and
matching their capabilities in a variety of possible architectures, the goal of end-
to-end QoS is nearing reality. Now at least MPLS (Multi-Protocol Label Switching
[127]) and the combination of RSVP and DiffServ have been proposed to provide
end-toend QoS. However, end-to-end QoS does not take place only between the
network nodes of a network. The end hosts play an integral part in this. Most
of the research on QoS is oriented towards network issues such as scheduling
and routing. However, network QoS by itself is not sufficient to support end-
to-end QoS because bandwidth management and congestion avoidance cannot
resolve scheduling or bottleneck problems at the end hosts (Web servers). The
FIFO scheduling performed by most servers can undermine any QoS improve-
ments made by the network since a busyWeb server can indiscriminately drop
high priority network packets. Thus, a true end-to-end Internet QoS solution has
as an essential component aWeb server with QoS mechanisms to provide over-
load protection and to enable differentiated services. In addition, satisfying the
end-to-end QoS requirement (delay in particular) of an application traversing a
number of network elements is usually addressed by partitioning the end-to-end
QoS requirement into the local QoS requirements in each individual element in-
volved and then achieving them respectively. Hence, the problem of allocating
resources among multiple service classes based on the local QoS requirements in
a single network element is of practical importance.
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1.1.1 QoS parameters

The fundamental QoS parameters can be defined as a set of parameters where
other sets can always be mapped to. Following this definition, a sufficient set of
QoS parameters include delay, throughput, jitter, packet loss ratio and availabil-
ity.

The packet delay parameter is critical for the real-time applications. One can
think of the packet delay as consisting of several subcomponents: the propaga-
tion delay, the serialization delay, and the queuing delay. The propagation delay
is defined as the time it takes one bit of data to reach another end of a link. It
depends only on the link characteristics and does not depend on the packet size.
The serialization delay is the time it takes a router to output completely a packet.
This delay depends on the link characteristics and the packet size. The queuing
delay is the time a packet spends in a router’s internal queue. The sum of all the
propagation, serialization, and queuing delays along the datapath constitutes the
end-to-end delay.

Throughput specifies the amount of bytes (or bits) that an application can
send during a time unit without losses. It is one of the most important param-
eters because most applications include it in the set of their QoS requirements.
It should be noted that the throughput stands for the long-term rate of an ap-
plication. Due to the packet-based nature of most networks, the short-term rate
may differ from the long-term value. Thus, it is usually the case that the through-
put refers to the average rate of an application. Consequently, one can use other
parameters such as the maximum or the rate and the minimum rate.

Jitter specifies the delay variation between the packets. It is an important
parameter for the interactive applications, such as on-line audio and video con-
versations. Since data exchange between two applications involves sending a
significant number of packets, it is often the case that jitter specifies the maximum
delay variation observed between the two consecutive packets. However, one can
also use a smoothing equation to obtain some mean value over the sequence of
packets. Regardless of the interpretation, ideally the jitter should equal zero be-
cause the bigger its value is, the bigger buffer a receiving application must have
to compensate delay variations between the packets.

Packet loss, as its name indicates, characterizes the number of packets
dropped during transmission. This parameter is critical for those applications
that perform guaranteed data delivery because every time a router drops a packet,
a sending application has to retransmit it, which results in ineffective bandwidth
usage. It is also important for some real-time applications since packet drops
reduce the quality of transmitted video and/or audio data. Since the number
of dropped packets depends on the duration of a session, the packet loss is ex-
pressed usually as a ratio of the number of the dropped packets to the overall
number of packets.

Availability is usually directly related to the services of the network. It has
a close relation to reliability, and there are lots of mechanisms to enhance the
availability of the Internet, such as router redundancy protocols VRRP and HSRP.
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Service Level Agreement
A Service-Level-Agreement (SLA), which is negotiated and committed between
service providers and service consumers (either another service providers or com-
mon users or both), defines the QoS metrics for each class of service, the antici-
pated per-class workload intensity and the pricing strategy by which the service
payment will be determined. The problem with SLAs is that the rules that are
readable and understandable for human beings have to be translated into a form
that is readable for machines. Differentiated Services framework suggests that
the negotiated and committed SLA may be represented by Service Level Objec-
tives (SLOs) for machine readability. As a summary of terminology related to
SLAs, we refer to the definitions of RFC 3198 as follows [159]:

• Service Level Agreement (SLA): The documented result of a negotiation be-
tween a customer/consumer and a provider of a service, which specifies
the levels of availability, serviceability, performance, operation or other at-
tributes of the service.

• Service Level Objective (SLO): Partitions an SLA into individual metrics and
operational information to enforce and/or monitor the SLA. SLO may be
defined as part of an SLA, an SLS, or in a separate document. It is a set of
parameters and their values. The actions of enforcing and reporting moni-
tored compliance can be implemented as one or more policies.

• Service Level Specification (SLS): Specifies the handling of the traffic by a
service provider. It is negotiated between a customer and a service provi-
der. For instance, in a DiffServ network environment, it defines parameters
such as specific Code Points and the Per-Hop-Behavior, profile character-
istics and the treatment of the traffic for those Code Points. An SLS is a
specific SLA and its SLOs (the individual metrics and operational data to
enforce) guarantee the QoS required by traffic.

1.2 QoS mechanisms

The task of providing QoS spans many technologies and network architectural
layers. A packet may leave a station via the Ethernet interface, travel through
several network domains that use the Asynchronous Transfer Mode (ATM) tech-
nology, and finally reach the destination station that is connected to the Wireless
LAN (WLAN) network. Such a diversity of the link layer technologies makes
it complicated to deploy QoS. It is quite natural that each link layer technology
may provide some QoS features that cannot be mapped easily to another link
layer medium. Thus, it is easier to operate with QoS on the transport layer and
then map its requirements onto the underlying link layer. Since at the moment
the Internet Protocol (IP) protocol is de-facto the standard protocol to exchange
data, most QoS mechanisms target the IP networks. At the same time, there are
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standardization documents and research works on how to map IP level QoS to
the concrete link layer medium.

The subsequent subsections present an overview of the most common QoS
mechanisms used in the IP networks. Also, a good overview of the basic QoS
mechanisms and interconnections between them is given in [164].

1.2.1 Packet classification and marking

To ensure the QoS requirements, the network has to identify somehow a flow,
packets of which require a special treatment. The classical way to identify a flow
is to use the following five parameters: source address, source port, destination
address, destination port, protocol number. Such an approach requires that each
router, which provides the QoS guarantees, uses the multi-field classifiers that
can identify packets belonging to a particular flow. Though it is not a complicated
task, the number of data structures a router has to keep grows proportionally to
the number of flows. Furthermore, every time a packet arrives, a router has to
find the matching set of values in the classifier which, of course, takes some time.

To diminish this overhead, the incoming data can be classified based on
some label stored in a packet header. Such an approach reduces significantly the
time it takes a router to find the matching entry in the classifier. Besides, the clas-
sifier data structures become considerably simpler. However, either the source
applications or some router in the network must write the label into the packet
header so that the packets are provided appropriate treatment. Depending on the
QoS architecture, this task is solved differently.

1.2.2 Traffic regulation

Having made a contract with a customer, a provider should not anticipate that
a customer application will send data at a rate that is smaller than or equals the
value mentioned in the agreement. In fact, a user application is likely to send
more data as a matter of normal operation. This is due to adaptive applica-
tions, packet level acknowledgements, and incapability of informing an appli-
cation that it has to transmit data at some rate. As a result, a provider has to use
traffic regulation models so that ill-behaving applications do not impact other
flows.

In the traditional queuing theory, most models are based on stochastic pro-
cesses. Among them the most popular are the Poisson model for data [89], on-
off model [23] for voice sources and more complicated Markovian models [100]
for video sources. In general, these models are either too simple to character-
ize the important properties of the source or too complex for tractable analysis.
Furthermore, as reported in [120], the distribution of packets arrivals follows a
self-similar law where the underlying distributions are heavy-tailed rather than
the Poisson distribution.

In practice, other models are used that bound the traffic rather than charac-
terize the process exactly. It is sufficient for the resource management algorithms
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to know just the bounds to allocate resources in most cases. The simplest model
that bound the traffic is the (r, T) model [55]. A traffic stream is said to satisfy
the (r, T) model if no more than rT bits are transmitted on any interval of length
T. Unfortunately, it is suitable only for the fluid traffic model which is not the
case for the packet networks. Alternatively, a traffic stream satisfies the (σ, ρ)
model [39] if during any interval of length T the number of bits in that interval
is less than ρT + σ.1 Similarly, rather than using one bounding rate, it is possible
to use a set of rate-interval pairs. The D-BIND [90] model captures an intuitive
property that over longer interval lengths a source may be bounded by a lower
rate. There are also other models that take parameters other than the bounding
rate into account. In [48], the (Xmin, Xave, I, Smax) model was proposed. A traffic
stream satisfies this model if the inter-arrival time between any two packets in
the stream is more than Xmin, the average packet inter-arrival time during any
interval of length I is more than Xave, and the maximum packet size is Smax.

Among presented models, the (σ, ρ) model, which is also referred to as To-
ken Bucket, is widely used and supported by many manufacturers of the software
and hardware routers. It is simple, tractable, and, at the same time, parameter σ

allows to control flexibly the burstiness of a stream. What is more important, by
knowing the value of σ it is possible to express the worst-case queuing delay for
a given scheduling mechanism.

On the other hand, in the future multiclass Internet, each class of customers
may have to pay network service providers for their received level of QoS based
on the pricing strategy agreed upon in the Service-Level-Agreements between
them. A Service-Level-Agreement (SLA) defines the QoS metrics for each class
of service, the anticipated per-class workload intensity and the pricing strategy
by which the service payment will be determined. Obviously, the pricing strat-
egy will specify the relationship between the QoS level offered to each class of
customers and the relevant price which should be paid by them, for example,
the service provider will receive a certain amount of revenue from a class of cus-
tomers if the offered QoS level is more than the minimal requirement of that class
and suffer another certain amount of penalty for failing to meet that. Thus, from
service providers’ point of view, the optimal resource allocation scheme, which
can achieve the maximization of SLA revenues under a given amount of network
resources (e.g., bandwidth) and a given pricing strategy, is very desirable. The
use pricing as a means for allocating resources in communication networks has
received much attention in recent years. A smart charging method for network
usage is presented in [96]. This paper studies individual packet bid for transport-
ing while the network only serves packets which bid above a certain (congestion-
dependent) cutoff amount. Charges that increase with either realized flow rate
or with the share of the network resources consumed by a traffic flow is studied
in [87, 88]. Packet-based pricing schemes (e.g. [54]) has also been proposed as
an incentive for more efficient flow control. The fundamental problem of achiev-
ing the system optimum that maximizes the aggregate user utility using only the

1 Some articles and standardization documents use Latin letters r and b instead of ρ and σ,
especially in those cases when it is impossible to typeset the Greek letters.
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information available at the end hosts is studied in [91]. They assume that the
users are of elastic traffic and can adjust their rates based on their estimates of
network congestion level. Pricing and link allocation for real-time traffic that re-
quires strict QoS guarantees is studied e.g. in [117, 119]. Such QoS guarantees can
often be translated into a preset resource amount that has to be allocated to a traf-
fic flow at all links in its route through the network. If the resource is bandwidth,
this resource amount can be some sort of effective bandwidth (see, e.g., [85] for a
survey of effective bandwidth characterizations and [70] for similar notions in the
multiclass case). In this setting, [86, 36] propose the pricing scheme of real-time
traffic with QoS requirements in terms of its effective bandwidth. Their pricing
scheme can also be called as a static one and it has clear implementation advan-
tages: charges are predictable by end users, evolve in a slower time-scale than
congestion phenomena, and no real-time mechanism is needed to communicate
tariffs with the users.

1.2.3 Resource sharing

Packet classification and regulation do not necessarily mean that a provider allo-
cates enough bandwidth resources for each flow. Though it is possible to share
the output bandwidth by dropping packets that are out of a traffic profile, it is
not efficient from the viewpoint of utilization. Thus, a provider has to use ap-
propriate scheduling disciplines to share the output bandwidth. The choice of an
appropriate service discipline is the key in providing QoS. Since this work aims to
consider the adaptive scheduling, an exhaustive overview of schedulers is given
in section 2.1. Also, a good overview of the existent scheduling disciplines is
presented in [171] and [145]. We will mention briefly that there is no universal
scheduler and the choice for the particular discipline is governed by the tradeoff
between the accuracy and the computational complexity.

1.2.4 Congestion management

A provider should not anticipate that data transmission between user applica-
tions will occur at some constant rate. Instead, there can be silent periods and
periods when the significant number of packets is sent. As a result, it is quite
normal that the resulting rate of all user applications can be larger than the avail-
able bandwidth. Small rate fluctuations can be compensated by router buffers.
However, if applications send data at larger rates continuously, then sooner or
later buffer will be full. In such a case, the congestion occurs.

The straightforward behaviour of a router during congestion is to drop the
packets. Though it is the simplest approach, it has several disadvantages. The
first one is that several source applications receive at the same time a notification
that a packet has been dropped which causes them to slow down data trans-
mission. The second problem, as a consequence of the first one, is that source
applications synchronize their transmission phases, which results in bandwidth
oscillations.
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To overcome these problems, the Random Early Dropping (RED) [51] algo-
rithm was proposed. This technique starts to drop packets randomly as the mean
queue size crosses the minimum threshold. The closer the mean queue size to
the maximum threshold is, the more aggressively RED drops packets. Such an
approach ensures that different applications receive notifications at different mo-
ments of time. Furthermore, instead of dropping a packet, RED can set a certain
bit in the IP header to signal the sending application about the congestion. This
technology is known as Explicit Congestion Notification (ECN) [123].

ATM networks use the modification of the dropping mechanism which is
referred to as the Early Packet Discard (EPD) [126]. The effective throughput of
protocols, such as TCP, over ATM can be quite low when cells are dropped at the
congested ATM switch. This is due to wasted bandwidth as the congested link
transmits cells packets in which at least one cell is dropped by the switch. EPD
prevents fragmentation by dropping whole packets prior to buffer overflow.

There is another dropping strategy called Selective Packet Discard (SPD),
which can be used with DropTail or RED. The purpose of SPD is to avoid drop-
ping important packets that may belong to the network management or routing
protocols. Practically it is accomplished by putting the important packets into the
special priority queue from which a router drops packets only after it drops all
packets from the user queue.

1.2.5 Signalling

While the network can be configured statically to ensure some level of QoS, a
provider can achieve much better functioning if the network is informed about
active flows and their requirements, and resources are allotted on demand. For
these purposes, a provider uses the signalling protocols that belong either to the
horizontal or vertical management. The horizontal signalling protocols carry the
information between the routers and customer applications, and also between
the routers. An example of the horizontal protocol is Resource Reservation Pro-
tocol (RSVP), Session Initiation Protocol (SIP), and General Internet Signalling
Transport (GIST). The vertical signalling protocols are used by the centralized
network management entities to configure routers. For instance, Common Open
Policy Protocol (COPS) belongs to the vertical management. The Simple Network
Management Protocol (SNMP) [28] can also be used in the vertical management,
though its functionality allows merely to monitor the state of routers, not to con-
figure them.

1.2.6 Routing and traffic management

Routing is one of the most important functions of the network because it allows
a packet to reach a destination node based on its address. The network may
function properly without many QoS mechanisms described earlier, however, the
absence of the routing information will make the network unusable.

The traditional routing is based on the address of the destination node and
assumes that the shortest path is selected. However, the shortest path is not al-
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ways the best one. There may be a longer path that provides, for instance, smaller
delay or has less congestions. In other words, the choice for the best path should
not be done based only on the distance, but also on some preferences. For these
purposes, each path may have associated QoS metrics that are analysed by the
routing agents while they make a decision concerning the best path. In such a
case, the best path does not mean the shortest, but the one that has the best value
from the viewpoint of the used metrics.

Along with the QoS-routing, a provider may use the MPLS technology to
manage traffic in complicated network environments where multiple paths ex-
ist. In particular, MPLS allows to create a trunk, i.e. a path through providers’
networks, passing through the required set of links. By sending data packets to
different trunks, the QoS guarantees can be provided.

1.3 Adaptive approaches for the resource allocation

The problem of efficient allocation of resources has gained recently significant at-
tention, including the creation of new scheduling disciplines and a combination
of the existent ones. Another direction is the dynamic adaptation of parameters
to the varying network environments. Here, we present a brief overview of re-
search works devoted to the adaptive allocation of resources in different queuing
disciplines.

The problem of adjusting weights of the Weighted Round Robin (WRR) pol-
icy to support the premium service has been considered in [156]. It is proposed to
allocate resources according to the dynamics of the average queue size that is cal-
culated by using a low-pass filter. If the average queue size of the Expedited For-
warding (EF) aggregate increases, then the processing resources are taken from
the Assured Forwarding (AF) and Best Effort (BE) aggregates, otherwise they are
returned back to the AF class. However, it was not considered how the resources
should be allocated for the AF aggregate to ensure all QoS guarantees.

A similar kind of algorithm, in which the state of the queues are used to
adapt weights, has been proposed in [74]. It relies upon the WFQ policy and
makes the dynamic assignment of weights based on the usage of queues. Unfor-
tunately, this algorithm was considered only for the IntServ framework. It might
be necessary to refine it for the DiffServ architecture, in which, for instance, short
physical queues are built and, at the same time a significant amount of resources
are allocated for the EF aggregate.

In [168], a modified WRR scheme, which is called Fair WRR, has been pro-
posed to protect BE traffic from AF out-profile packets in the core routers. This
policy adjusts dynamically the service weights and buffer allocations by using
congestion hints in order to avoid unfair bandwidth sharing. However, the EF
traffic aggregate was not considered and no recommendations were provided on
how to reserve resources for this aggregate.

In [76], the Variable WRR policing model has been introduced that uses the
average packet length to adapt weights in the WRR policy. A weight value, which
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is based on bandwidth requirements, is corrected using the average length of
packets. However, the simulation presented in that paper only includes the gen-
eral case. Neither DiffServ architecture nor the settings to implement PHBs with
the proposed policy were considered. Moreover, it is not clear how to choose a
base value of a weight.

In [92], the effective bandwidth is used to adjust bandwidth allocation in the
DiffServ framework. The proposed measurement-based adaptive scheme, which
is referred to as Dynamic WRR, either increases or decreases the bandwidth based
on the values of the estimated bandwidth, multiplexing gain factor, and the mea-
sured loss ratios. The proposed scheme might work well for the AF traffic ag-
gregates, but it fails to take into account the delay requirements of the EF class.
Besides, the article does not clarify how bandwidth allocations are translated into
the weight values of the WRR scheduler.

In [80], the general approach for using revenue as a means to adapt weights
of the WFQ scheduler has been presented. It was proposed to use the pricing
function and the delay requirements to share adaptively resources between sev-
eral service classes.

In [99], a configuration scheme has been considered, which guarantees max-
imum revenue for the service provider while keeping utilization high. The pro-
posed scheme, which is based on the WFQ scheduler, selects those traffic flows
that maximize the benefit. However, the study has focused only on the best effort
service class. Neither EF nor the other behaviour aggregates have been consid-
ered.

The objective of the TEQUILA project is to study, specify, implement and
validate a set of service definition and traffic engineering tools to obtain quantita-
tive end-to-end QoS guarantees through careful planning, dimensioning and dy-
namic control of scalable and simple qualitative traffic management techniques
within the Internet. The project has five key objectives: a) study the issues be-
hind, develop architectures for, and propose algorithms and protocols to enable:
negotiation, monitoring and enforcement of SLS between service providers and
their customers and between peer providers in the Internet, b) develop a func-
tional model of co-operating components, related algorithms and mechanisms to
offer a complete solution for intra-domain traffic engineering to meet contracted
SLSs in a cost effective manner, c) develop a scalable approach, architecture and
set of protocols for interdomain SLS negotiation and QoS-based routing to en-
force end-to-end quality across the Internet, d) validate the above through both
simulation and/or testbed experimentation, and e) use, enhance and contribute
to drafts, specifications and standards of the wider international community.

The COST 290 project (Wi-QoST: traffic engineering and QoS management
in wireless multimedia networks) aims to increase the knowledge on future ad-
vanced multiservice wireless networks and specifically on traffic nature and be-
haviour and its impact on network architecture, performance and planning. The
project gives a special attention to the QoS and related aspects in both access
networks and core networks in the presence of mixed multimedia traffic. To
accomplish this, new analytical tools, software implementations and prototypes
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are developed and validated. As the TEQUILA project, this project aims to con-
tribute to standardization bodies on the basis of the obtained achievements by
creating standards inputs leading to well supported decisions. Furthermore, it
tries to coordinate the research relations, and foster exchange and networking of
researchers, between European participating organizations and research groups
being active in the field.

1.4 Outline of the book

The rest of the book is organized as follows. Chapter 2 presents the analytical
background for the proposed adaptive models. The major scheduling disciplines
used in the telecommunication networks are considered, and their advantages
and disadvantages are analysed. For each chosen scheduling discipline, an an-
alytical adaptive model is presented. This chapter also presents the preliminary
results concerning the efficiency of each adaptive model based on the analytical
expressions.

Chapter 3 continues with analytical solutions in of upper delay bound of
GPS- based packetized fair queuing algorithms. Approach of deriving the sub-
optimal resource allocation scheme in a GPS-based network node is effective and
the derived resource allocation scheme can achieve the highest SLA revenue un-
der a given amount of network resources and flat pricing strategy.

Chapter 4 presents the major QoS frameworks proposed by the IETF and
provides explanations on how the adaptive models can be integrated into these
frameworks. This chapter considers issues, such as the interaction with the sig-
nalling protocols, the availability of the QoS information, and the integration with
the forwarding mechanisms.

Chapter 5 provides practical results. Each adaptive model is tested in var-
ious environments. First, adaptive models are compared to disciplines with a
static configuration within a simple environment without any particular QoS
framework and signalling mechanisms. Then, a simulation case for the Inte-
grated Services frameworks is considered. Finally, this chapter presents simu-
lation results for a hybrid framework, in which signalling mechanisms from the
Integrated Services are combined with the forwarding mechanisms of the Differ-
entiated Services.

Chapter 6 focuses on the delay performance of different service class and
mean packet delay and packet delay are chosen as the QoS metric in a SLA. When
the mean packet delay is used as the QoS parameter in a SLA, the measurement
period of packet delays should also be specified in the SLA so that the SLA rev-
enues can be collected periodically based on the deployed pricing strategies and
the periodical QoS performance measurements (in this case, the mean packet de-
lay). Whereas, with packet delay as the QoS metric, the SLA revenues are collected
based on the used pricing strategies and the delay of each inbound packet.

Chapter 7 presents the problem of maximizing the revenue attained in the
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hosting of an e-commerce site with a SLA contract under a given amount of server
resources by optimally partitioning the server resources among all the supported
classes. A Web server farm is typically deployed to host several Web sites simul-
taneously on the same platform.

Chapter 8 summarizes contents of the book and draws final conclusions
concerning presented models based on analytical and simulation results. This
chapter also shows some future research directions.



2 ADAPTIVE SCHEDULING

2.1 Scheduling disciplines

The choice of an appropriate scheduling discipline is the key to providing QoS
in the packet networks. In the simplest case, a provider has to share the output
bandwidth equally between all data flows so that each flow obtains a fair portion
of bandwidth resources. Such an approach assumes that all the flows have the
same requirements. However, due to the diversity of the existent applications, a
data flow may require a certain minimum amount of the output bandwidth. It
leads to the unequal bandwidth allocation between the flows. Thus, a provider
has to use appropriate disciplines to ensure requirements of all the data flows.
Though it is possible to share resources using the buffer management mecha-
nisms [65], it is not as efficient as the usage of schedulers or the combination of
both approaches.

A service discipline can be classified as either work-conserving or non-work-
conserving [171]. With a work-conserving discipline, a scheduler is never idle
when there is a packet to send. With a non-work-conserving discipline, each packet
is assigned an eligible time. If no packet is eligible, none will be transmitted even
when a scheduler is idle. Both these classes have drawbacks and advantages.
The work-conserving disciplines are suitable for those environments, in which
applications can adjust their transmission rates and can react to the packet losses.
Indeed, if there are available bandwidth resources, the application can start to
send more data achieving the higher throughput and the better network utiliza-
tion. If later a congestion occurs, some number of packets will be dropped which
will signal the sending application to slow down data transmission. Though the
work-conserving disciplines allow to utilize completely output bandwidth, they
use to change the traffic profile as packets move from one node to another. As a
result, the provision of the end-to-end guarantees, and especially the delay guar-
antees, becomes an art that involves many network management solutions. As
opposed to this, the non-work-conserving disciplines do not change the traffic
profile, which simplifies the provision of the end-to-end guarantees. The non-
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work conserving disciplines eliminate traffic distortions by delaying packets and,
thus, preserving the traffic profile. However, as mentioned above, some band-
width resources remain unused.

It is often the case that a provider has to support several service types rang-
ing from best-effort data to applications with the tight bandwidth and delay re-
quirements. Thus, it is not so easy to choose which class of disciplines must be
used. Unfortunately, it is quite difficult to use both two classes of scheduling dis-
ciplines along the same forwarding path because they will diminish effect of each
other. Thus, a provider has to decide which class is of bigger importance. At the
moment, most manufactures of the telecommunication equipment rely upon the
work-conserving disciplines. The main reason is that they allow to utilize band-
width resources efficiently. Furthermore, two QoS frameworks proposed by the
IETF rely upon the work-conserving schedulers. Hence, we will also focus on
this class of scheduling disciplines.

It must be noted that along with the domination of work-conserving disci-
plines there are many solutions taken from the non-work-conserving schedulers.
For instance, it is possible to set rate limits [173]. Another solution is various traf-
fic shapers that delay packets to cope with traffic distortions. For instance, if an
upstream provider wants to ensure that the traffic sent to the downstream net-
work is within the negotiated profile, then packets can be delayed at the egress
routers.

2.1.1 Work-conserving disciplines

Basic work-conserving scheduling disciplines can be classified into several major
groups: first-come-first-served, the priority queuing, the round-rodin queuing,
and the fair queuing. There are also complex schedulers that combine several
simpler ones. They are considered in section 2.1.3.

First-come-first-served (FCFS) determines the service order of packets strictly
based on their arrival order. In other words, packets are output exactly in the
same order as they arrive. It is the simplest queuing discipline that is used in
routers that do not have to perform a special treatment of packets. Furthermore,
if there is a router that performs only retransmission functions, or the output
bandwidth is higher than the bandwidth of the input links, then FCFS is an ideal
solution. However, if a router has the bottleneck link, then this discipline can-
not perform the necessary bandwidth allocation and provide the required QoS
because all packets are treated equally. However, it must be noted that FCFS
can provide implicitly certain QoS guarantees. For instance, knowing the output
bandwidth and the maximum queue size, it is possible to calculate the worst-case
queuing delay in a router. Thus, by setting the maximum queue size to the cer-
tain value at all intermediate routers, one can achieve the worst-case end-to-end
delay. It is quite a simple and efficient solution for those networks that transmit
only one class of packets, which requires some delay guarantees. Of course, this
solution does not work well in the multi-service networks, in which data from
various applications are sent over the same links.
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Priority Queuing (PQ) [89] was aimed to overcome some problems of FCFS
that treats all the incoming packets equally. PQ works according to a simple
scheme - packets from the lower-priority queue can be transmitted only if the
higher-priority queue is empty. In other words, PQ absolutely prefers queues
with higher priority and, therefore, packets of a higher priority queue are always
served first. Such a behaviour leads to very small configuration and management
efforts. To achieve better treatment of some packets, it is enough to associate them
with the higher priority. Unfortunately, it works only for simple cases when there
are a few queues. The problem is that by putting the TCP-based applications to
the higher priority we take the risk of not providing bandwidth for the low pri-
ority queues. If the higher priority queue is always full, then the lower priority
queues are never served. Thus, the most typical configuration is to put all the
critical UDP-based traffic into the higher priority queue, and the remaining traf-
fic, including the non-critical UDP applications, into the lower priority queue. To
solve the problem with the greedy TCP applications, a provider can assign rate
limits [172].1 Such a scheme will ensure that the higher priority traffic will not
occupy all the available bandwidth. However, it makes the overall network man-
agement more complicated because it will be necessary to change the rate limits
depending on the bandwidth requirements within each service queue. There is
another problem reported in [49]. PQ leads to the increased burstiness which may
cause heavy packet loss. Thus, PQ is the superior discipline for a simple case, but
its behaviour becomes unpredictable when there are multiple flows with diverse
requirements.

The simplest solution for the controlled bandwidth sharing is to use the
Round Robin (RR) scheduler. It serves the input queues in a round-robin man-
ner and outputs one packet from each queue. Of course, such a scheme cannot
provide any proper QoS requirements. However, RR has several interesting fea-
tures. First, it can provide the fairness between data flows. By associating each
flow with a queue, it is possible to share the bandwidth fairly between the data
flows.2 Secondly, the RR scheduler can interleave packets to decrease the result-
ing burstiness.

The Weighted Round Robin (WRR) discipline [84] is an enhanced version
of the RR scheduler. Like in RR, queues are served in the round-robin manner,
but unlike in RR, each queue is assigned a weight that determines the number
of packets to be transmitted. This scheme is very simple in implementation and,
as a result, is used in many hardware routers. It allows a high-speed router to
share the output bandwidth not wasting time on making a decision about which
packet should be transmitted next. However, the WRR scheduler does not take
the packet size into account. Thus, if some queue has a bigger average packet
size than the other one, the former receives more bandwidth implicitly. It is not
a problem for those environments that have the constant packet size, such as the
ATM networks. But if the packet size varies significantly, then it is quite difficult

1 Authors of this scheduler referred to it as Rate-Controlled Static Priority (RCSP).
2 Practically, it is achieved by the Stochastic Fair Queuing (SFQ) discipline that uses a hash

function to map an incoming packet to one of the RR queues.
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to predict the resulting bandwidth allocation. It is exactly for these reasons that it
is quite difficult to use WRR to provide the delay guarantees. If we do not know
how much time the WRR scheduler will spend serving each queue, we cannot
allocate enough resources for the delay-critical one.
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To overcome the problem of the WRR discipline, Deficit Round Robin (DRR)
[143] has been proposed. Like WRR, it works in the round-robin way serving
consequently the input queues. Thus, it has the same computational complex-
ity. The difference between WRR and DRR is that the DRR scheduler associates
a so-called deficit counter with each queue. The deficit counter represents the
number of bytes a scheduler is allowed to output from a queue before it starts to
serve the next one. Every time the scheduler sends a packet, it decrements the
packet size from the deficit counter. If the next packet to be transmitted has the
bigger size than the current value of the deficit counter, the scheduler starts to
serve the next queue.3 It enables to share accurately the output bandwidth be-
tween several queues. At the end of a round, the deficit counter of each queue is
updated with the associated quantum value. Thus, by setting different quantum
values for queues, different bandwidth allocation is achieved. Though DRR takes
the packet size into account, it cannot achieve high accuracy in sharing the out-
put bandwidth. Another problem is that due to the round-robin nature it cannot
provide tight delay guarantees.

These disadvantages were overcome with fair queuing (FQ). For sure, the
best known and studied technique among the FQ schedulers is Weighted Fair
Queuing (WFQ) [44]. It schedules packets according to their arrival time, size,
and the associated weight. Every time a packet arrives at a router, WFQ calculates
its virtual finishing time and adds it to the sorted list of packets. The packet with
the least virtual finishing time is output first. It enables to share the output band-
width with a high accuracy. Furthermore, it is possible to express the worst-case
queuing delay of a packet. The price for these advantages is the increased load
on a router that has to put a newly arrived packet to the sorted list based on its
virtual finishing time. Also, a router has to keep track of the active sessions. Thus,
the WFQ discipline is used in routers that have relatively slow output links. In
this case, accurate bandwidth sharing is of big importance and a router has time
for the scheduling decision. High-speed routers rely upon the simpler schedul-
ing disciplines implemented at the hardware level [19]. It bear mention that WFQ
cannot decouple the bandwidth and delay guarantees. In other words, WFQ can-
not allocate resources efficiently for those services, that have small bandwidth
but very tight delay requirements. To ensure the delay guarantees, WFQ has
to allocate bigger bandwidth. If a flow is allocated a small portion of the out-
put bandwidth, it is likely that its packets will experience considerable queuing
delays. It must be noted that the schedulers based on the round-robin scheme
provide better delay characteristics for each service class.

There are many variants of WFQ. Most of them target the problem of the
computational burden that WFQ puts on a router while inserting a packet into
the sorted list and updating a list of active sessions. Self-Clocked Fair Queuing
(SCFQ) [56] uses the evolution of the virtual start time of the packet currently be-

3 This is a scheme proposed by authors of the DRR scheduler. It is a little bit inefficient as it
requires the scheduler to peek the next packet’s size to decide whether to transmit it or not.
To reduce this small overhead, the practical implementation behaves a little bit differently.
The scheduler just outputs packets while the deficit counter has the non-negative value.
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ing in service. It reduces greatly the amount of computational need. The price for
it is a larger worst-case delay estimation that depends on the number of sessions.
The fact the the queuing delay, and, as a result, the end-to-end delay, depends on
the number of sessions is the main obstacle for using this discipline. Start-time
Fair Queuing (STFQ) [60] is very similar to SCFQ with the main difference be-
ing that the STFQ scheduler outputs a packet with the smallest virtual start time,
as opposed to the smallest virtual finish time. Frame-based Fair Queuing (FFQ)
[147] is another scheduling discipline that provides the same delay guarantees
as WFQ, but has the less computational complexity. Another interesting vari-
ant called Worst-case Weighted Fair Queueing (W2FQ) [8] aims to achieve better
emulation of the fair queuing.

2.1.2 Per-flow versus per-class queuing

While providing the per-flow QoS guarantees, a provider has two options for
the configuration of the scheduler. The first one is to associate each flow’s traffic
with a separate queue. Since each flow has a separate queue, it is isolated from
other flows that may start to send data at higher data rates. If so, their queues
will overflow and a certain number of packets will be dropped while the well-
behaved flow will not be punished. The task of the scheduler in this case is to
provide a certain minimum amount of the output bandwidth for each queue, i.e.
for each flow. Though it is the most accurate solution, it works well only if the
number of flows is not great. Otherwise, a router will have to use a huge amount
of resources to support a classifier entry and a queue for each flow. Furthermore,
when a packet arrives at the router, the latter will spend some time finding an
appropriate queue. From the viewpoint of the scheduler, the bandwidth sharing
between a huge number of queues is also a challenging task. Only FQ schedulers
are capable of accurate bandwidth sharing, while the RR schedulers, which rely
upon the integer weight values, may fail to share the bandwidth at all.

As a result, the prevailing method for the bandwidth sharing between a
huge number of flows is to group flows with identical or similar requirements
into a class and associate a class with a queue. It is often the case that there are
only a few classes. Thus, classifiers are very simple, lookup procedure works fast,
and the scheduler is not overburdened with a huge number of sessions. How-
ever, if there is an ill-behaved flow, then it can influence easily other flows as
they share the same bandwidth allocated by the scheduler. Thus, the task of iso-
lation of data flows becomes quite important. It can be solved by using several
techniques or by combining some of them. One of the most powerful and well-
proven solutions is to use Stochastic Fair Queuing (SFQ) [104] that approximates
equal bandwidth sharing between the data flows. The SFQ scheduler organizes
several internal queues, which are served in the round-robin order, and a hash
function that maps each incoming packet to one of the queues. However, SFQ
cannot be combined with the FQ schedulers. Another solution is to use the per-
flow buffer management by organizing the virtual queues [65]. Though all flows
belonging to the same class share the same physical queue, each flow may have
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FIGURE 1 Combination of schedulers.

a packet counter. Thus, if the counter of a flow reaches the threshold value, pack-
ets belonging to this flow will be dropped. Unfortunately, this solution requires
a router to keep the per-flow information which is not efficient in the backbone
networks. In [150], authors have proposed an architecture for the core routers
that allows to share bandwidth between the data flows without maintaining the
per-flow states.

It must be noted that a provider does not have to deploy the same resource
allocation scheme in all routers. While routers in the backbone network may rely
upon the per-class queuing, routers in the access networks may use the per-flow
classification and scheduling [67]. Such an approach, which is used in many QoS
frameworks, enables to find the tradeoff between the high accuracy and the fast
data transmission.

2.1.3 Complex schedulers

Combination of schedulers

One can construct a complex scheduler simply by combining several simple dis-
ciplines. In fact, most software-based routers allow to do so, which is not the case
for most hardware-based routers. The reason is that the possibility to combine
the schedulers requires the more complex kernel data structures that, in turn, can
slow down data transmission. However, the hardware routers use to implement
some well-proven combinations of schedulers [154].

Instead of considering all the possible combinations of schedulers, a sim-
ple example will be given. Fig. 1 illustrates the combination of the PQ, WRR,
and SFQ schedulers. There is the PQ scheduler at the top level that decides from
which queue a packet must be taken. If the first queue is empty, then the control
is passed to the WRR scheduler that selects, based on the saved state, a queue
to serve. Note that the second and the third queues have the SFQ scheduler at-
tached, which provides the fairness between data flows within a particular queue.
This is a powerful combination that allows to associate the delay-critical data with
the first queue and to share bandwidth between the non-critical queues by using
WRR. Note that other schedulers, such as DRR and WFQ, may be used in place
of WRR.

It is worth mentioning that it is quite difficult to provide analytical estima-
tions for all the QoS metrics for any combination of schedulers. As a result, if a
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provider cannot predict the behaviour of the resulting scheduler, he cannot set it
up properly to meet all the QoS requirements. Referring back to Fig. 1, if the first
queue is always busy, then the WRR scheduler will not get any chance to transmit
data from the second and third queue.

Hierarchical link sharing

The basic scheduling disciplines allow to share bandwidth to support different
service classes. Alternatively, a link may be shared by several different organiza-
tions or departments. Each of these may require further partitioning into some
classes. At the same time, unutilized link resources may be allocated for those
organizations and departments that are willing to transfer data. Thus, the hier-
archical structure of organizations and services suggests a hierarchical allocation
of bandwidth. Schedulers, which follow this scheme, are often referred to as the
hierarchical scheduling. They aim to perform two major tasks:

• allocation of the necessary bandwidth resources to support the QoS guar-
antees

• distribution of free resources in the controlled and predictable way

It must be noted that the basic scheduling disciplines fail to perform the second
task because the available bandwidth is distributed between the existent classes
according to their weight values. In other words, it is impossible to allocate all
free resources to one particular class. From this point of view, the hierarchical
link sharing schedulers are quite attractive for the network providers since they
allow to control the allocation of free bandwidth.

The simplest implementation of the hierarchical link sharing is Hierarchical
Round Robin (HRR). The scheduler cycles through slots at the top level. If a slot
corresponds to a connection, one packet is transmitted. If the scheduler cycles
through a slot that has further hierarchy, it will service a certain slot at the lower
level. The original idea of HRR was to make it non-conserving in the sense that if
HRR cycles through a slot with no packets waiting, the scheduler will leave the
server idle. It is understandable that it can be turned into the work-conserving
scheduler easily. HRR cannot provide the required QoS guarantees as it aims to
achieve fairness between slots at each level. However, by associating weights
with slots at each level, more complicated resource allocation can be achieved.

One of the best known hierarchical link sharing algorithms is Class-Based
Queuing (CBQ) [52]. The goals of CBQ are to guarantee roughly the bandwidth
and to control which classes may borrow bandwidth from other ones. There is no
requirement concerning the scheduling disciplines but the practical implementa-
tion relies upon the combination of PQ and WRR. The fair queuing can be used in
a hierarchical manner as well. At the top level, the weight reflects the link shar-
ing requirements, while the lower weights provide QoS guarantees for individ-
ual classes. This implementation is known as Hierarchical Packet Fair Queuing
(HPFQ) [9].
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The biggest disadvantage of the hierarchical link sharing algorithms is the
computational burden. To detect that a certain class does not consume allo-
cated resources, it is necessary to measure the mean bandwidth all the time.
Based on this information and the borrowing properties, the scheduler decides to
which class these resources must be allocated. Thus, it is often the case that only
software-based routers provide the implementation of these algorithms, while
the high-speed hardware routers rely upon the simpler mechanisms. The com-
plexity of the hierarchical link sharing algorithms raises another problem. Un-
like the simple scheduling disciplines that have one configuration parameter per
queue, these disciplines have many parameters. It makes them more compli-
cated in management. Failing to provide all the parameters with correct values
may lead to an incorrect bandwidth sharing.

2.2 Revenue-based adaptation

Regardless of the chosen scheduling discipline, a provider has to configure routers
so that all the QoS guarantees are ensured. One solution is to use a static con-
figuration. Though such an approach does not require significant management
efforts, it is understandable that a provider has to overprovide its network with
resources to meet all the QoS requirements, regardless of the current number of
active flows. It results in an inefficient allocation of resources. Furthermore, if a
provider has allocated bandwidth statically for ten flows, the eleventh flow will
impact the provision of the QoS guarantees for all the flows within a class. Thus,
a better solution is to track the number of active data flows and to allocate re-
sources on demand. Though it requires the presence of additional management
solutions and signalling protocols, the result is the more efficient allocation of
resources and the ensured QoS guarantees.

If a provider tracks the number of active flows, he can always determine
the minimum amount of bandwidth to be allotted. However, if there are free
bandwidth resources, then there are several ways on how to allocate them. The
most straightforward solution is to distribute free bandwidth equally between the
active flows with regard to their bandwidth requirements. In fact, most work-
conserving disciplines provide implicitly this behaviour. However, a provider
may allocate free resources to the delay critical flows to minimize possible delays
and jitter. On another hand, it is also possible to allocate free resources to the
best-effort flows to reduce the packet loss. Thus, depending on the used criterion,
different bandwidth allocation can be used.

Among the existent criteria, it is worth noting the following ones: the mean
packet size [76], queue size [156], and packet loss [168]. We propose to use the
prices of network services as the main criterion to allocate free resources. Along
with the BE service available for all users, a provider may implement additional
services with better and/or strict QoS guarantees. As considered in [35], if there
are several service classes, then some of form of service class sensitive pricing is
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required to attain the desired level of performance. It is reasonable to anticipate
that customized services attract an increment on the service tariff because the pro-
vision of a distinguished service is undertaken with some level of additional net-
work resources to support the service, and the tariff reflects this altered resource
allocation. The difference in the charge between different service classes will de-
pend on the difference in performance between the classes. In such a framework,
it is intuitively understandable that instead of allocating free resources for the BE
users, who pay only a fixed fee or even do not pay anything at all, it is worthy
of providing more resources to those users, who are willing to pay for the better
service.

There are several charging models that are used in pricing the Internet ser-
vices [124], among which the access-dependent and the volume-dependent charging
are the most popular. The access-dependent charging is usually one of two types:
allowing unlimited use, or allowing limited duration of connections, and charg-
ing per connection time. The first type is known as the flat charging. It implies
that a customer pays only the joining fee and has an access to the network re-
sources which is limited only by the available bandwidth resources. It is the
commonly adopted model in both the public Internet and within the corporate
networks where the client service tariff is based on the characteristics of access
to the service, rather than that of the actual use of the service. Advantages of
the flat charging [105] are a) predictable monthly charges, b) no overhead costs
for counting packets and preparing the usage-based reports, and c) absence of
problems when some network services, such as the mail system and network file
servers, generate traffic on behalf of the actual user. The time-dependent charging
is widely used in the telephone and the mobile networks, but it is not generally
used in the Internet.

The introduction of QoS services creates a strong impetus to move to the
usage-based tariffs [75]. Experiments have shown that the usage pricing is a
fair way to charge customers and to allocate network resources [3]. Internet
services usually use the volume-based rather than the time-based charging be-
cause the former reflects duration of a connection and access speeds. Further-
more, the time-based charging works only when resource demands per time unit
are roughly uniform, which is not the case for the Internet applications. It is also
worth mentioning that even telecommunication providers use to apply the usage-
based charging when ordinary data is transmitted. Thus, this research will use
the usage pricing, which is based on the amount of resources used or reserved by
a customer.

The price for the volume unit can be fixed or it can depend on parameters,
such as the time of the day, congestion level, and provided bandwidth. Prices
can also be affected by the regulatory environment and the cost structure of the
relevant technologies. In this research, we assume that prices are almost constant,
i.e. they change vary rarely comparing to the transmission time of one packet or
do not change at all.



43

2.3 Adaptive models

2.3.1 Choice for the scheduler

As discussed previously, the scheduler is one of the most important components
and is the basis for allocating resources. The choice of an appropriate service
discipline is the key in providing QoS. Thus, it is crucial to choose the scheduler
that will enable a provider to perform the adaptive resource allocation based on
the QoS requirements and prices for the network services.

Among the scheduling disciplines presented in section 2.1, we are not going
to consider the hierarchical schedulers. The main reason is the absence of analyti-
cal expressions for the major QoS parameters and the computational burden they
put on a router. Furthermore, most of them are just a sophisticated combination
of simpler disciplines. As a result, it is better to rely upon the simpler and faster
schedulers omitting an additional "layer" introduced by the hierarchical struc-
tures.

However, every basic scheduler has its advantages and drawbacks. For in-
stance, the FQ disciplines provide high accuracy at the expense of the increased
computational load. At the same time, the RR schedulers are simple in imple-
mentation but are not capable of providing tight delay guarantees. Since there is
no universal solution, we will consider the WFQ, WRR, and DRR schedulers as
representatives of the FQ and RR resource allocation approaches. The reason we
do not consider PQ is that it does not scale well in the multiservice networks.

2.3.2 Resource allocation

As considered earlier, by allocating resources on the per-class basis, it is possible
to build scalable and simple in management solutions that depend on the number
of classes, rather than on the number of flows. Indeed, when a flow appears and
disappears, it may cause changes in the configuration of a service class, but it does
not cause routers to add or delete a service class and associated control structures.
The anticipated number of service classes will not be large. It is likely that there
will be a service class for the delay critical applications, such as Voice-over-IP
(VoIP), a service class for the mission-critical applications that require significant
bandwidth requirements, a service class for those users who want better than
BE treatment, and a class for the BE data. Another reason to introduce a small
number of well-defined services is to achieve end-to-end service coherency when
spanning multiple network domains [27]. A small set of distinguished services
can be supported across a large set of service providers by equipment vendors
and application designers.

Since resources are going to be allocated on the per-class basis, it is impor-
tant to estimate the resulting QoS requirements of a class. The point is that a
provider allocates resources for the traffic classes, which exist only within a pro-
vider’s domain and are visible neither to the customers nor to other providers.
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At the same time, user requirements are applied to an individual flow, not to the
class. Thus, it is necessary to translate individual QoS requirements into the class
parameters so that a provider can allocate enough resources.

Among all the QoS parameters, we are going to consider bandwidth and
delay. The reason is that it is a challenging task to provide jitter by using the
work-conserving schedulers because they use to change the traffic profile. Fur-
thermore, it is even a more difficult task when jitter is decoupled from delay, i.e.
when we have to ensure the relatively big delay and a small jitter. Since jitter is
a difference between two consecutive delays, it is simpler to limit the maximum
delay for packets. In other words, jitter can be ensured implicitly by the delay
guarantees. The packet loss can be avoided completely for the UDP flows simply
by providing enough bandwidth and buffer resources. Buffers will compensate
small peaks of the input traffic, while the scheduler will output packets at some
constant rate. However, it is almost impossible to avoid packet loss for the TCP
flows since packet drops use to control TCP throughput. They act as a signal
for the TCP sender that it has to slow down data transmission. However, there
are technologies, such as ECN, that can assist in reducing the amount of packet
drops. Thus, the zero-packet loss for the well-behaving flows can be achieved by
providing enough buffer and bandwidth resources.

In the case of bandwidth, the resulting class bandwidth can be approxi-
mated by a sum of the bandwidth requirements of all data flows. It should be
the responsibility of a router to allocate this bandwidth fairly between flows. To
provide the delay guarantees, it is necessary to estimate the resulting burst size
when multiple data flows are aggregated. The worst-case estimation is a sum of
all the burst sizes. However, in practice, it is true if and only if all the flows start
to send data simultaneously so that packets from different data flows arrive at
the router at the same moments of time. Furthermore, such a situation is possible
only when each flow has a dedicated link to the router. Since in practice flows
start to transmit data at different moments of time and several data flows share
the same link, the resulting burst size is smaller. There are several research works
which aimed to give more resources conserving estimation of the burst size, but
most of them rely upon the strong assumptions, such as the synchronization unit
[158]. Another reason for using the worst-case estimation is that any other esti-
mation cannot guarantee the strict delay bound, but rather leads to the statistical
delay bounds.

2.3.3 Pricing criterion

To charge customers, a provider uses the pricing function that establishes the cost
for the resource usage. In this research we are going to consider a simple usage-
based pricing function that depends on the fixed price and the amount of the
transferred data:

R(t) = ∑
i

Vi(t)Ci . (1)
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Here, Vi(t) specifies the amount of data sent within the ith class by the time t, and
Ci is the price measured in monetary units per one unit of data. It should be noted
that (1) does not preclude a provider from using more complicated functions. A
provider can use any usage-based function that may include additional compo-
nents, such as constant monthly fee. Furthermore, the price can be constant or it
can depend on parameters, such as time, congestion level etc.

As presented in (1), the total revenue is the amount of the transferred data
times the price for one data unit. Unfortunately, such an interpretation does not
allow us to maximize it. However, one can think of the total revenue R as a sum
of instantaneous revenues obtained during short periods of time. Based on this,
we can rewrite (1) in the following form:

R(t) = ∑
i

t∫
0

ri
(
Ci, wi(t)

)
dt =

t∫
0

(
∑

i
ri
(
Ci, wi(t)

))
dt . (2)

Here, ri is the instantaneous revenue of the ith class, which is the function of
price Ci and the parameter of the scheduler wi(t). Since the parameters of the
scheduler control the amount of transferred data, they have a direct relationship
to the instantaneous revenue. Thus, by manipulating the parameters wi, differ-
ent instantaneous revenues can be obtained. Since the task of a provider is to
maximize the total revenue, it can be achieved by maximizing ri:

max

{
∑

i
ri
(
Ci, wi

)}
. (3)

Since expression (3) presents the instantaneous revenue at the moment of
time t, then it is possible to assume that wi(t) = wi. It must be noted that (3)
is a subject to the QoS constraints. Indeed, a provider cannot allocate infinitely
resources for some service class as it violates the QoS requirements of another
class. It also interesting to note that (3) does not depend on the number of active
flows. If a provider has a switching equipment with a certain capacity, then it
does not matter how many flows there are. The more data streams compete for
the available resources, the less bandwidth each stream has. However, the total
amount of data, capable of being transferred over a period of time, remains the
same (which is true if all flows send data continuously and use all resources).

Though (1)-(3) assume that prices are associated with service classes, the
actual charging is done on the per-customer (or on the per-flow) basis. It does not
change the general considerations because Vi(t) is just a sum over data sent by
each customer within the ith service class. However, the per-customer charging
requires the presence of a node that can identify a particular flow and track the
amount of transferred data.

The subsequent sections present the basic scheduling disciplines, such as
WFQ, WRR, and DRR, and the QoS constraints that these disciplines impose on
the revenue-based adaptive resource allocation.
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2.3.4 Weighted Fair Queuing

WFQ scheduler

WFQ schedules packets according to their arrival time, size, and the associated
weight. Upon arrival of a new packet, the virtual finishing time is calculated and
the packet is scheduled for departure in the right order with respect to the other
packets. Then, WFQ outputs packets in the ascending order of the virtual fin-
ishing time. Such an approach enables the sharing of resources between service
classes in a fair and predictable way. Furthermore, it is possible to estimate the
bandwidth allocation and the worst-case delay performance, which makes the
use of the WFQ discipline very attractive for the provision of QoS, and especially
for the provision for the end-to-end guarantees.

Suppose that B is the total throughput of an output link on which a router
implements WFQ. If all sessions of the WFQ scheduler are active, then each class
receives a portion of the total bandwidth, which is determined by its weight wi
and is equal to wiB [114]. Hence, to simplify the expressions, we assume that it
holds for all weights wi that

∑
i

wi = 1, wi ∈ (0; 1) . (4)

By knowing the QoS requirements of all data flows, we can find values for
wi, such that all the QoS guarantees are ensured.

QoS requirements

Each service class can have an associated weight that specifies the allocated band-
width. If there are Ni active flows within the ith class, then each flow has band-
width that can be approximated by4

B f
i =

wiB
Ni

. (5)

B f
i can be treated as one of the QoS parameters that specifies the required band-

width of a flow belonging to the ith service class. Thus, the minimum value of
the weight, which provides the necessary amount of bandwidth for every flow,
can be given by

wi ≥ Ni
B f

i
B

. (6)

The inequality states that a provider can allocate more resources than necessary.
Indeed, if the network has free bandwidth resources, then a provider can allocate,
either explicitly or implicitly, more bandwidth to a service class.

4 In the case of WFQ, the fairness between data flows within a service class can be achieved
by the per-flow buffer management or by the per-flow policing performed at some routers.
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It is often the case that instead of specifying the requirements for a single
traffic stream, there is a need to allocate resources for the whole class not taking
the number of active flows into account. Such a behaviour may be necessary,
when a provider wants to allocate bandwidth for the best-effort class. For these
purposes, a modified version of (6) is proposed:

wi ≥ Bi

B
. (7)

Here Bi specifies the minimum amount of bandwidth resources for the whole ith
class. Depending on the resource allocation strategy, a provider uses either (6) or
(7), or both. In the latter case, it is possible to reserve a certain minimum amount
of bandwidth regardless of the current number of active flows.

Due to the buffering, scheduling, and transmission of packets the size of a
router queue varies all the time. In turn, the length of a queue in a routing node
has an impact on the queuing delay and on the overall end-to-end delay of a
packet. It can be shown that under WFQ the worst-case queuing delay is given
by the following expression, where Lmax denotes the maximum packet size:

D =
σ

ρ
+

Lmax

B
. (8)

In (8), it has been assumed that each incoming flow is regulated by the Token
Bucket [39] with the bucket depth σ and token rate ρ. Parameters σ and ρ can be
viewed as the maximum burst size and the long term bounding rate respectively.

Some authors use another form of (8) that includes L/ρ term referred to as
the packetization delay. It is caused by the fact that before making a scheduling
decision, a router has to receive a whole packet to do some amount of header
processing before a packet can be given to the scheduler. Furthermore, a router
might also have an internal transmission queue [49] where a packet sits after a
being selected by the output scheduler. Thus, the expression below presents the
worst-case delay estimation that takes the packetization and the hardware delay
into account:

D =
σ

ρ
+

L
ρ

+
Lmax

B
+ DHW . (9)

Here, DHW stands for the largest delay caused by the router’s internal compo-
nents. For the sake of brevity, we will be using (8), but will also present the
final formulas that include the packetization and hardware delay. When multiple
flows are aggregated, it is possible to assume that ρ is equal to the bandwidth
allocated for a whole aggregate. As shown above, it is equal to wiB. In turn, the
worst-case estimation for the resulting burst size is Niσ. Thus, (8) can be given in
the following way, where Di is the worst-case delay of a packet in the ith class:

Di =
Niσ

wiB
+

Lmax

B
. (10)

Since there is a need to know the value of wi, under which the required
queuing delay can be guaranteed, it is possible to use (10) to obtain it:
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wi ≥ Niσ

BDi − Lmax . (11)

Here, wi specifies the minimum value that is necessary to provide the delay guar-
antees. It is clear that the more active flows there are and the least the required
delay is, the bigger portion of resources must be allocated. It is interesting to note
that expression BDi − Lmax must have a positive value because the weight value
cannot be negative. Thus, inequality Lmax < BDi must always hold. In other
words, if the WFQ scheduler cannot provide the necessary delay guarantees at
least for one packet of the maximum size, then it will be impossible to provide
the delay guarantees for the whole service class regardless of its burst size. If a
provider wants to take the packetization and the hardware delay into account,
then (11) can be modified as follows:

wi ≥ Niσ + Li

B(Di − DHW) − Lmax . (12)

By combining (6), (7), and (11) it is possible to present the final expression
that reserves the necessary resources based on the bandwidth and delay require-
ments:

wi ≥ max

{
NiB

f
i

B
,
Bi

B
,

Niσ

BDi − Lmax

}
, ∀i = 1, m , (13)

where m stands for the number of service classes.

Upper constraints

Along with constraints that reserve the minimum amount of resources, a provi-
der may need to introduce constraints that limit the allocation of resources. For
instance, if we know that packets of a certain class will be routed along a cer-
tain path, which has a certain maximum capacity, then it makes sense to limit
the amount of the allocated bandwidth. Otherwise, unnecessary bandwidth re-
sources will be allotted to this class and sooner or later packets will be dropped
in the bottleneck link. Another reason to construct the upper constraint is the
availability of information concerning the flow peak rate. If we know the peak
rates of all the flows within a service class, then we can determine the maximum
bandwidth this class occupies by summing all the peak rate values.

If Bmax
i is the maximum bandwidth of the ith service class, then it is possible

to introduce easily the following upper constraint:

wi ≤
Bmax

i
B

, ∀i ∈ U , (14)

where U represents a set of service classes that have information about the maxi-
mum bandwidth available along a data path.
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FIGURE 2 Graphical interpretation of constraints for WFQ.

Graphical interpretation

It is possible to build the graphical interpretation of constraints that reserve the
necessary amount of resource. For the sake of simplicity, we will consider two
service classes. The per-flow bandwidth requirements within each service class
are 10 Kbps and 5 Kbps respectively. The output bandwidth is 1 Mbps. Suppose
the current number of active flows within each service class is 25 and 40. Then
Fig. 2 presents the constraints for the weight values of the WFQ scheduler.

Each point within the constrained area represents a set of the weight values
that satisfy the given QoS requirements. However, there are only two extreme
solutions – (0.25, 0.75) and (0.8, 0.2) – denoted by points A and B respectively.
The first one corresponds to the case when the first class is allocated only the
minimum amount of resources, while the remaining bandwidth is provided for
the second class. In the second extreme solution, all free resources are allocated
for the first class. Note that the number of the extreme solutions is always equal
to the number of service classes.

As follows from the graphical interpretation, it is always possible to obtain a
feasible solution if a router has enough output bandwidth. If there is no feasible
solution, then the router does not have enough resources to ensure all the QoS
requirements for the given number of active flows.

Pricing criterion

As follows from Fig. 2, depending on the number of service classes, there is a cer-
tain number of extreme weight combinations that satisfy the given QoS require-
ments. However, there is only one solution that optimizes the resource allocation
from the viewpoint of the used criterion. As considered in section 2.3.3, a provi-
der may use prices for the service classes to increase the total revenue. For these
purposes, expression (3) should be reformulated for the WFQ scheduler.

If the fluid model is taken into consideration, then the expression wiB ap-
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proximates the amount of the ith service class data a scheduler outputs during
a time unit. Of course, it is true if all sessions of the WFQ scheduler are active.
However, since a session corresponds to a service class that aggregates multiple
data flows, it is likely that all sessions of the WFQ scheduler are active most of
the time. Thus, the instantaneous revenue for the ith class can be given by:

ri(Ci, wi) = CiwiB [monet. units/second] . (15)

Since resources are shared between several classes, the overall instanta-
neous revenue can be written in the form:

m

∑
i

ri(Ci, wi) =
m

∑
i=1

CiwiB [monet. units/second] . (16)

Thus, by manipulating the weight values wi, different amount of data is
transferred. As a result, the instantaneous revenue is different which affects the
resulting total revenue.

General model

The adaptive model for the WFQ scheduler consists of the pricing function (16),
which hence will be referred to as the target function, and a set of constraints (4),
(13), and (14).

It is proposed to add a new parameter γi to the target function. Its purpose
is to disable or enable the allocation of excess resources for the ith service class.
Suppose, there is a service class consisting of applications that generate data at
the constant rate. Although it may be the most expensive class, all the excess
resources, allotted to it, will be shared among the other classes, because these
applications will not increase their transmission rates. Therefore, the allocation
of the excess resources can be disabled by setting γi = 0. If more bandwidth is
allocated for a service class that consists predominantly of TCP flows, then the
applications will increase their window sizes and, as a result, their transmission
rates. Thus, it makes sense to set γi = 1. It should also be noted that the target
function can be simplified by removing the constant component B:

max

{
m

∑
i=1

γiCiwi

}
(17)

subject to:

m

∑
i=1

wi = 1, wi ∈ (0; 1) ,

wi ≥ max

{
NiB

f
i

B
,
Bi

B
,

Niσ

BDi − Lmax

}
, ∀i = 1, m ,

wi ≤
Bmax

i
B

, ∀i ∈ U .
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The model presented in (17) is a linear optimization problem. The purposes
of this optimization task is to find the optimal weight values wi, such that all
the QoS guarantees are ensured and the total revenue is maximized. One of the
methods that can be used to obtain the optimal values of the wi is the simplex algo-
rithm [151]. If a provider has to ensure only the bandwidth guarantees, then the
delay term can be removed from the constraint, but the general model remains
the same.

Other fair queuing disciplines

The adaptive model presented above can be used with other FQ schedulers, such
as W2FQ, SCFQ, STFQ, FFQ, and SPFQ [149]. Only minor differences in con-
straints are necessary. As an example, we will consider briefly the SCFQ sched-
uler since it is implemented in many hardware routers.

SCFQ is very similar to WFQ except that the former is simpler in imple-
mentation. Unlike WFQ, it updates the system virtual time only when a packet
transmission starts or when a packet arrives to an empty system. SCFQ provides
exactly the same bandwidth guarantees as WFQ, but the worst case delay estima-
tion depends on the number of sessions [57]:

D =
σ

ρ
+ (m−1)

Lmax

B
. (18)

It makes SCFQ quite inefficient when the number of sessions is huge. However,
since we consider the case when resources are shared between several service
classes, each session corresponds to a class, not to a distinctive flow. Thus, there
are only a few sessions and the worst case delay estimation does not differ signif-
icantly from the one considered for WFQ.

The general model for SCFQ is exactly the same as (17), but constraint (13)
is slightly different. The adaptive model for the SCFQ scheduler is

max

{
m

∑
i=1

γiCiwi

}
(19)

subject to:
m

∑
i=1

wi = 1, wi ∈ (0; 1) ,

wi ≥ max

{
NiB

f
i

B
,
Bi

B
,

Niσ

BDi − (m−1)Lmax

}
,∀i = 1, m . (20)

2.3.5 Weighted Round Robin

WRR scheduler

The WRR scheduler works in a cyclic manner serving consequently the input
queues. During a cycle, a certain number of packets, determined by the asso-
ciated weight, are sent from each queue. If a queue has fewer packets than the
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value of the weight, the WRR scheduler outputs the existent number of packets
and begins to serve the next queue. The WRR scheduler does not take the size of
the transmitted packets into account. As a result, it is difficult to predict the ac-
tual bandwidth that each queue obtains. In other words, it is difficult to use only
the weight values as the means to specify the amount of the output bandwidth.

Suppose that wi is the value of the weight associated with the ith queue. If
Li is the mean packet size of the ith input queue, then wiLi bytes of data are sent
during each cycle on average. If there are m input queues, then it is easy to show
that the average amount of data transmitted from all queues during one cycle can
be approximated by:

m

∑
i=1

wiLi . (21)

Expression (21) is referred to as the frame size. Taking the mean packet size
and weights of all queues into account, it is possible to approximate the output
bandwidth for the given kth queue:

wkLk

∑
i

wiLi
B, k ∈ [1; m] , (22)

where B specifies the output bandwidth of an interface, on which a router im-
plements WRR. By approximating the average bandwidth of each queue, it is
possible to provide the QoS guarantees.

QoS requirements

Let us assume that each service class is associated with a queue of the WRR sched-
uler. Then, (22) approximates the bandwidth allocated for the whole class. How-
ever, if class k contains Nk active data flows, then each data stream obtains the
bandwidth that can be expressed as follows:5

B f
k =

wkLk

Nk ∑
i

wiLi
B . (23)

Parameter Bf
k can be understood as one of the QoS parameters that specifies

the bandwidth that should be provided for each data flow in the kth traffic class.
Thus, if Bf

k is given, then a router must allocate a certain minimum amount of
resources to satisfy the QoS requirements of all data streams. Based on this, it is
possible to rewrite (23) in the following form:

wkLk

Nk ∑
i

wiLi
B ≥ B f

k . (24)

5 The fairness between data flows within a service class can be achieved by the Stochastic
Fair Queuing (SFQ)[104] combined with the WRR scheduler and/or by the per-flow buffer
management.
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While the right side of this inequality specifies the minimum amount of
resources to be allocated, the left side specifies the amount of provided resources.
Since the weights of the WRR scheduler control the allocation of resources, the
task is to find such values of wk that ensure the bandwidth requirements. It is
possible to use (24) to determine wk:

wk ≥
B f

k Nk

Lk(B − B f
k Nk)

m

∑
i=1
i �=k

wiLi . (25)

As in the case of the adaptive model for the WFQ scheduler, sometimes
there is a need to allocate resources regardless of the number of flows and their
requirements. For instance, the best-effort class has no requirements at all, but re-
sources should be provided for this class as well. For these purposes, it is possible
to modify (25) as follows:

wk ≥ Bk

Lk(B − Bk)

m

∑
i=1
i �=k

wiLi . (26)

Here Bk stands for the bandwidth requirements of the whole service class. De-
pending on the resource allocation strategy, a service provider chooses either (25)
or (26), or both. It is possible to combine these expressions to obtain one con-
straint:

wk ≥ max

{
Bk

Lk(B − Bk)
,

B f
k Nk

Lk(B − B f
k Nk)

}
m

∑
i=1
i �=k

wiLi, ∀k = 1, m . (27)

Along with bandwidth requirements, certain service classes must be pro-
vided with the delay guarantees. Since the WRR scheduler serves the input
queues in a cyclic manner, the processing of a packet in the kth queue can be
delayed by (

∑
i,i �=k

wiL
max
i

)
/B

seconds. In the worst case, a packet belonging to the kth queue will enter it when
the WRR scheduler starts to serve the k+1th queue. As a result, the packet will
have to wait for a round. Note that we use wiLmax

i to estimate the largest amount
of data the WRR scheduler can output during a round. To decrease this delay, it is
possible to introduce the Low Latency Queue (LLQ) that can work in two modes
[154]: strict priority mode and alternate priority mode. In the strict priority mode, the
WRR scheduler always outputs packets from LLQ first. Such a scheme is identical
to the one presented in Fig. 1. However, it is difficult to predict the allocation of
bandwidth for other queues in this case. Thus, the alternate priority mode will be
considered, in which LLQ is served in between queues of the other service classes.
For instance, if there are 3 input queues, numbered from 1 to 3, and queue 1 is
LLQ, then the queues are served in the following order: 1–2–1–3–. . . . In such a
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scheme, the processing of a packet in LLQ can be delayed by

max
i

{wiL
max
i } /B

seconds. As in the normal WRR scheduler, each queue is allowed to transmit no
more than wi packets during a round.

If a router implements LLQ, it is necessary to reformulate the considered
above equations (21)-(26). Suppose, LLQ is identified by index l, where l ∈ [1; m].
Then, the frame size is approximated by the following expression:

(m−1)wlLl +
m

∑
i=1
i �=l

wiLi . (28)

Taking account of the presented above considerations (22) – (25), it is pos-
sible to derive expressions for the minimum weight values that satisfy all the
bandwidth requirements of each service class:

wk ≥
B f

k Nk

Lk(B−B f
k Nk)

⎛
⎜⎝(m−1)wl Ll +

m

∑
i=1

i �=k,i �=l

wiLi

⎞
⎟⎠, k �= l , (29)

wl ≥
B f

l Nl

(m−1)Ll(B−B f
l Nl)

m

∑
i=1
i �=l

wiLi . (30)

As in the case of (27), it is possible to extend these constraints so that the
bandwidth requirements for a class are taken into account. It should be noted
that (29) and (30) only reserve bandwidth for normal queues and LLQ when the
WRR scheduler works in the LLQ mode. However, they do not provide any
delay guarantees. Thus, additional constraints are necessary, which will limit the
weight values based on the delay requirements.

Suppose, each data flow, belonging to the class that has the delay require-
ments, is regulated by the Token Bucket policer with the mean rate ρ and the
burst size σ. Since a service class aggregates multiple data flows, the resulting
burst size of the whole class is Nlσ. Thus, it takes the WRR scheduler Nlσ/B
seconds to transmit the received burst under ideal conditions. However, if Nlσ

is bigger than wlLmin
l , then more time is needed to output the burst because the

WRR scheduler will start to serve another queue. While the scheduler serves that
queue, the packets in LLQ can be delayed by

max
i,i �=l

{wiL
max
i }/B

seconds at most. Thus, the queuing delay of packets in LLQ can be estimated by:

Dl =
Nlσ

B
+ max

{⌈
Nlσ

wlLmin
l

⌉
− 1, 0

} max
i,i �=l

{wiLmax
i }

B
. (31)
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Here Dl stands for the worst-case delay, experienced by packets in LLQ.
The queuing delay consists of the burst queuing delay and the delay caused by
the fact the WRR scheduler can start to serve another queue. The term

max

{⌈
Nlσ

wlLmin
l

⌉
− 1, 0

}

estimates the number of times the LLQ is interrupted by other queues. If Nlσ is
less than wiLmin

i , then the burst is transmitted completely during one round.
Expression (31) does not consider the fact that the initial processing of LLQ

can be delayed by the other queue being served when a LLQ packet arrives to
an empty queue. This happens due to the non-preempted nature of the WRR
scheduler. Thus, it is possible to introduce the corrected estimation:

Dl =
Nlσ

B
+ max

{⌈
Nlσ

wlLmin
l

⌉
−1, 0

} max
i,i �=l

{wiLmax
i }

B
+

max
i,i �=l

{wiLmax
i }

B
=

=
Nlσ

B
+ max

{⌈
Nlσ

wlLmin
l

⌉
, 1

} max
i,i �=l

{wiLmax
i }

B
.

(32)

Based on the values of Nlσ and wlLmin
l , we can consider two distinctive

cases:

Dl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
B

(
Nlσ + max

i,i �=l
{wiL

max
i }
)

, if Nlσ ≤ wlLmin
l , (33a)

1
B

(
Nlσ +

⌈
Nlσ

wlLmin
l

⌉
max
i,i �=l

{wiL
max
i }
)

, if Nlσ > wlLmin
l . (33b)

The first expression corresponds to the case when a burst is output completely
in one round. Since the resulting burst size of the whole service class is usually
larger than wlLmin

l , we will consider (33b).
It is obvious that it is not possible to use (33b) in the linear optimization task

because it has the non-linear operator. To simplify it, we can observe the fact that
if Nlσ � wlLl , then

⌈
Nlσ

wlLmin
l

⌉
≈ Nlσ

wlLmin
l

. (34)

Indeed, if a router aggregates a huge amount of data flows within a class,
then the error will be insignificant compared to the value of Nlσ. However, if
there are only a few flows, then the error is considerably bigger. It will be pre-
sented later in chapter 4 that (34) fails when there are a few flows. Based on
assumption (34), we can rewrite (33b) in the following form:
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Dl =
Nlσ

B

⎛
⎝1 +

max
i,i �=l

{wiLmax
i }

wlLmin
l

⎞
⎠ . (35)

Expression (35) presents a simple and tractable estimation for the worst-case
delay. If maxi,i �=l{wiLmax

i } equals zero, i.e. all the WRR sessions except LLQ are
inactive, then it takes Nlσ/B seconds to output the burst. To decrease the queuing
delay when all the sessions are active, we have to assign bigger values to wl and
less values to wi, i �= l, which corresponds to the intuitive expectations.

It is also possible to modify (35) to the from that takes the packetization and
the hardware delays into account:

Dl =
Nlσ + Ll

B

(
1 +

max
i,i �=l

{wiLmax
i }

wlLmin
l

)
+ DHW . (36)

As in the case of WFQ, for the sake of clarity expression (35) will be consid-
ered. It will be presented in the form of the inequality meaning that packets in
LLQ can experience various queuing delays; however the worst-case delay must
not exceed the certain value given by Dl:

Dl ≥ Nlσ

B

(
1 +

max
i,i �=l

{wiLmax
i }

wlLmin
l

)
. (37)

We can also rewrite it in the following form that is suitable for the optimiza-
tion problem: (

BDl

Nlσ
− 1
)

wlL
min
l − max

i,i �=l
{wiL

max
i } ≥ 0 . (38)

In turn, (38) can be represented as a set of constraints:(
BDl

Nlσ
− 1
)

wlL
min
l − wiL

max
i ≥ 0, ∀k = 1, m, k �= l . (39)

Upper constraints

As in the case of the adaptive model for the WFQ scheduler, upper constraints
may be necessary to achieve better resource allocation between service classes. It
is easy to derive it for the non-LLQ mode based on (26). If Bmax

k is the maximum
bandwidth available for the kth class along the forwarding path, then the upper
constraint will be as follows:

wk ≤
Bmax

k
Lk(B − Bmax

k )

m

∑
i=1
i �=k

wiLi, ∀k ∈ U . (40)

In the similar way one can derive the upper constraints for the LLQ mode based
on (29) and (30).
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Graphical interpretation

To illustrate constraints for the WRR scheduler, the same parameters as in section
2.3.4 will be used. Fig. 3 presents weight values wk for that simple case.6 It can
be noticed that there are two lines that bound the area of possible combinations
of the weight values. For instance, if w1 equals 1, then the value of w2 could
be 1, 2, or 3. On the other hand, if w2 equals 1, then the value of w1 can range
from 1 to 4. At the same time, there are a lot of other possible combinations
within the constrained area. All these combinations result in different allocation
of bandwidth resources, but all of them satisfy the given QoS requirements.
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FIGURE 3 Graphical interpretation of constraints for WRR.

As follows from Fig. 3, the area between two constraints is not bounded
from above. It means that there are an infinite number of possible solutions,
from which it is impossible to choose the best one. For instance, combinations
of weights such as (1,3) and (2,6) are possible. As can be noticed, the ratio of
weights remains the same. Thus, these two combinations are similar from the
viewpoint of the measured bandwidth. However, if we consider how the WRR
scheduler outputs packets, then the difference becomes obvious. Combination
(2,6) results in a bigger frame size, which causes larger queuing delays.

The requirement to keep the frame size as small as possible leads to the
following considerations. The minimum value of the weight for each traffic class
must be 1. It cannot be less than 1 because in such a case a class will not get a
chance to transmit any packet. Thus, it is possible to find the maximum weight
values that other traffic aggregates can have. Referring to Fig. 3, if w1 is equal to 1,
the maximum value of w2 can be 3. In turn, if w2 is equal to 1, then the maximum
value of w1 can be 4. If there are more than two service classes, then the same
considerations are applied to each wk. Thus, it is possible to add the following
constraints:

6 For the sake of simplicity we imply that wi is not an integer value but a real one.
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FIGURE 4 Graphical interpretation of constraints for WRR.

wk ≥ 1, wk ∈ N, ∀k = 1, m . (41)

The graphical interpretation of these additional constraints is presented in
Fig. 4. As follows from this figure, there are two extreme points A and B. Point
A corresponds to the case when the first class is provided only with the mini-
mum amount of resources, and the remaining bandwidth is allocated for the sec-
ond class. Point B corresponds to the opposite resource allocation scheme - the
first class consumes the remaining bandwidth. As the number of service classes
grows, the number of extreme points increases proportionally. For instance, if
there are three classes, then there are three points that correspond to the extreme
resource allocation cases.

Pricing criterion

The pricing function for the WRR scheduler differs slightly from the one con-
sidered earlier for WFQ. Though it is possible to approximate the instantaneous
revenue per time unit, it makes the function too complicated and non-linear. In-
stead, it is possible to approximate the revenue obtained during a round. As
presented earlier, (21) approximates the frame size, i.e. the amount of data the
WRR scheduler outputs during one cycle. Thus, the instantaneous revenue (3)
can be given by:

m

∑
i

ri(Ci, wi) =
m

∑
i=1

CiwiLi [monet.units/round] . (42)

This function is valid only for the non-LLQ mode. Since (28) approximates
the amount of data the WRR scheduler outputs in the LLQ mode, the pricing
function can be modified to the form
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(m−1)ClwlLl +
m

∑
i=1
i �=l

CiwiLi [monet.units/round] . (43)

General model

The general adaptive model for the WRR scheduler comprises the pricing func-
tion (43) and constraints (29), (30), (39), and (41). Parameter γi has the same
purpose as in the case of the adaptive model based upon WFQ.

max

⎧⎪⎨
⎪⎩(m−1)γlClwlLl +

m

∑
i=1
i �=l

γiCiwiLi

⎫⎪⎬
⎪⎭ (44)

subject to:

(m−1)B f
k NkwlLl + B f

k Nk

m

∑
i=1

i �=k,i �=l

wiLi + (B f
k Nk−B)wkLk ≤ 0, ∀k = 1, m, k �= l ,

(m−1)(B f
l Nl − B)wl Ll + B f

l Nl

m

∑
i=1
i �=l

wiLi ≤ 0 ,

(
BDl

Nlσl
− 1
)

wlL
min
l − wkLmax

k ≥ 0, ∀k = 1, m, k �= l ,

wk ≥ 1, wk ∈ N, ∀k = 1, m .

Alternatively, if a provider has to provide only the bandwidth guarantees,
then the model given above can be simplified significantly, i.e. the pricing func-
tion (42) and the constraints (25) and (41) are used:

max

{
m

∑
i=1

γiCiwiLi

}
(45)

subject to:

B f
k Nk

m

∑
i=1
i �=k

wiLi + (B f
k Nk − B)wkLk ≤ 0, ∀k = 1, m ,

wk ≥ 1, wk ∈ N, ∀k = 1, m .

The presented adaptive model is the integer linear optimization problem.
Since weights of the WRR scheduler are integer values, the solution for the opti-
mization problem must be a set of integer weight values. One of the methods that
can be used to calculate the optimal values of wi is the branch & bound algorithm
[50].

It should be noted that if the packet size is constant, like in the ATM net-
works, then we can simplify the model, i.e. there is no need to include terms Li,
Lmin

i , Lmax
i into the constraints and the target function.
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2.3.6 Deficit Round Robin

Though DRR belongs to the class of the RR schedulers and shares common prop-
erties with WRR, it has several features that make it attractive for the provision of
QoS. The most noticeable one is that the DRR scheduler is capable of taking the
packet size into account while being very simple in implementation. The general
considerations for DRR are the same as for WRR. So, we will present briefly the
final formulas.

DRR scheduler

The DRR scheduler works in a cyclic manner serving consequently the input
queues. During a round, a certain number of packets, determined by the value
of the deficit counter, are sent from each queue. As all queues are served, the
DRR scheduler updates the deficit counter using the quantum value and begins the
next cycle. Unlike weights of the WRR scheduler, the quantum values specify the
amount of bytes, not the number of packets. As a result, the deficit counter deter-
mines the amount of data the scheduler outputs during a round while the quan-
tum values determine the long-term bandwidth allocation. It enables to share
bandwidth accurately when the packets are of different size.

Like in WRR, it is possible to approximate the bandwidth allotted for a given
class k based on the frame size and the quantum values Qi:

Qk

∑
i

Qi
B, k ∈ [1; m] . (46)

where B is the bandwidth of the output link.

QoS requirements

Since quantum values control the allocation of the output bandwidth between
service classes, the task is to find such values of Qk that all the QoS requirements
are satisfied:

Qk ≥
B f

k Nk

B−B f
k Nk

m

∑
i=1
i �=k

Qi, ∀k = 1, m . (47)

In the LLQ mode, the following constraints reserve the minimum amount
of bandwidth resources:

Qk ≥
B f

k Nk

B−B f
k Nk

⎛
⎜⎝(m−1)Ql +

m

∑
i=1

i �=k,i �=l

Qi

⎞
⎟⎠, k �= l , (48)

Ql ≥
B f

l Nl

(m−1)(B−B f
l Nl)

m

∑
i=1
i �=l

Qi . (49)
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The worst-case delay of a packet in the LLQ is determined as follows:

Dl =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
B

(
Nlσ + max

i,i �=l
{Qi}

)
, if Nlσ ≤ Ql , (50a)

1
B

(
Nlσ +

⌈
Nlσ

Ql

⌉
max
i,i �=l

{Qi}
)

, if Nlσ > Ql . (50b)

If we assume that ⌈
Nlσ

Ql

⌉
≈ Nlσ

Ql

then (50b) yields the set of final constraints that ensure the delay requirements:(
BDl

Nlσ
− 1
)

Ql − Qk ≥ 0, ∀k = 1, m, k �= l . (51)

Having analysed expressions (46)-(51), it is possible to notice that they do
not include the mean packet size, neither do they include maximum and mini-
mum packet sizes. Thus the adaptive model for the DRR scheduler can be used
in those networks where packets are not of the same size within a service class.

Upper constraints

The upper constraints for the DRR scheduler are of the same form as for the WRR
scheduler, but the quantum values are used:

Qk ≤
Bmax

k
B − Bmax

k

m

∑
i=1
i �=k

Qi, ∀k ∈ U . (52)

Graphical interpretation

Since the quantum values specify the amount of bytes, not the number of packets,
it is does not make any sense to set the minimum value of the quantum values to
1. Instead, the minimum quantum values must be set so that at least one packet
is output during a round from each queue. Thus, the quantum value for the kth
queue must be larger than or equal the maximum packet size observed within
that queue. Such a requirement yields the following set of constraints:

Qk ≥ Lmax
k , Qk ∈ N, ∀k = 1, m . (53)

Since it might be a challenging task to track the maximum packet size within
each queue, a provider may set the quantum values to be larger than the Maxi-
mum Transmission Unit (MTU) of the output link. For instance, such an approach
is taken in the Cisco routers [154]. However, according to our preliminary simu-
lations, it results in a less efficient resource allocation.

Fig. 5 presents the graphical interpretation of the DRR constraints. There are
two service classes, which parameters are the same as considered for the WFQ
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FIGURE 5 Graphical interpretation of constraints for DRR.

and WRR schedulers. The first class has the maximum packet size of 300 bytes,
while the maximum packet size of the second class is 200 bytes.

Pricing criterion

The pricing function for the DRR scheduler is very similar to WRR, except that
quantum values Qi are used:

m

∑
i=1

CiQi [monet.units/round] . (54)

In the LLQ mode it has the following form:

(m−1)ClQl +
m

∑
i=1
i �=l

CiQi [monet.units/round] . (55)

General model

The general adaptive model for the DRR scheduler consists of the pricing func-
tion (55) and the QoS constraints (48), (49), (51), and (53):

max

⎧⎪⎨
⎪⎩(m−1)γlClQl +

m

∑
i=1
i �=l

γiCiQi

⎫⎪⎬
⎪⎭ (56)
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subject to:

(m−1)B f
k NkQl + B f

k Nk

m

∑
i=1

i �=k,i �=l

Qi + (B f
k Nk−B)Qk ≤ 0, ∀k = 1, m, k �= l ,

(m−1)(B f
l Nl − B)Ql + B f

l Nl

m

∑
i=1
i �=l

Qi ≤ 0 ,

(
BDl

Nlσl
− 1
)

Ql − Qk ≥ 0, ∀k = 1, m, k �= l ,

Qk ≥ Lmax
k , Qk ∈ N, ∀k = 1, m .

As in the case of the WRR scheduling discipline, the previous optimization
task can be simplified in terms of constraints and the target function if only band-
width guarantees are necessary:

max

{
m

∑
i=1

γiCiQi

}
(57)

subject to:

B f
k Nk

m

∑
i=1
i �=k

Qi + (B f
k Nk − B)Qk ≤ 0, ∀k = 1, m ,

Qk ≥ Lmax
k , Qk ∈ N, ∀k = 1, m .

The adaptive model for the DRR scheduler is more efficient than the one
considered for WRR. The main reason for this is that it does not depend on the
mean packets, neither does it require the minimum, maximum, and mean packet
size. At the same time, DRR is very fast and simple in implementation. It makes
the DRR scheduler very attractive for the adaptive resource sharing in the packet
networks when both bandwidth and delay guarantees are necessary.

2.3.7 Other round-robin disciplines

The adaptive models for WRR and DRR can be modified easily to support any
RR discipline. As an example, we will present Modified Weighted Round Robin
(MWRR) [154] that is implemented in Cisco Catalyst and series 8500 routers. The
MWRR scheduler combines properties of WRR and DRR. On the one hand, each
queue has the associated weight that determines the number of slots the scheduler
outputs during a round. On the other hand, there is a deficit counter that tracks
the number of transmitted slots so that a router can share bandwidth more os less
accurately even if the packet size varies.

The general form of the adaptive model will be similar to WRR. However,
since all the slots are of the same size and the scheduler maintains the deficit
counter, there is no need to include the mean packet size into the target function
and the QoS constraints:
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max

{
m

∑
i=1

γiCiwi

}
(58)

subject to:

B f
k Nk

m

∑
i=1
i �=k

wi + (B f
k Nk − B)wk ≤ 0, ∀k = 1, m ,

wk ≥ 1, wk ∈ N, ∀k = 1, m .

2.3.8 Weighted Delay Minimization and Revenue Optimization

In this subsection we propose a scheduling model that guarantees latency and
optimizes the network service provider’s revenue, not just in the worst case as in
[99], but in a general case. The proposed algorithm ensures less delay for the users
paying more for the connection (i.e. higher service class) than those paying less.
In fact, our approach minimizes the weighted mean delay for connections, and
therefore satisfaction of the customers can be achieved. We extend our previous
study [?, 81] from the single node to the multinode case in the non-trivial way.
We see that closed form, optimal, unique, distributed, and simple solution for
revenue maximization can be achieved.

We show that this kind of solution can be obtained also in the multinode
system, yielding a temptating scenario for customers and the service provider.
The closed form formula for updating weights is independent on any statistical
behavior of the connections. Therefore, it is also robust against erroneous esti-
mates of customers’ behavior.
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FIGURE 6 Four node system. In the medium of the system there is a core network,
which is not shown in the figure. Parameter Ni→p

j denotes the number of
such connections in the jth service class, who transfer data packets through
both switches i and p.

2.3.9 Multinode network, delays, and revenue optimization

Network model and delays

Although the algorithm operates in the general multinode system with arbitrary
number of switches (nodes) and service classes, we present it by using a four-
node case to avoid complicated notation. Consider the four-node system with
schedulers as illustrated in Fig. 6. An example of one scheduler is illustrated in
more detail in Fig. 7. There are three service classes, namely gold, silver, and
bronze. Gold class customers pay most of money while getting the best service,
and silver class customers pay least of money. Data are transmitted from nodes 1
and 2 to either nodes 3 and 4. Parameter Δtij denotes the time which passes when
data is transferred through the queue j to the output in the switch i, when wij = 1.
If the queue is almost empty, the delay is small, and when the buffer is full, it is
large. Variable wij is the weight allocated for switch i and class j. Constraint for
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FIGURE 7 Scheduler and queues. Parameter Δt1j, j = 1, . . . , 3 denotes time which
passes when data is transferred through queue. It depends on the processing
time d0 of the scheduler. Variables w1j control the overall delay.

weights wij are
m

∑
j=1

wij = 1, wij > 0. (59)

Variables wij give weights, how long time queues ij are served per total time.
Therefore the delay dij in the queue (i, j) is actually

dij =
Δtij

wij
. (60)

Without loss of generality, only non-empty queues are considered, and therefore

wij �= 0, i = 1, . . . , m, (61)

where m is the number of service classes. When one queue becomes empty, m →
m − 1. Parameter Ni→p

j has the following meaning: it is denoting the number
of such connections in the jth service class, which transfer data packets through
both switches i and p. Because there are four schedulers and three classes, there
are maximally 12 arrows from the elements 1 and 2 to 3 and 4 (for simplicity, but
without loss of generality, other connections such as 1 → 2 are not considered
here). The total number of connections in the node i and queue j is denoted by
Nij, and it obeys the general condition

Nij =
n

∑
p=1

Ni→p
j , (62)
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where n denotes the number of the nodes. In our sample case, n = 4, and

N11 = N1→3
1 + N1→4

1 , (63)

N12 = N1→3
2 + N1→4

2 , (64)

N13 = N1→3
3 + N1→4

3 , (65)

N21 = N2→3
1 + N2→4

1 , (66)

N22 = N2→3
2 + N2→4

2 , (67)

N23 = N2→3
3 + N2→4

3 , (68)

N31 = N1→3
1 + N2→3

1 , (69)

N32 = N1→3
2 + N2→3

2 , (70)

N33 = N1→3
3 + N2→3

3 , (71)

N41 = N1→4
1 + N2→4

1 , (72)

N42 = N1→4
2 + N2→4

2 , (73)

N43 = N1→4
3 + N2→4

3 , (74)

Pricing and revenue

Consider the price paid by customers in the class j to the service provider. It is
depending on the end-to-end delay of the data. The price rj(d) is decreasing with
respect to the delay d. We consider linear pricing function.

Definition. The function

rj(d) = −rjd + kj, i = 1, . . . , m, (75)

rj > 0, (76)

kj > 0, (77)

is called linear pricing function.
Parameters rj penalize if the delay is increasing. Parameter kj is included

in the function to guarantee positive revenue. Three typical pricing functions are
shown in Fig. 8, where kjs are positive. Delay d includes delays in the switching
element (depends on the weights), and insertion delays, transmission delays etc.
(not depending on the weights). Without the loss of generality, those delays not
depending on the weights are not considered here, because they have no effect on
the derivation of the algorithm. They can simply be considered as constant shifts.
This can be seen as follows. If the total delay is denoted by d = d1 + d2, where d1
is the delay in the stwitch, and d2 includes the other delays, one can write

rj(d) = −rjd1 + (kj − rjd2). (78)

Then one can merge the right hand side term so that one obtains

rj(d) = −rjd1 + k̃j, (79)
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FIGURE 8 Three linear pricing functions. For gold class, r1(d) = −5d + 10; for bronze
class, r3(d) = −d + 2. For highest priority class, both penalty factor rj as well
as constant shift kj in the pricing model rj(d) = −rjd + kj are highest.

where

k̃j = kj − rjd2. (80)

The revenue obtained from those customers who transfer data through switches
i1 → i2 is denoted by Fi1→i2 . Then in our four-node system, the total revenue is

F = F1→3 + F1→4 + F2→3 + F2→4. (81)

Consider for example F1→3. Because there are N1→3
1 connections in this route

with the total delay Δt11/w11 + Δt31/w31, then the price paid by those customers
is

F1→3 = −N1→3
1 r1

(
Δt11

w11
+

Δt31

w31

)
+ N1→3

1 k1. (82)
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In the same manner, the total revenue is

F = −N1→3
1 r1

(
Δt11

w11
+

Δt31

w31

)
+ N1→3

1 k1

− N1→3
2 r2

(
Δt12

w12
+

Δt32

w32

)
+ N1→3

2 k2

− N1→3
3 r3

(
Δt13

w13
+

Δt33

w33

)
+ N1→3

3 k3

− N1→4
1 r1

(
Δt11

w11
+

Δt41

w41

)
+ N1→4

1 k1

− N1→4
2 r2

(
Δt12

w12
+

Δt42

w42

)
+ N1→4

2 k2

− N1→4
3 r3

(
Δt13

w13
+

Δt43

w43

)
+ N1→4

3 k3

− N2→3
1 r1

(
Δt21

w21
+

Δt31

w31

)
+ N2→3

1 k1

− N2→3
2 r2

(
Δt22

w22
+

Δt32

w32

)
+ N2→3

2 k2

− N2→3
3 r3

(
Δt23

w23
+

Δt33

w33

)
+ N2→3

3 k3

− N2→4
1 r1

(
Δt21

w21
+

Δt41

w41

)
+ N2→4

1 k1

− N2→4
2 r2

(
Δt22

w22
+

Δt42

w42

)
+ N2→4

2 k2

− N2→4
3 r3

(
Δt23

w23
+

Δt43

w43

)
+ N2→4

3 k3 (83)

Optimal weights

Here we present the theorem for optimal weights:

Theorem 1: For linear pricing functions, the maximum revenue F is achieved by
using the weights

wij =
√

NijrjΔtij

∑m
l=1

√
NilrlΔtil

, i = 1, . . . , n, j = 1 . . . , m, (84)

where n is the number of nodes, and m is the number of service classes. In addition, F is
unique.
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Proof: Regroup the terms of Eq. (83), remember equalities (63)-(74), and
add the Lagrangian penalty term as follows:

F = −(N1→3
1 + N1→4

1 )r1
Δt11

w11

− (N1→3
1 + N2→3

1 )r1
Δt31

w31
− · · ·
= −N11r1

Δt11

w11

− N12r2
Δt12

w12

− N13r3
Δt13

w13

+ λ1(1 −
3

∑
j=1

w1j)

− N21r1
Δt21

w21

− N22r2
Δt22

w22

− N23r3
Δt23

w23

+ λ2(1 −
3

∑
j=1

w2j)

− N31r1
Δt31

w31

− N32r2
Δt32

w32

− N33r3
Δt33

w33

+ λ3(1 −
3

∑
j=1

w3j)

− N41r1
Δt41

w41

− N42r2
Δt42

w42

− N43r3
Δt43

w43

+ λ4(1 −
3

∑
j=1

w4j)

+
n

∑
j=1

kj

n

∑
i=1

Nij. (85)
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Thus the total revenue has the general form - not only the case of four nodes

F = −
n

∑
i=1

m

∑
j=1

NijrjΔtij

wij

+
m

∑
j=1

kj

n

∑
i=1

Nij

+
n

∑
i=1

λi(1 −
m

∑
j=1

wij), (86)

where n is the number of nodes, and m is the number of service classes, Algo-
rithm for updating weights wij optimally is obtained by taking derivative and
remembering that ∑m

j=1 wij = 1:

∂F
∂wij

=
NijrjΔtij

w2
ij

− λi = 0, (87)

wij =
√

NijrjΔtij√
λi

=
√

NijrjΔtij√
λi ∑m

l=1 wil

=
√

NijrjΔtij√
λi ∑m

l=1

√
NilrlΔtil√

λi

=
√

NijrjΔtij

∑m
l=1

√
NilrlΔtil

. (88)

So √
NijrjΔtij√

λi
=

√
NijrjΔtij

∑m
l=1

√
NilrlΔtil

, (89)

and

λi =

(
m

∑
l=1

√
NilrlΔtil

)2

, (90)

Derivative (87) is then

∂F
∂wij

=
NijrjΔtij

w2
ij

−
(

m

∑
l=1

√
NilrlΔtil

)2

. (91)

The uniqueness of the solution is verified as follows:

∂2F
∂w2

ij
= −2NijrjΔtij

w3
ij

< 0. (92)
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Therefore, F is concave with respect to the weights, and the global optimal solu-
tion is

wij =
√

NijrjΔtij

∑m
l=1

√
NilrlΔtil

, i = 1, . . . , n, j = 1 . . . , m, (93)

as stated in the theorem. Q.E.D.
Solving weights out from the revenue expression (86), one obtains formula

F = −
n

∑
i=1

m

∑
j=1

√
NijrjΔtij

m

∑
l=1

√
NilrlΔtil

+
m

∑
j=1

kj

n

∑
i=1

Nij

= −
n

∑
i=1

(
m

∑
j=1

√
NijrjΔtij)2 +

m

∑
j=1

kj

n

∑
i=1

Nij (94)

to the revenue. The delay updating rule (143) has an important advantage that it
allows local updating in the nodes, because in the calculation of wij there are used
only the parameters of the node i:

• r1, . . . , rm are the same for all nodes,

• Ni1, . . . , Nim are the number of connections in the node i at different service
classes,

• Parameters Δti1, . . . , Δtim are the delays in the node i.

In the more general case - where the closed form optimal solution is possible to
achieve - the pricing function may be

rj(d) = −rjd
−p + kj, (95)

where p > 0 to guarantee the decreasing price when delay is increasing. Then

F = −
n

∑
i=1

n

∑
j=1

Nijrj
Δtij

wij

−p

+
m

∑
j=1

kj

m

∑
i=1

Nij +
n

∑
i=1

λi(1 −
m

∑
j=1

wij), (96)

wij =
(NijrjΔtij)

− 1
p+1

∑m
l=1(NilrlΔtil)

− 1
p+1

. (97)

The second derivative is

∂2F
∂w2

ij
= −(p + 1)pNijrjΔtijw

−(p+2)
ij < 0, (98)

when p > 0.
To see that the number of connections cannot become infinity, consider the

revenue formula F in Eq. (94). For simplicity, assume here that the number of
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connections is continuous variable. The second order derivative with respect to
the number of connections Nij is

∂2F
∂N2

ij
=

1
2

rjΔt2
ij
− ∑m

l=1
√

NilrlΔtil
√

NijrjΔtij + 1

∑m
l=1

√
NilrlΔtil(NijrjΔtij)

3
2

. (99)

Then
∂2F
∂N2

ij
< 0, (100)

when

−
m

∑
l=1

√
NilrlΔtil

√
NijrjΔtij + 1 < 0. (101)

But this is the case, when Nij (and hence Δtij, too) becomes sufficiently large. In
that domain, F is concave, having only one maximum. On the other hand, the
first order derivative is

∂F
∂Nij

= −
√

rjΔtij ∑m
l=1

√
NilrlΔtil√

Nij
+ kj

= −rjΔtij −
√

rjΔtij ∑m
l �=j

√
NilrlΔtil√

Nij
. (102)

When Nij increases, Δtij increases. Then the first order derivative becomes neg-
ative for sufficiently large values of Nij and Δtij. As a consequence, F begins the
decrease. Therefore, finite positive pricing factors kj in the pricing function (75)
or the revenue formula (94) can never be so large that they should dominate the
revenue formula, when the sufficiently large number of connections exists; on
that condition, negative "penalty" term becomes dominating. Then, the optimal
value of Nij is finite.

Upper bound for the revenue is obtained as follows:
Theorem 2: Upper bound for revenue (94) for optimal weights for given number

of connections and delays is

F ≤
n

∑
i=1

m

∑
j=1

Nij(kj − rjΔtij). (103)

Proof: Notice that in Eq. (94),

(
m

∑
j=1

√
NijrjΔtij)2 ≥

m

∑
j=1

NijrjΔtij. (104)

Then

F ≤ −
n

∑
i=1

m

∑
j=1

NijrjΔtij +
m

∑
j=1

kj

n

∑
i=1

Nij =
n

∑
i=1

m

∑
j=1

Nij(kj − rjΔtij). (105)

Q.E.D.
The natural interpretation of the result is that
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• positive pricing factors kj increase upper bound,

• positive penalty factors rj decrease upper bound, and

• positive delays Δtij - which also penalize revenue - decrease upper bound.

It is difficult rigorously to see, if the revenue is positive for some number Nij of
the connections, and what is the maximum revenue for the optimal choice of Nij.
However, we perform semi-analytical consideration of the case. Again, we must
assume that Nij is continuous. First, notice that F = 0, when no connections exist.
Then, if the first order derivative with respect to Nij is positive in the vicinity of
Nij = 0, F is increasing in the vicinity of F = 0, and it becomes positive, when Nij
increases. Let us take the first order derivative of optimal F in Eq. (94) as follows:

∂F
∂Nij

= −
√

rjΔtij ∑m
l=1

√
NilrlΔtil√

Nij
+ kj. (106)

Consider the case, where factor rjΔtij is so small that

rjΔtij ≤ 1. (107)

This inequality is always possible to get by rescaling of pricing factors rj and
units of money to be paid (e.g. U.S. dollars are replaced by English pounds). In
addition, it is quite natural that Δtij should be small for small Nij. Then

√
rjΔtij ≤ 1. (108)

From the first order derivative, we then obtain the inequalities

∂F
∂Nij

≥ −∑m
l=1

√
NilrlΔtil√
Nij

+ kj

≥ −∑m
l=1

√
Nil√

Nij
+ kj. (109)

Then, if

kj ≥ ∑m
l=1

√
Nil√

Nij
, (110)

F is increasing, and it is positive for the suitably chosen number Nij of connec-
tions. It is quite straigthforward to construct such combinations of the variables
and parameters that obey this condition. Notice from the second order derivative
(99), that for very small products NijrjΔtij, revenue function F is convex. Then, if
buffers are almost empty, F is positive, increasing, and convex.

Minimization of the weighted mean delay

Next we show that the revenue maximization formula also minimizes the overall
weighted mean delay.
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Theorem 3: Weighted mean delay E(rjd) = E
(

rj
Δtij
wij

)
is minimized by Eq. (143),

and it is unique.
Proof: First use again the four-node case, and notice that when data is trans-

mitted through switches i1 and i2 in the class j, the delay is

d =
Δti1,j

wi1,j
+

Δti2,j

wi2,j
. (111)

Because the number of these connections is Ni1→i2
j , then the weight for the corre-

sponding delay is

Ni1→i2
j

(
Δti1,j

wi1,j
+

Δti2,j

wi2,j

)
. (112)

By using similar regrouping strategy as used for deriving the revenue formula,
and remembering that the sum of the weighting connection terms (63)-(74) be-
comes scaling factors in the denominator, we get the general expression for un-
weighted overall mean delay as follows:

E(d) =
1

∑n
i=1 ∑m

j=1 Nij

n

∑
i=1

m

∑
j=1

NijΔtij

wij
. (113)

Then, weighted mean delay optimization formula is

E(rjd) =
1

∑n
i=1 ∑m

j=1 Nij

n

∑
i=1

m

∑
j=1

NijrjΔtij

wij

+
n

∑
i=1

λi(1 −
m

∑
j=1

wij). (114)

The first order derivative is

∂E(rjd)
∂wij

= − NijrjΔtij

∑n
k=1 ∑m

l=1 Nklw2
ij
− λi. (115)

The weights are solved as follows:

wij =

√
−λi

NijrjΔtij

∑n
k=1 ∑m

l=1 Nkl

=

√
−λi

NijrjΔtij

∑n
k=1 ∑m

l=1 Nkl

∑m
h=1 wih

=

√
−λi

NijrjΔtij

∑n
k=1 ∑m

l=1 Nkl

∑m
h=1

√
−λi

NihrhΔtih
∑n

k=1 ∑m
l=1 Nkl

=
√

NijrjΔtij

∑m
h=1

√
NihrhΔtih

. (116)
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But this is the same as Eq. (143). Uniqueness is derived as follows. First, λi is
solved from Eq. (116):√

−λi

∑n
k=1 ∑m

l=1 Nkl
=

1
∑m

h=1
√

NihrhΔtih
, (117)

λi = − ∑n
k=1 ∑m

l=1 Nkl

(∑m
h=1

√
NihrhΔtih)2

(118)

Then the first order derivative is

∂E(rjd)
∂wij

= − 1
∑n

k=1 ∑m
l=1 Nkl

NijrjΔtij

w2
ij

+ ∑n
k=1 ∑m

l=1 Nkl

(∑m
h=1

√
NihrhΔtih)2 . (119)

The second order derivative is

∂2E(rjd)
∂w2

ij
=

2NijrjΔtij

∑n
k=1 ∑m

l=1 Nklw3
ij

> 0, (120)

which guarantees unique minimum in the interval 0 < wij ≤ 1. That completes
proof. Q.E.D.

The conclusion is that because the optimal revenue is obtained by the same
updating rule as the optimal minimum weighted mean delays, both the service
provider and the customers can be considered satisfied using our approach.

Weights can be solved out from the expression of the weighted mean delay
formula (114), and it becomes

E(rjd) =
1

∑n
i=1 ∑m

j=1 Nij

n

∑
i=1

(
m

∑
j=1

√
NijrjΔtij)2. (121)

Call Admission Control

In the Call Admission Control, the revenue is checked and weights are updated
in the connection level, not in the packet level, to avoid too costly computation.
Weights are then updated only when the connection appears (or disappears). Let
the state - i.e. number of connections - at the discrete time moment t be Nij(t),
t = 1, . . . , m. Let the new hypothetical state at the moment t + 1 be Ñij(t + 1),
t = 1, . . . , m, when one or several connections appear in some class/classes. In
hypothesis testing, revenue formula (94) is applied as follows:

F(t) = −
n

∑
i=1

(
m

∑
j=1

√
Nij(t)rjΔtij)2

+
m

∑
j=1

kj

n

∑
i=1

Nij(t) (122)
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F̃(t + 1) = −
n

∑
i=1

(
m

∑
j=1

√
Ñij(t + 1)rjΔtij)2

+
m

∑
j=1

kj

n

∑
i=1

Ñij(t + 1) (123)

If F(t) > F̃(t + 1), then the call is rejected, otherwise it is accepted.

Experiments

In this section we demonstrate by simulation the operation of the linear pricing
algorithm (75) with m = 3 service classes and four nodes. We compare the op-
timal weights (143) with a version of the algorithm that obtains the weights by
“brute-force”, for which the possible values are wij = 0.1, . . . , 0.9 (i.e. the step size
is 0.1). We present five different scenarios, which illustrate the behavior of the al-
gorithm with and without CAC mechanism. We also present ways to guarantee
different maximum delays for the users, but at the expense of reduced revenue
for the operator.

The connections in the different service classes have different average data
packet sizes E(b1) = 50, E(b2) = 25 and E(b3) = 10, with a standard deviation
of 1 (i.e. in a specific service class the connections have similar demand for band-
width). The processing time of each packet scheduler is chosen as T = 1/10000
s/kbyte. The arrival rates of the connections to the nodes 1 and 2 (Fig. 6) are
Poisson distributed and they are α1 = 0.30, α2 = 0.40 and α3 = 0.50 per unit
time for the gold, silver, and bronze classes, respectively. Each connection has
equal probability of being routed to node 3 or 4. The life time of a connection (i.e.
the time the connection is served and has packets in the queue) is exponentially
distributed. The duration parameters (i.e. “decay rates”) for the connections are
β1 = 0.01, β2 = 0.007 and β3 = 0.003, where the probability density functions for
the durations are

pi(t) = βie
−βit, , i = 1, 2, 3 t ≥ 0. (124)

The penalty factors were chosen as r1 = 2500, r2 = 500 and r3 = 100 and the
shifting factors kj as k1 = 1200, k2 = 800 and k3 = 400, for the gold, silver and
bronze classes, respectively. The number of unit times (i.e. instances in which a
new connection may or appear or disappear) in the experiments was τ = 2000.
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FIGURE 9 Adaptive weights - Evolution of the delays in node 1 as a function of time in
the first experiment.
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FIGURE 10 “Brute force” weights - Evolution of the delays in node 1 as a function of
time in the first experiment.
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FIGURE 11 Adaptive weights - Evolution of the weights of node 1 as a function of time
in the first experiment.

Experiment 1. In this experiment, the CAC mechanism described by (122)
and (123) is used to limit the serviced connections. Figs. 9 and 10 show the delays
in a single node for adaptive and “brute force” weights, respectively. As can bee
seen, the adaptive weights offer smoother delay deriving to a better delay jitter.
The delay variation of the “brute force” weights is due to the abrupt large changes
in the weight values, which could be compensated by decreasing the step size
(e.g. from 0.1 to 0.01) that is used by the “brute force” mechanism, but this would
lead to even larger computation times. As an example, Figs. 11 and 12 show the
weights in a single node for adaptive and “brute force” weights, respectively. The
number of connections of node 1 can be seen in Figs. 13 and 14 for the adaptive
and “brute force” weights, respectively.
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FIGURE 12 “Brute force” weights - Evolution of the weights of node 1 as a function of
time in the first experiment.
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FIGURE 13 Adaptive weights - Evolution of the number of connections as a function of
time in the first experiment.
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FIGURE 14 “Brute force” weights - Evolution of the number of connections as a func-
tion of time in the first experiment.
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FIGURE 15 Adaptive weights - Evolution of the weighted mean delays as a function of
time in the first experiment.
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FIGURE 16 “Brute force” weights - Evolution of the weighted mean delays as a function
of time in the first experiment.
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Figs. 15 and 16 present the weighted mean delays for all classes through the
network, for the adaptive and “brute force” weights, respectively. The average
values of the weighted mean delays for “brute force” weights is 199.9 which is
slightly larger than 199.1 for adaptive weights. From Figs. 17 and 18 it is seen
that the revenues are close, with the adaptive weight revenue (mean 231394.7)
being slightly greater than the “brute force’ weight revenue (mean 230806.6). The
adaptive weights give optimum results with little computational complexity. By
using a finer scale on the possible “brute force” weights, would result values
closer to the optimum, but at the expense of increased computation time.
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FIGURE 17 Adaptive weights - Evolution of the revenue as a function of time in the
first experiment.
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FIGURE 18 “Brute force” weights - Evolution of the revenue as a function of time in the
first experiment.
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FIGURE 19 Adaptive weights - Evolution of the weighted mean delays as a function of
time in the second experiment.



89

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Brute−force weights

Time

W
ei

gh
te

d 
m

ea
n 

de
la

ys

FIGURE 20 “Brute force” weights - Evolution of the weighted mean delays as a function
of time in the second experiment.

Experiment 2. In this experiment the CAC mechanism is not used (i.e. all
the appearing connections are accepted). By comparing the weighted mean de-
lays of the no CAC case presented in Figs. 19 and 20 to Figs. 15 and 16 of Ex-
periment 1, it noticed that without the CAC mechanism the weighted mean de-
lays are larger. Still, the weighted mean delay for “brute force” weights is larger
(mean 214.6) than for adaptive weights (mean 213.2). Also, the revenue without
the CAC mechanism is smaller than with the CAC mechanism as can be seen by
comparing Figs. 21 and 22 to Figs. 17 and 18. Again, the adaptive weight revenue
(mean 229824.6) is greater than the “brute force’ weight revenue (mean 229039.5).

Experiment 3. In this experiment the CAC mechanism is accompanied by
a guarantee on the minimum delay on the route from node i1 to i2. The delay
through ingress node i1 and egress node i2 for class j is

dj
i1,i2

=
Δti1,j

wi1,j
+

Δti2,j

wi2,j
, (125)

where Δti1,j = ∑
Ni1,j

k=1 bi1,j,k × T and Δti2,j = ∑
Ni2,j

k=1 bi2,j,k × T are the delays that
depend on the packet sizes of the queue of class j in nodes i1 and i2, respectively.
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FIGURE 21 Adaptive weights - Evolution of the revenue as a function of time in the
second experiment.

Now, we can express (125) at discrete time moment t as

dj
i1,i2

(t) = T ×
⎛
⎝∑

Ni1,j(t)
k=1 bi1,j,k

wi1,j
+

∑
Ni2,j(t)
k=1 bi2,j,k

wi2,j

⎞
⎠ , (126)

and when a new connection appears (from node i1 to i2), the new hypothetical
delay at time t + 1 is

d̃j
i1,i2

(t + 1) = T ×
⎛
⎝∑

Ni1,j(t+1)
k=1 bi1,j,k

wi1,j
+

∑
Ni2,j(t+1)
k=1 bi2,j,k

wi2,j

⎞
⎠ . (127)
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FIGURE 22 “Brute force” weights - Evolution of the revenue as a function of time in the
second experiment.
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FIGURE 23 Adaptive weights - Evolution of the delays on route 1 → 3 as a function of
time in the third experiment.



93

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3
x 10

5 Adaptive weights

Time

R
ev

en
ue

FIGURE 24 Adaptive weights - Evolution of the revenue as a function of time in the
third experiment.
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FIGURE 25 “Brute force” weights - Evolution of the revenue as a function of time in the
third experiment.

Now, the connection is rejected if d̃j
i1,i2

(t + 1) > dj
lim for any pair of ingress

and egress nodes and for any class j = 1, . . . , m, otherwise the connection is ac-
cepted. In the simulations the limits were chosen so that this additional CAC
mechanism rejects some connections which were accepted in Experiment 1. The
limits were 0.5, 0.8 and 1.1 for the gold, silver, and bronze classes, respectively.
In Figs. 23 and ?? is seen (for the route between nodes 1 and 3) how delays stay
under the limits in both cases, for adaptive and “brute force” weights, respec-
tively. The revenues are seen in Figs. 24 and 25 and the mean values are 222281.3
and 211109.7 for adaptive and “brute force” weights, respectively. Notice that
the revenue of the adaptive weights is about 5% larger, because it yields smaller
delays in single nodes. However, when compared to the previous experiments
the revenues are smaller, because more connections are rejected than would be
necessary for the optimized revenue and weighted mean delay.

Experiment 4. In this experiment the CAC mechanism is accompanied by
a guarantee on the minimum (unweighted) overall mean delay. From (113) the
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FIGURE 26 Adaptive weights - Evolution of the mean delay as a function of time in the
fourth experiment.

new hypothetical state at time t + 1 is

Ẽ(d(t + 1)) =
1

∑n
i=1 ∑m

j=1 Nij(t + 1)

n

∑
i=1

m

∑
j=1

Nij(t + 1)Δtij(t + 1)
wij

(128)

and the connection is rejected if Ẽ(d(t + 1)) > E(d)lim for the overall mean delay,
otherwise the connection is accepted. The limit was chosen as E(d)lim = 0.35, to
drop some of those connections which were accepted in Experiment 1. In Figs.
26 and 27 the mean delay is shown to always stay under the limit, for adaptive
and “brute force” weights, respectively. The revenues are seen in Figs. 28 and
29 and the mean values are 207216.3 and 214724.3 for adaptive and “brute force”
weights, respectively. Now, the the “brute force” weights outperform the adap-
tive weights.
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FIGURE 27 “Brute force” weights - Evolution of the mean delay as a function of time in
the fourth experiment.
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FIGURE 28 Adaptive weights - Evolution of the revenue as a function of time in the
fourth experiment.
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FIGURE 29 “Brute force” weights - Evolution of the revenue as a function of time in the
fourth experiment.
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FIGURE 30 Adaptive weights - Evolution of the weighted mean delay as a function of
time in the fifth experiment.

Experiment 5. In this experiment the CAC mechanism is accompanied by a
guarantee on the minimum weighted mean delay . From (121) the new hypothet-
ical state at time t + 1 is

Ẽ(rjd(t + 1)) =
1

∑n
i=1 ∑m

j=1 Nij(t + 1)

n

∑
i=1

(
m

∑
j=1

√
Nij(t + 1)rjΔtij(t + 1))2. (129)

and the connection is rejected if Ẽ(rjd(t + 1)) > E(rjd)lim for the weighted mean
delay, otherwise the connection is accepted. The limit was chosen as E(rjd)lim =
200, to drop some of those connections which were accepted in Experiment 1. I.
In Figs. 30 and 31 the weighted mean delay is shown to stay under the limit, for
adaptive and “brute force” weights, respectively. The revenues are seen in Figs.
32 and 33 and the mean values are 223801.8 and 223741.0 for adaptive and “brute
force” weights, respectively. As the proposed algorithm minimizes the weighted
mean delay, the limit on the weighted mean delay also guarantees maximized
revenue, in contrast to the previous experiment.
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FIGURE 31 “Brute force” weights - Evolution of the weighted mean delay as a function
of time in the fifth experiment.
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FIGURE 32 Adaptive weights - Evolution of the revenue as a function of time in the
fifth experiment.
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FIGURE 33 “Brute force” weights - Evolution of the revenue as a function of time in the
fifth experiment.
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Discussion

Here we discuss the properties of the algorithms as well as conclusions made by
the experiments. We also converse implementation and computational complex-
ity.

Algorithms and experiments

We make the following conclusions shown by algorithms and experiments:

• In the pricing scenario, we have derived an analytic form to the revenue
algorithm for updating the weights wi, which allocate data traffic to the
connections of different service classes.

• The updating procedure is deterministic and nonparametric i.e. it does not
make any assumptions of the statistical behavior of the traffic and connec-
tions. Thus it is robust against the errors that may occur from the wrong
models.

• The algorithm is unique and optimal, which has been proved by Lagrangian
optimization method.

• Our solution is quite simple, especially in the case where the pricing func-
tion is linear. Simplicity is obtained, too, by treating the number of con-
nections Nij and delays Δtij as separate parameters. Although they are in
practice related to each other, their relationship in usually nonlinear e.g.
due to the effect of the variable packet sizes.

• The maximum delay can be guaranteed in call admission mechanism by
adding a specific constraint to the updating rule. In the experiments, delays
always stay below the maximum limits.

• When the penalty pricing factors ri are high, the corresponding connections
obtain less delay.

• Because all penalty and gain factors are positive, all classes obtain service
in a fair way.

• The optimal algorithm gives larger revenue than the brute-force algorithm.
When all requests are accepted, the difference in the revenues is even greater.
"All accept" mechanism should be favored, because it is preferred in tele-
phones, Internet etc., i.e. it is tempting from the point of view of customers.

• Our algorithm yields minimum weighted mean delays. Because optimal
revenue is obtained by the same updating rule, we can conclude that both
the service provider and the customers are satisfied by using our algorithm.

• The delay updating rule (143) has an important advantage that it allows
local updating in the nodes.



104

• Due to the nature of the pricing model, the optimum number of connections
Nij is finite, although finite-valued pricing factors kj should be selected ar-
bitrarily large. This prevents delays to become unbearably large.

• The semi-analysis shows, that the optimal selection of the weights yields
positive revenue for sufficiently small Nij, rj, and Δtij, and for sufficiently
large kj. Roughly speaking, for Nij = 0, F = 0. When Nij begins to in-
crease, F increases, being convex and positive with respect to the Nij. At
some domain, F becomes concave, while still increasing until reaching the
maximum optimal point. After that, F begins to decrease, being concave for
large values of Nij.

2.3.10 Pricing Based Adaptive Scheduling Method for Bandwidth Allocation

In this section, we formulate an expression for the bandwidth (bit rate) of the
data. As an example, consider the traffic classification at the output buffers in
Fig. 34. The customers of the gold class pay more than the customers of the silver
class - in our case for the available bandwidth, thus obtaining more bandwidth.
Naturally, the price is often concave with respect to the bandwidth; for exam-
ple, when images are transferred, the price may be twice compared to the price
when voice is transferred, while the bandwidth ratio - image bandwidth/voice
bandwidth - is much more than two.
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Let the processing time of 1 kbyte of data be T [seconds/kbyte] in the packet
scheduler of Fig. 34. Looking at the gold queue, we see three connections, de-
noted by N11 (packet size b11 = 1 kbyte), N12 (packet size b12 = 2 kbytes), and
N13 (packet size b13 = 4 kbytes). Let us consider the time moment t0 in Fig. 34,
when the gold class connection N11’s data packet is moved to the packet sched-
uler. During the time delay = t1 − t0, which passes before N11’s next packet is
moved to the scheduler, the other connections of the class are handled by the
scheduler, thus the delay [seconds] induced by the other connections in the same
queue (i.e. service class) is

delay[s] = (1 + 2 + 4)T = 3 × 1
3
(1 + 2 + 4)T

= N1
1

N1

3

∑
j=1

b1jT = N1E(b1)T = 7T, (130)

where Ni is the number of connections in the queue of class i (N1 = 3 in this
example), bij is the size of the packet (relative to 1 kbyte) of the jth connection in
the ith class and E(bi) is the average packet size of the connections in the ith class.
The delay of the gold class is also affected by the connections in the other service
classes. In Fig. 34, a weight w1 = 2/3 is allotted for the gold class so, for every 2
kbytes of the gold class, 1 kbyte of the silver class is moved to the output - on the
average. Thus, the overall delay [seconds] in the ith class is

di =
NiE(bi)T

wi
(= 7 × 3/2T = 10.5T). (131)

Because sizes of the different packets vary, the delay dij scaled by the specific
packet of size bij is

dij [seconds/kB] =
NiE(bi)T

bijwi
(132)

The bit rate Bij (kbytes/second) of the class i is inversely proportional to the de-
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lay/packet of the class i

Bij[kB/s] =
1
dij

=
bijwi

NiE(bi)T

=
bijwi

NiE(bi)
=

bijwi

∑Ni
l=1 bil

(133)

where ∑Ni
l=1 bil is the sum of all packet sizes in class i and the processing time T

can be scaled T = 1 [s/kB], without loss of generality. Here

E(bi) =
1
Ni

Ni

∑
j=1

bij (134)

is mean packet length in the class i, and Ni is the number of connections in the
class i. In our example, the bit rate of the connection N11 is

B11 =
b11w1

N1E(b1)
=

1 × 2/3
7

=
2

21
, (135)

while the bit rate of the connection N12 is

B12 =
b12w1

N1E(b1)
=

2 × 2/3
7

=
4

21
. (136)

When T was scaled to T = 1,
Bij,max = 1. (137)

This occurs when there is only one connection in only one class, e.i. all the capac-
ity is allocated to one connection. It is noticed naturally that

m

∑
i=1

Ni

∑
j=1

Bij =
m

∑
i=1

Ni

∑
j=1

bijwi

∑Ni
l=1 bil

=
m

∑
i=1

wi

Ni

∑
j=1

bij

∑Ni
l=1 bil

= 1, (138)

where m is the number of service classes. From (133) we get plausible results:

• Larger the packet size bij is, larger is the bandwidth for that connection.

• Larger the weight wi is, larger is the bandwidth in that class.

• Larger the number of users Ni is, smaller is the bandwidth in that class.

• Larger the mean packet size E(bi) is, smaller is the bandwidth in that class,
because ∑Ni

l=1 bil becomes large in the denominator.
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Pricing models and revenue maximization

In this section we formulate the pricing scenario and functional form of the rev-
enue. Let the revenue of class i be fi(Bij) which is nonnegative, increasing, and
concave. As examples of this kind of functions are fi(Bij) = log(Bij + 1) or
fi(Bij) =

√
Bij. The revenue obtained from class i is

Fi(Bij) =
Ni

∑
j=1

fi(Bij). (139)

The total revenue is the sum of the revenues from all the service classes

F =
m

∑
i=1

Fi(Bij) =
m

∑
i=1

Ni

∑
j=1

fi(Bij) (140)

under the constraint
m

∑
i=1

wi = 1. (141)

We consider especially polynomial pricing, because it allows to obtain analytical
optimal solution for the weights wi.

Definition: The pricing function

Pi(Bij) = riB
p
ij, ri > 0, p > 0 (142)

is called polynomial pricing function. In the function, ri > 0 is a factor depending
on the money paid for the class (bandwidth of the connection). “Better” the class
i is, larger is ri. Next we present a theorem for optimal weights.

Theorem: Optimal weights for revenue F under the polynomial pricing model is

wi =
(∑Ni

j=1 bij)
p

p−1

r
1

p−1
i

(
∑Ni

j=1 bp
ij

) 1
p−1

∑m
k=1

(∑
Nk
l=1 bkl)

p
p−1

r
1

p−1
k

(
∑

Nk
l=1 bp

kl

) 1
p−1

, (143)

when 0 < p < 1.
Proof: Revenue F has the Lagrangian form

F =
m

∑
i=1

Ni

∑
j=1

F(Bij) + λ(1 −
m

∑
i=1

wi)

=
m

∑
i=1

Ni

∑
j=1

ri

(
bijwi

∑Ni
l=1 bil

)p

+ λ(1 −
m

∑
i=1

wi)

=
m

∑
i=1

ri

(∑Ni
l=1 bil)p

wp
i

Ni

∑
j=1

bp
ij + λ(1 −

m

∑
i=1

wi). (144)
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Optimal weights wi are obtained by taking first order derivative of F as follows:

∂F
∂wi

=
pri

(∑Ni
l=1 bil)p

wp−1
i

Ni

∑
j=1

bp
ij − λ = 0. (145)

Because Lagrangian solution
∂F
∂λ

= 0 (146)

yields ∑m
j=1 wj = 1, one obtains

wi =
λ

1
p−1 (∑Ni

j=1 bij)
p

p−1

(pri)
1

p−1
(

∑Ni
l=1 bp

il

) 1
p−1

=
λ

1
p−1 (∑Ni

j=1 bij)
p

p−1

(pri)
1

p−1
(

∑Ni
l=1 bp

il

) 1
p−1

∑m
k=1 wk

=
λ

1
p−1 (∑Ni

j=1 bij)
p

p−1

(pri)
1

p−1
(

∑Ni
j=1 bp

ij

) 1
p−1

∑m
k=1

λ
1

p−1 (∑
Nk
l=1 bkl)

p
p−1

(prk)
1

p−1
(

∑
Nk
l=1 bp

kl

) 1
p−1

=
(∑Ni

j=1 bij)
p

p−1

r
1

p−1
i

(
∑Ni

j=1 bp
ij

) 1
p−1

a
(147)

where

a =
m

∑
k=1

(∑Nk
l=1 bkl)

p
p−1

r
1

p−1
k

(
∑Nk

l=1 bp
kl

) 1
p−1

(148)

This is just the expression of the weight claimed in the theorem. From the expres-
sion (147) it is seen that the penalty term λ has the form

λ
1

p−1 =
1
a

, (149)

or
λ =

1
ap−1 (150)

Thus the first order derivative is

∂F
∂wi

=
pri

(E(bi)Ni)p wp−1
i

Ni

∑
j=1

bp
ij

− 1⎛
⎝∑m

k=1
∑

Nk
l=1 bkl)

p
p−1

r
1

p−1
k

(
∑

Nk
l=1 bp

kl

) 1
p−1

⎞
⎠

p−1 . (151)
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The right hand side term after minus sign does not depend on the weight, and so
the second order derivative is

∂2F
∂w2

i
=

(p − 1)pri

(∑Ni
j=1 bij)p

wp−2
i

Ni

∑
j=1

bp
ij < 0, (152)

when 0 < p < 1. In that condition, F is concave with respect to the weights wi,
and the optimal solution is unique. That completes the proof. Q.E.D.

As a special case, let us consider p = 1
2 in (142). That leads to a square root

pricing model, and to the optimal solution

wi =
r2
i

(
∑Ni

j=1 b
1
2
ij

)2

∑Ni
j=1 bij ∑m

k=1

r2
k

(
∑

Nk
l=1 b

1
2
kl

)2

∑
Nk
l=1 bkl

. (153)

From this expression it is noticed that it is more cost-effective to allocate
more bandwidth to those classes having larger price factor ri. In addition, be-
cause the parameters ri are positive for all classes, all classes obtain service. Call
Admission Control (CAC) mechanism can be made by simple hypothesis testing
without any assumptions about call or dropping rates. CAC is performed only in
the connection level. In hypothesis testing, revenue formula is applied as

F(t) = F[Ni(t)] (154)

F̃(t + 1) = F[Ni(t + 1)] (155)

where the number of connections at time t is Ni(t), t = 1, . . . and the new hy-
pothetical number of connections at the time t + 1 be Ñi(t + 1), t = 1, . . ., when
one or several connections appear in some class/classes. If F(t) > F̃(t + 1), then
the connection is rejected, otherwise it is accepted. The mean bandwidth of all
classes can be guaranteed by the following mechanism. From (133) and (153) an
expression for the bandwidth of connection j in class i at time t is obtained

Bij(t) =
bijr2

i

(
∑

Ni(t)
l=1 b

1
2
il

)2

(
∑

Ni(t)
l=1 bil

)2
∑m

k=1

r2
k

(
∑

Nk(t)
l=1 b

1
2
kl

)2

∑
Nk(t)
l=1 bkl

(156)

The new hypothetical bandwidth at time t + 1 is

Bij(t + 1) =
bijr2

i

(
∑Ni(t+1)

l=1 b
1
2
il

)2

(
∑

Ni(t+1)
l=1 bil

)2
∑m

k=1

r2
k

(
∑

Nk(t+1)
l=1 b

1
2
kl

)2

∑
Nk(t+1)
l=1 bkl

. (157)
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So, if Bi
lim is the guaranteed mean bandwidth for class i, then the CAC mechanism

rejects the connection if F(t) > F̃(t + 1) OR

1
Ni(t + 1)

Ni(t+1)

∑
j=1

Bij(t + 1) < Bi
lim, (158)

for any i = 1, . . . , m, otherwise it is accepted.
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Experiments

In this section we demonstrate by simulation the operation of the square root
pricing algorithm (i.e. p = 1

2 in (142)) with the optimal weights (153) and com-
pare it with a constant weight (w1 = 1/2, w2 = 1/3 and w3 = 1/6) version of the
algorithm. The number of classes is m = 3 (i.e. gold, silver and bronze, which are
described by subindexes 1,2 and 3, respectively). The connections in the different
service classes have different average data packet sizes E(b1) = 50, E(b2) = 25
and E(b3) = 10 with a standard deviation of 1 (i.e. in a specific service class
the connections have similar demand for bandwidth). The processing time of the
server is chosen as T = 1/1000 s/kbyte. The life time of a connection (i.e. the
time the connection is served and has packets in the queue) is exponentially dis-
tributed and weighted by the connection’s packet size. The arrival rates of the
connections are Poisson distributed. The connection rates per unit time for the
gold, silver, and bronze classes are α1 = 0.30, α2 = 0.40 and α3 = 0.50, respec-
tively. Therefore, customers’ demand depends on the charging in such a way that
for gold class, there are least connections, while for bronze class, there are most
connections. The duration parameters (i.e. "decay rates") for the connections are
β1 = 0.3, β2 = 0.15 and β3 = 0.03, where the probability density functions for the
durations are

pi(t) = βie
−βit, , i = 1, 2, 3 t ≥ 0. (159)

The number of unit times in the experiments was τ = 2000. In the experiments
the gold, silver and bronze classes have gain factors r1 = 400, r2 = 200 and
r3 = 50, respectively.

Experiment 1. In this experiment, the CAC mechanism described by (154)
and (155) is used to limit the service of the scheduler. Figs. 35 and 36 represent
the mean bandwidths for constant and adaptive weight version of the algorithm,
respectively. The adaptive weights (and thus the different gain factors ri) guar-
antee better bit rate for the gold class, but limit the access of some connections to
achieve this.

From Figs. 37 and 38 it is seen that with the constant weights the number
of connections is greater than with adaptive weights as the adaptive weight al-
gorithm is guarantying optimal revenue and good throughput to higher classes.

From Fig. 39 it is seen that the revenues are close, with the adaptive weight
revenue being slightly greater than the constant weight revenue, even though
there is more connections with the constant weight version. The mean of the
revenues are 3005.6 and 3050.9 for constant and adaptive weights, respectively.

Experiment 2. In this experiment, the CAC mechanism is omitted, so a same
number of connections is accepted in both cases (Figs. 40 and 41).

Now the difference in the revenues is greater to the benefit of the adaptive
weight algorithm (Fig. 42) than in the first experiment (Fig. 39). The mean of the
revenues are 3686.2 and 3963.0 for constant and adaptive weights, respectively. If
we compare Figs. 39 and 42 we see that the moments when the constant weight
revenue is greater in Fig. 39 is due that there are more connections than with
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adaptive weights.
The mean bandwidths (Figs. 43 and 44) are similar to those in the first ex-

periment, i.e. the adaptive weights guarantee better bit rate for the gold class.
Experiment 3. In this experiment, the CAC mechanism is accompanied by

an additional guarantee (158) that the mean bandwidth of for each class does not
decrease under a specified limit. In this experiments the limits were 15, 3 and
0.1 kB, for the gold, silver and bronze classes, respectively. With these values,
the bandwidth limit for the gold class is restricting the access of new connections
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FIGURE 35 Constant weights - Evolution of the mean bandwidths as a function of time
in the first experiment.
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FIGURE 36 Adaptive weights - Evolution of the mean bandwidths as a function of time
in the first experiment.



113

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

Time

Nu
mb

er
 of

 co
nn

ec
tio

ns

Bronze 

Silver 

Gold 

FIGURE 37 Constant weights - Evolution of the number of connections as a function of
time in the first experiment.
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FIGURE 38 Adaptive weights - Evolution of the number of connections as a function of
time in the first experiment.

(Figs. 45 and 46).
Now, the constant weight algorithm restricts access for the users in the gold

class (Fig. 47), but the adaptive weight algorithm grants access to the gold class
customers and restricts service from the bronze class customers (Fig. 48). This
is a very plausible result as now the CAC with the adaptive weight algorithm
favors the connections in the gold class, guarantees a minimum bandwidth for
the connections and also provides optimal revenue, although it is smaller then in
the previous experiments as because of the bandwidth limits more connections
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are rejected in this experiment.
The revenues for the constant and adaptive weight algorithms are seen in

Fig. 49. In this experiment the mean of the revenues are 2652.1 and 2970.7 for
constant and adaptive weights, respectively.

These kinds of results give valuable information on tuning the model, be-
tween the use of bandwidth limits and the gain factors. The network operator
might e.g. want a best effort class to be available to the users. Then, it would
be possible to use the minimum bandwidth requirements for the gold and silver
classes, while the bronze class would have no guarantee on the obtained band-
width. With the price factors the operator can favor some class to perhaps influ-
ence the customers to change between classes, thus optimizing the use of network
resources.

Discussion

In this section, we discuss the algorithm from the point of view of theory and
experiments, as well as implementation and computational complexity.

Theory and experiments

The conclusions shown by theory and experiments are:

• In the polynomial pricing scenario, we have derived analytic form to the
revenue and the weights wi, which allocate data traffic to the connections of
different service classes.

• The updating procedure is deterministic and nonparametric i.e. it does not
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FIGURE 39 Evolution of the revenue F with constant and adaptive weights, as a func-
tion of time in the first experiment.
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FIGURE 40 Constant weights - Evolution of the number of connections as a function of
time in the second experiment.
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FIGURE 41 Adaptive weights - Evolution of the number of connections as a function of
time in the second experiment.

make any assumptions of the statistical behavior of the traffic and connec-
tions. Thus it is robust against erroneous models.

• Algorithm is unique and optimal, which has been theoretically proved by
Lagrangian optimization method.

• Closed form solution makes algorithm quite simple.

• Minimum bandwidth can be guaranteed in call admission mechanism by
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adding a specific constraint to the updating rule. In the experiments, band-
widths always stay above the minimum limits.

• When the gain pricing factors ri are high, the corresponding connections
obtain more bandwidth.

• Because all gain factors ri are positive, all classes obtain service in fair way.

• Algorithm outperforms the fixed weight algorithm in the sense that it gives
larger revenue.

• Mechanism with no CAC performs well. It is temptating from the point of
the customers, because the assumption in telephones, Internet etc. is that
all requests are accepted.

• Concave pricing scenario has a load balancing feature. To show this, consider
e.g. the square root pricing function

√
B. B denotes bandwidth. Price paid

for 1 Mbit/second is 1 unit of money/second. This corresponds to the case
where the network is highly loaded. When e.g. 30 Mbits are transferred,
total time is 30 seconds, and the price is 30 units of money. On the other
hand, price paid for 5 Mbits/second is 2.24 units of money/second. This
corresponds to the case where the network is low loaded - say at night.
When 30 Mbits are transferred, total time is 6 seconds, and the price is 13.44
units of money. Therefore, it is cost-effective from the point of view of the
customers to use the network, when it is low loaded. This effect balances
the load.
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FIGURE 42 Evolution of the revenue F with constant and adaptive weights, as a func-
tion of time in the second experiment.
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FIGURE 43 Constant weights - Evolution of the mean bandwidths as a function of time
in the second experiment.
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FIGURE 44 Adaptive weights - Evolution of the mean bandwidths as a function of time
in the second experiment.

Implementation Issues

One possible implementation target of the proposed model are the edge routers
of the DiffServ architecture [16]. In this case, all major adaptive issues will be
implemented at the edge of a domain. Unlike the core routers, the edge routers
have the per-flow information that enables them to perform classification and
policing. Since data about each traffic flow is available, it is more convenient to
perform the adaptive resource allocation in this part of a DiffServ domain. In
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this framework, the core routers could remain intact and are not overburdened
with additional adaptive software that might slow the packet forwarding process.
Moreover, such an approach fits into the original idea of the DiffServ technology,
which states that the edge routers perform sophisticated functions, while the core
routers perform only simple forwarding. In the proposed adaptive framework,
the key role of the adaptive egress routers is to control the amount of traffic in-
jected into a DiffServ domain. By tracking the number of active data flows and
their QoS parameters, the adaptive edge routers can optimally allocate the output
bandwidth between the different traffic aggregates. Of course, this solution does
not diminish the use of other adaptive solutions that could be implemented in the
core routers to provide finer resource allocation and to achieve better utilization
[167].

Computational Complexity

Let us consider the computational complexity of updating the weights (143).
They can be updated in connection level, instead of packet level. The evaluation of
the numerator of wi needs two multiplications and one power calculation. Com-
putation of the denominator needs about O(Ni) + O(m) operations. When m is
small - say three (gold, silver, bronze) - the total number of calculations of the sum

∑m
j=1(·) remains quite small. The dominating procedure is to calculate ∑

Nj
j=1(·),

since the number of connections may be large in all the classes. Thus the conse-
quence is that the updating of all the weights need about O(∑m

i=1 Ni) operations.
Therefore, it is important that they are updated only when connection appears
or disappears. However, when the number of connections is small, even packet
level updating might be possible; or e.g. one updating per five packets. Practi-
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FIGURE 45 Constant weights - Evolution of the mean bandwidths as a function of time
in the third experiment.
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FIGURE 46 Adaptive weights - Evolution of the mean bandwidths as a function of time
in the third experiment.

cal implementation determines the updating strategy, and it is open topic in this
work.

Conclusions

In this section, we presented an adaptive algorithm for optimizing the network
operator revenue and for ensuring bandwidth as a Quality of Service (QoS) re-
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FIGURE 47 Constant weights - Evolution of the number of connections as a function of
time in the third experiment.
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quirement. We derived the closed form algorithm from a revenue-based opti-
mization problem. The proposed weight updating algorithm was found to be
computationally inexpensive in our scope of study. In the experiments we sim-
ulated the operation of the adaptive algorithm and compared it with a constant
weight version of the same algorithm. The obtained results show that by us-
ing the adaptive weights the revenue is larger than with the constant weights.
Also, the revenue is maximized while ensuring that the gold class customers get
most of the bandwidth, while bronze class customers get least of the bandwidth.
Our algorithm is deterministic and non-parametric, and thus we believe that in
practical environments it is a competitive candidate due to its robustness. Most
important conclusion is that we have combined bandwidth allocation, weight updating,
pricing, and revenue maximization in a unique manner.

Computational Complexity

2.3.11 General algorithm for scheduling

Here we present very general approach for QoS scheduling approach with some
questions and analysis.

In our scenario, there are several service classes for communications net-
work services. Price paid by the customers depends directly on the QoS param-
eters like delay, bit rate etc. Thus it can vary in real time on the contrary to the
classical approach where price is constant. We try to maximize the revenue of
the service provider while still giving fair service to the customers. Thus this ap-
proach is tempting both from the point of view of service provider and customers.
Consider the packet scheduler for two service classes. Gold class customers pay
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FIGURE 48 Adaptive weights - Evolution of the number of connections as a function of
time in the third experiment.
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FIGURE 49 Evolution of the revenue F with constant and adaptive weights, as a func-
tion of time in the third experiment.

most of money while getting best service, and silver class pay less of money.
Weights wi determine how long time each queue is served. Natural constraint for
the weights is

m

∑
i=1

wi = 1 (160)

Weights wi have an influence to the QoS parameters, like delay di and bandwidth
(bit rate) Bi. Price function is

f = f (d1, ..., dm, B1, ..., Bm) (161)

Delays and bit rates depend on the weights:

di = di(wi) (162)

Bi = Bi(wi) (163)

Therefore
f = f (w1, ..., wm) (164)

Because delay decreases with respect to wi and bit rate increases with respect to
wi, then f (wi) is increasing with respect to wi. Pricing function f (wi) is strictly
concave. (For example, bit rate is 1000 bit/sec for moving image and 1 bit/sec for
text message, and price is 5 units for moving image and 1 units for text message.
Then price is concave.) Then we can conclude that

∂ f
∂wi

> 0, (165)

∂2 f
∂w2

i
< 0. (166)
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Revenue is Lagrangian problem

R = Revenue = f (w1, ..., wm) + λ(1 −
m

∑
i=1

wi) (167)

Question 1: In what condition we obtain the closed form solution?
For example:

f (wi) =
m

∑
i=1

aiw
p
i (168)

has closed form solution. Proof is based on the Kuhn-Tucker conditions, which
we will give here.

Revenue has the form

R =
m

∑
i=1

aiw
p
i + λ(1 −

m

∑
i=1

wi) (169)

Then derivatives are as follows:

∂R
∂wi

= paiw
p−1
i − λ = 0, (170)

from which follows that
λ = paiw

p−1
i (171)

On the other hand
∂R
∂λ

= 0 (172)

yields
m

∑
i=1

wi = 1. (173)

To proceed:

wi =
λ

1
p−1

(pai)
1

p−1
(174)

Then

wi =
λ

1
p−1

(pai)
1

p−1 ∑m
k=1 wk

=
λ

1
p−1

(pai)
1

p−1 ∑m
k=1

λ
1

p−1

(pak)
1

p−1

=
∑m

k=1
1

(pak)
1

p−1

(pai)
1

p−1
. (175)

This is the closed form for the weights, and it is fast to implement.
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To study uniqueness and optimality of the solution, let us consider the sec-
ond order derivative of R. It has the form (notice that the penalty term λ is not a
function of the weights wi)

∂2R
∂w2

i
= p(p − 1)aiw

p−2
i < 0, (176)

when ai > 0 and 0 < p < 1. But this proves that the solution is globally optimal,
when the pricing function is increasing and strictly concave.

Next we consider the case of the solution, where closed form optimal ap-
proach is not possible to achieve. Let us consider the gradient of the revenue.

∂R
∂wi

=
∂ f
∂wi

− λ (177)

Then
λ =

∂ f
∂wi

(178)

So

λ = λ
m

∑
i=1

wi =
m

∑
i=1

λwi =
m

∑
i=1

∂ f
∂wi

wi (179)

Then the first order derivative of the revenue is

∂R
∂wi

=
∂ f
∂wi

−
m

∑
k=1

∂ f
∂wk

wk (180)

Let us check the uniqueness of the solution. The second orde derivative of the
revenue is

∂2R
∂w2

i
=

∂2 f
∂w2

i
− ∂2 f

∂w2
i
wi − ∂ f

∂wi

=
∂2 f
∂w2

i
(1 − wi) − ∂ f

∂wi
< 0, (181)

when
∂2 f
∂w2

i
< 0, (182)

0 < wi < 1, (183)
∂ f
∂wi

> 0. (184)

Thus the solution is globally optimal in the gradient updating rule.
Because gradient shows the direction of largest increase of the function R

with respect to the variables wi, the weights are updated according to the gradient
algorithm. During one iteration step, weights are updated according to the rule

1. Update weights

vi(t) = wi(t) + μ
∂R(N1(t), . . . , Nm(t), wi)

∂wi

∣∣∣∣
wi=wi(t)

. (185)
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2. Perform scaling

wi(t + 1) =
vi(t)

∑m
j=1 vi(t)

. (186)

Here t denotes time, and Ni(t) shows that the number of connections vary as a
function of time. Parameter μ is a forgetting factor, which is either constant or
depend inversely on the norm of the gradient. It ensures time-varying nature of
the weights due to the nonstationary data traffic.

Example. Let us show an example for this kind of approach. Let the pricing
function be linear with respect to the delays, and square root with respect to the
bit rate. Then, by simplifying the notation, we can present the revenue as follows:

R =
m

∑
i=1

aiw
−1
i + 2

m

∑
i=1

biw
1
2
i + λ(1 −

m

∑
i=1

wi) (187)

Here the parameters ai and bi denote pricing factors corresponding to the delays
and bit rates, respectively. Then

∂R
∂wi

= − ai

w2
i

+
bi

w
1
2
i

−
m

∑
k=1

(
− ak

wk
+ bkw

1
2
k

)
. (188)

Question 2: What is the general solution of the general pricing approach?
General solution for (167) is

wi =
∂ f
∂wi

wi

∑k
∂ f
∂wi

wi

(189)

Here we give the derivation of that claim.
Derivative with respect to the weights in the multinode case is

∂R
∂wij

=
∂ f

∂wij
− λi = 0. (190)

Then

λi = λi ∑
j

wij = ∑
j

λiwij = ∑
j

∂ f
∂wij

wij. (191)

Thus derivative of the revenue is

∂R
∂wij

=
∂ f

∂wij
−∑

k

∂ f
∂wik

wik. (192)

Let us verify the derivative by direct substitution. Substitute Eq. (191) into Eq.
(??). Then we obtain

R = f + ∑
s

∑
k

∂ f
∂wsk

wsk(1 − ∑
l

wsl), (193)



125

and remember the constraint (??). Then we obtain

∂R
∂wij

=
∂ f

∂wij

+ ∑
s

∑
k

∂2 f
∂wij∂wsk

wsk

+
∂ f

∂wij

− ∑
s

∑
k

∂2 f
∂wij∂wsk

wsk ∑
l

wsl

− ∂ f
∂wij

∑
l

wil

− ∑
k

∂ f
∂wik

wik

=
∂ f

∂wij
−∑

k

∂ f
∂wik

wik. (194)

But this is the same as (192), when {∑i wi = 1}.
General solution is derived as follows:

∂R
∂wij

=
∂ f

∂wij
− ∑

k

∂ f
∂wik

wik = 0 (195)

∂ f
∂wij

wij

wij
= ∑

k

∂ f
∂wik

wik (196)

wij =
∂ f

∂wij
wij

∑k
∂ f

∂wik
wik

(197)

Notice from Eq. (198), that it scales automatically the weights, i.e. ∑j wij = 1.
The algorithm for updating the weights is as follows. Update weights

vij(t) =
∂ f

∂wij
wij

∑k
∂ f

∂wik
wik

∣∣∣∣∣∣
wi=wi(t)

(198)

Question 3: In what general conditions this is a fixed point rule? This is an open
question. Question 4: What is the speed of convergence of the fixed point algo-
rithm? This is an open question, and it may be very hard to solve in the general
case.

Question 5: What is the natural gradient algorithm for maximizing (167).
When a parameter space has a certain underlying structure, the ordinary gradi-
ent of a function does not represent its steepest direction, but the natural gra-
dient does. Information geometry is used for calculating the natural gradients
in the parameter space of perceptrons, the space of matrices (for blind source
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TABLE 1 Number of constraints for the adaptive models.
Class of

schedulers
Number of the upper constraints

no maximum

FQ m + 1 2m + 1

RR
m 2m

2m − 1 3m − 1

separation), and the space of linear dynamical systems (for blind source decon-
volution). The dynamical behavior of natural gradient on-line learning can be
proved to be Fisher efficient, implying that it has asymptotically the same per-
formance as the optimal batch estimation of parameters. This suggests that the
plateau phenomenon which appears in the backpropagation learning algorithm
of multilayer perceptrons might disappear or might be not so serious when the
natural gradient is used. Adaptive methods of updating the learning rate have
been proposed and analyzed in the literature.

2.4 Computational complexity

The computational complexity is an important issue in the context of the pre-
sented adaptive models and in the context of the QoS networks. As a router
should run the adaptive model every time the input parameters change, it is
important that the model is fast and does not consume a significant amount of
computational resources. Otherwise, rather than sending packets, the router will
solve the optimization tasks.

Since most optimization tasks are solved using iterative methods, it is possi-
ble to express the complexity of the adaptive models by the number of iterations.
Unfortunately, there is no simple formula that can estimate it. Depending on the
used method and the type of constraints, the number of iterations differs. How-
ever, it is known that for the simplex method the worst-case number of iterations
is 2m−1, where m is the number of variables. It gives quite reasonable results
even for the DiffServ framework, in which there can be six service classes.7 Be-
sides, in practice, the number of iterations is less. It depends on the number of
constraints and their type. In the case of the adaptive model that runs on the top
of the WFQ scheduler, there are m+1 constraints, each of which is of a simple
form. In the case of the WRR and DRR schedulers, there are m constraints. In
the LLQ mode, the number of constraints is 2m−1. If the upper constraints are
present, the overall number of constraints increases appropriately. Table 1 sum-
marizes the number of constraints for each class of schedulers. Note that the RR
schedulers can work either in the normal or in the LLQ mode.

As follows from the table, the number of constraints is almost the same for

7 The six bit DSCP value can encode up to 64 classes. However, at the moment the IETF has
standardized only six of them: EF, AF that includes four subclasses, and BE.
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all schedulers when only the bandwidth guarantees must be provided. However,
if there are the delay guarantees and the upper constraints, then the RR sched-
ulers have the larger number of constraints. Furthermore, the adaptive models
for the WRR and DRR schedulers are ILP problems, and there is no general worst-
case estimation for such optimization problems. So, as a part of simulation, we
will present the maximum number of iterations it takes each adaptive model to
find the optimal solution.

It is interesting to note that while WFQ is the most demanding in imple-
mentation among the other considered queuing disciplines, the adaptive model
for WFQ is the simplest one. So, there is a tradeoff between the complicated
scheduler and the complicated adaptive model. It is a challenging issue that can
be exploited to achieve optimal functioning in a certain environment.

2.5 Implementation requirements

The presence of the adaptive models requires that the schedulers apply new
weight values as soon as possible. Otherwise, if the scheduler continues to work
with the old parameters, it may impact the accuracy of the QoS provisioning. It
should be noted that it is not a big issue for the bandwidth guarantees. However,
if the scheduler also has to provide the delay guarantees, then failing to update
working parameters in time may cause bigger queuing delays.

The task of applying new weight values can be thought of as a two-stage
process. First, the adaptive model passes new values to the kernel of the oper-
ating system, in which the scheduling disciplines are implemented. Secondly,
the scheduler starts to use them. For practical reasons, it is almost impossible
to control the first stage as it depends on the design of the concrete operating
system. However, by introducing small changes into the implementation of the
schedulers, it is possible to reduce the time it takes new weight values to take
effect.

The WFQ scheduler calculates the virtual finishing time of a packet based
on the weight value and the list of active sessions, which is just a sum of the
weights of active queues. This list is updated every time a packet arrives or leaves
the scheduler. Thus, WFQ always works with the latest parameters set by the
adaptive model and there is no need to change something in its behaviour.

0 DC−
i Qi

� DC+
i

FIGURE 50 Deficit counter update procedure.

The original implementation of the DRR scheduler assumes that the deficit
counters are updated only at the end of a round, which works fine for the static
configuration. However, such a behaviour is unacceptable for the case when the
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FIGURE 51 Deficit counter update procedure.

quantum values change all the time since they take effect only when all queues
are served. Thus, it is proposed to update the deficit counter of a queue not at
the of end a round, but after a queue has been served. It should be noted that
this modification has no effect in the normal mode. However, in the LLQ mode,
it allows to update the quantum value of the LLQ as soon as possible. Another
modification of the DRR scheduler concerns the way the deficit counter is up-
dated. Originally, it has been proposed to initialize it with the quantum value and
then subtract the size of each transmitted packet. Then, the deficit counter is com-
pared to 0. Such an approach fails to take into account the fact that the quantum
value may change after the deficit counter has been initialized. Thus, to achieve
more accurate resource allocation, it is proposed to initialize the deficit counter
with 0, and then add the size of a transmitted packet. In this case, the deficit
counter is compared to the quantum value. If the quantum value changes when
a queue is served, it will be detected by the next comparison operation. Fig. 51
illustrates the difference between the original and the proposed implementation,
where DC+

i stands for the value of the deficit counter at the beginning of a round,
while DC−

i is value of the deficit counter at the end. The arrow specifies the way
the deficit counter changes as the DRR scheduler outputs packets.

The same concerns the WRR scheduler. Each queue must have a counter
of the transmitted packets that is initialized to 0 and incremented by one after a
packet has been served. If this counter equals the weight value associated with a
queue, the next queue is served.

2.6 Adaptive router

Fig. 52 presents the structure of a router that implements the adaptive model.
As follows from this figure, the structure does not undergo significant changes.
Along with standard components, such as the packet classifier, set of queues, and
a scheduler, there is a new module that is responsible for calculating parameters
of the underlying scheduling discipline. Hence, this component will be referred
to as the Dynamic Service Weight (DSW) calculator. It takes the configuration
parameters, such as the number of active flows within each class and their QoS
requirements, and calculates the optimal weight values that are sent to the sched-
uler. It is noticeable that the DSW calculator is decoupled from the scheduler.
As a result, the complexity of the scheduler is not increased, and these two mod-
ules can function independently based on their settings. Practically, the adaptive
model would be implemented as a system process running in the user space,
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FIGURE 52 Structure of the adaptive router.

while the kernel of the operating system makes the scheduling decisions.
In the case of the adaptive model for the WRR scheduler, the mean, max-

imum, and minimum packet sizes are necessary. Though an administrator can
specify these values manually, more accurate results will be achieved if a router
updates this value [76]. This additional functionality can be implemented in the
classifier as the latter examines the contents of a packet to put it into an appropri-
ate queue.

The adaptive models are irrespective of the way the router obtains the QoS
information concerning the data flows. Instead, the QoS signalling and configu-
ration mechanisms are governed by a concrete QoS framework used by a provi-
der. Section 4 considers the major QoS frameworks and their integration with the
adaptive models.

2.7 Integration with other models

Measurement models

To achieve better allocation of resources, it is possible measure the effective pa-
rameters and adjust the QoS requirements sent by a user. For instance, by mea-
suring the burstiness of the incoming flows, one can improve the estimation of the
worst-case queuing delay. The same can be done for the bandwidth. For instance,
if a certain flow requests 100 Kbps but the measurements show that it occupies
only 80 Kbps, then we can allocate less resources thus providing resources for the
more expensive one. The measurement models are very useful add-ons to the
adaptive models since they can increase the total revenue.

The integration of the measurement models with the adaptive resource allo-
cation seems to be quite straightforward. As the model detects that less resources
can be allotted to a specific flow and/or service class, new QoS requirements are
constructed and the adaptive models are rerun.

Pricing models

As mentioned earlier, we have assumed that the service prices are constant and
do not change in the course of time. However, pricing of network services may
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depend on various external parameters, such as time of the day, network state,
request bandwidth etc. The congestion-dependent pricing has been presented in
[118]. In [157], it is proposed to set prices based on the level of service usage and
congestion. Adaptive users adapt to price changes by adjusting their sending rate
or selecting a different service class. A similar approach is described in [20] where
user applications and the network negotiate continuously the price based on the
requested QoS guarantees. In [53], a distributed flow control technique has been
proposed that is based on microeconomics. Switches price their link bandwidth
based on supply and demand, and users purchase bandwidth so as to maximize
their QoS.

The integration of the adaptive resource sharing with the pricing models is
quite simple. As these models determine new prices, they can be passed to the
models in the same way as the new QoS parameters are set.

2.8 Summary

In this chapter, the adaptive models for the WFQ, WRR, and DRR scheduling
disciplines have been presented. The models are per se the optimization tasks
that work as a superstructure over the considered scheduling disciplines. They
use the prices for network services to find the optimal scheduler configuration
that enables a provider to increase the total revenue. It has been shown that the
model for WFQ can be changed easily to support other FQ disciplines, while the
models for WRR and DRR reflect the basic properties of the RR schedulers.

To achieve small queuing delay in the RR schedulers, the LLQ has been
introduced. When it works in the alternate priority mode, it serves the delay crit-
ical queue in between other queues. For this mode, this chapter has presented a
new worst-case delay estimation that differs from the ones presented in [145] and
[83]. To support the adaptive resource sharing, it has been proposed to introduce
several changes in the implementation of the DRR scheduler. First, the deficit
counter is updated not at the end of a round, but after a queue has been served.
Secondly, the deficit counter value moves from zero to the quantum value. By
this, a new implementation ensures that the DRR scheduler takes account of the
new quantum value for the queue even when that queue is being processed. Such
an implementation allows to avoid situations when the packets may experience
larger queuing delays.

The chapter has presented the theoretical analysis of the computational com-
plexity of the proposed adaptive models. It is anticipated that the model for WFQ
will be the fastest one, while the models for WRR and DRR will need more itera-
tions to the find the optimal solution.

The flexibility of the adaptive models allow them to be integrated easily
with other models, such as the measurement and pricing model. By this, a pro-
vider can achieve more optimal resource allocation. Furthermore, a provider can
modify the target function so that the adaptive models take other parameters into
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account. It is also worth mentioning that the adaptive models can be modified in
such a way, that the optimal weight values are calculated for the flows. It might
be necessary if the scheduler allocates resources on the per-flow basis and each
session corresponds to a flow, not a class. For these purposes, it is enough to
assume that i refers to the ith data flow and substitute Bf

i to Bf
i Ni in all the QoS

constraints. The same is for the burst size. However, as considered in sections
2.1.2 and 2.3.2, the allocation of resources on the per-flow basis may lead to the
increased load on the scheduler if the number of sessions is huge.



3 STOCHASTIC ANALYSIS OF UPPER DELAY
BOUND OF GPS- BASED PACKETIZED FAIR
QUEUING ALGORITHMS

The provision of Quality-of-Service (QoS) guarantees such as bandwidth, delay,
jitter and cell loss to applications with widely different characteristics is a primary
objective in the design of next-generation networks. One important issue in the
provision of QoS guarantees is the study of the queueing algorithms employed
at network nodes. Among the queuing algorithms that have been proposed, the
class of algorithms which aim at approximating the Generalized Processor Shar-
ing (GPS) policy are most popular. GPS [114, 115] is an idealized fluid discipline
with a number of very desirable properties: (i) it provides minimum QoS guar-
antees to each traffic session 1, regardless of the behavior of other sessions; (ii)
it provides the deterministic worse-case delay bound to each session whose traf-
fics are leaky-bucket constrained; and (iii) it ensures fairness in the amount of
service provided by a network node to competing sessions. Since this policy is
a fluid model, it is not adapted for packet-by-packet transmission. Therefore, its
packet-based extensions that we call GPS-based Fair Queueing algorithms have
been proposed, well-known examples of which include Weighted Fair Queuing
(WFQ) [44, 114], Self-Clocked Fair Queuing (SCFQ) [58], Frame-based Fair Queu-
ing (FFQ) [149] and Starting Potential-based Fair Queuing (SPFQ) [149].

A significant volume of work in the literature [44, 114, 58, 59, 62, 148, 149, 33]
has been concerned with evaluating the deterministic worst-case delay guaran-
tees that GPS-based Fair Queueing (FQ) algorithms can provide when the bursti-
ness of the traffic feeding them is bounded (mostly shaped by a leaky bucket).
However, little work has been reported on analyzing the stochastic delay bounds
of such packetized policies under a general probabilistic traffic model. This has
been mainly due to the difficulty of stochastically modelling the complex behav-
ior of a GPS-based FQ algorithm. Indeed an important advantage of stochastic

1 in this Chapter and publication [177], the notion of session actually means the aggregate
of packet streams which require the same QoS level and thus it is exchangeable with the
notion of service class.



133

modelling of FQ systems as compared to worst-case deterministic analysis is that
statistical analysis takes into account the actual dynamics of the packet arrival
process, thus being more accurate in predicting the QoS guarantees provided to
each traffic session and also being able to derive more efficient revenue-aware
resource allocation scheme for maximizing SLA revenues in a network node de-
ploying GPS-based FQ algorithms.

Zhang et al [174] studied the statistical behavior of GPS discipline using
exponentially bounded burstiness processes [170] as the session source traffic
model and derived upper bounds on the tail distributions of session backlog
and delay. However, no simulation results were provided to verify the quality
of those bounds. Pekergin [121] derived stochastic bounds on the delay distri-
bution of GPS-related FQ algorithms fed by a Switched Bernoulli Batch process.
The analysis in [121] is quite complex and does not result in explicit analytical
equations, thus limiting its usefulness for back-of-the-envelope calculations and
comparisons. The analysis also makes some limiting assumptions such as the use
of fixed packet lengths and the need to set all sessions other than the tagged one
to be greedy all the time. M. Hawa et al used the bounded fairness criterion of FQ
algorithms to derive the upper and lower bounds on mean packet delay of those
algorithms under Poisson arrivals [68]. However, the analysis in [68] assumes
that all sessions have the exact same packet length distribution, which limits its
application scope.

In publication [177], we extend the notion of feasible partition introduced by
Zhang et al [174] for the analysis of idealized GPS discipline and apply it to the
stochastic bound analysis of GPS-based FQ algorithms. With the help of this no-
tion, we derive our new upper bound on mean packet delay under the general
probabilistic traffic model of Poisson arrivals and any general packet length dis-
tribution. The resulted upper bound is much simpler and tighter than the ones
by M. Hawa et al [68]. Moreover, it fits a class of GPS-based FQ algorithms in-
cluding WFQ, SCFQ and SPFQ, which aims at approximating GPS discipline and
thus validate the notion of feasible partition. Finally, in this Chapter our new up-
per bound on mean packet delay is utilized to derive the suboptimal resource
allocation scheme under a given amount of network resources and flat pricing
strategy for maximizing SLA revenues in a network node deploying a GPS-based
packetized FQ algorithm.

3.1 Upper Bound on Mean Packet Delay of GPS-based Packetized
FQ Algorithms

Consider a single-server GPS-based FQ system with capacity C bits/s, which
multiplexes N sessions with Poisson arrival rates λ1, λ2, ..., λN (packets/s). In the
FQ system, each session has its own queue. Assume that the queues correspond-
ing to different sessions are infinite in length and the packets in the same queue
are served in the order they arrive. We use Li to denote session i packet length
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FIGURE 53 Decomposition of a GPS-based FQ system.

(in bits). As mentioned above, the distribution of Li can be any general distribu-
tion and L̄i is used to denote session i mean packet length, i.e., E[Li ] = L̄i. As
a necessary stability condition, ∑N

i=1 λi L̄i < C is required. Furthermore, the ser-
vice weight wi determines the minimum guaranteed share of capacity assigned
to session i when session i is backlogged. Obviously, ∑N

i=1 wi = 1 and 0 < wi ≤ 1,
i ∈ [1, N].

Let N= {1, 2, ..., N}. In publication [177], first a sequence of disjoint sets,
H= {Hk}1≤k≤m, where m ≥ 1 and H1 ∪ · · · ∪ Hm = {1, 2, ..., N}, is defined as
the feasible partition of N with respect to the given sets of arrival rates {λi L̄i}i∈N
(bits/s) and service weights {wi}i∈N . Then, using the decomposition approach in-
troduced in [174], the above GPS-based FQ system can be analyzed through a set
of N separate single-queue systems, each of which has a dedicated server with
capacity ci (referred to as the virtual decomposed system) (see Figure 53).

Let Xi = Li/(wiC) denote the service time of session i packets in the cor-
responding virtual decomposed system where a dedicated server with capacity
ci = wiC serves session i packets and E[Xi] = X̄i and E[X2

i ] = X̄2
i . Moreover, the

mean delay of session i packets in the FQ system is denoted by d̄i, which equals
the mean waiting time in queue plus the mean service time. Publication [177] de-
rives the following upper bound on mean packet delay d̄i as long as λi L̄i < wiC
(i.e., session i in the GPS-based FQ system is a session in H1):

d̄i ≤ X̄i +
λiX̄2

i
2(1 − λiX̄i)

. (199)
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It can be noticed that the above upper bound on mean packet delay is de-
rived under the general probabilistic traffic model of Poisson arrivals and any
general packet length distribution. Moreover, the simulation results in Publica-
tion [177] demonstrates that the derived upper bound is much tighter than the
ones by M. Hawa et al [68] and it fits a class of GPS-based packetized FQ algo-
rithms including WFQ [44, 114], SCFQ [58] and SPFQ [149].

3.2 Revenue-aware resource allocation scheme in a GPS-based net-
work node under flat pricing strategy

Similarly, when mean packet delay is chosen as the QoS metric in a SLA, a network
server provider may receive SLA revenues or penalties in a GPS-based network
node based on the offered QoS (mean packet delay here) guarantees and the de-
ployed pricing strategy. In this part, the above upper bound on mean packet de-
lay in Eq. (199) is utilized to derive the revenue-aware resource allocation scheme
in a GPS-based network node under flat pricing strategy. Specifically, first the flat
pricing function which characterizes the flat pricing strategy is generally defined.
Then the suboptimal resource allocation scheme is presented for maximizing SLA
revenues in a GPS-based network node under flat pricing strategy, whose perfor-
mances are investigated in the following simulation part.

3.2.1 Flat pricing strategy

Consider the above GPS-based FQ system. As mean packet delay is deployed as
the QoS metric in the SLA, the flat pricing strategy for class 2 i is characterized by
the following definition of a flat pricing function.

Definition 3: The function

ri(d̄i) =
{

Ri if d̄i ≤ Di
−Pi if d̄i > Di

, i = 1, 2, ..., N (200)

is called the flat pricing function of class i, where Di is the QoS (mean packet delay)
guarantee requested by class i packets and Ri and Pi are both positive constants.
Obviously, the above flat pricing function specifies that if the real mean packet
delay of class i is less than Di, the network service provider receives a revenue
Ri, otherwise a penalty Pi is incurred for failing to meet that QoS guarantee Di.
Moreover, Ri ≥ Rj and Pi ≥ Pj should hold to ensure differentiated pricing if
class i has higher priority than class j, which are actually what we expect based
on the SLA requirement. Figure 54 presents a example of the flat pricing functions
of Gold, Silver and Bronze classes.
2 The notion of class is used instead of session hereafter in this Chapter as they are exchange-

able.
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FIGURE 54 The flat pricing functions of Gold, Silver and Bronze classes.

3.2.2 Suboptimal resource allocation scheme in a GPS-based network node
under flat pricing strategy

Consider a GPS-based network node with capacity C bits/s and a total of N ser-
vice classes supported. As the QoS metric in the SLA is mean packet delay, ob-
viously the SLA revenue F obtained in the GPS-based network node under one
charging period is defined as follows.

F =
N

∑
i=1

ri(d̄i). (201)

Based on the definition of flat pricing function in Eq.(200), it is clear that
if d̄i ≤ Di holds for each service class i ∈ [1, N], F achieves its maximum value
∑N

i=1 Ri. Since the mean packet delay of class i is bounded tightly by our derived
upper delay bound as long as λi L̄i < wiC, the problem of deriving the suboptimal
resource allocation scheme for maximizing F under flat pricing strategy can be
formulated as follows by linking parameter Di in the flat pricing function of class
i with the upper delay bound in Eq. (199).

Solve d̄i ≤ X̄i +
λiX̄2

i
2(1 − λi X̄i)

≤ Di (202)

s.t.
N

∑
i=1

wi ≤ 1, 0 < wi ≤ 1, (203)

wiC > λi L̄i. (204)

The formula of our upper delay bound in Eq. (199) is presented based on a
general packet length distribution. Below, we illustrate how to derive the subop-
timal resource allocation scheme by solving the right inequality in (202) under
some practical packet length distributions in IP networks. First, under expo-
nential packet length distribution, E[Li ] = L̄i and E[X2

i ] = 2(L̄i)2, resulting in
E[Xi ] = X̄i = L̄i/(wiC) and E[X2

i ] = X̄2
i = 2[L̄i/(wiC)]2. Substitute the above X̄i
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and X̄2
i into (202), then the right inequality in (202) becomes:

L̄i

wiC − λi L̄i
≤ Di

leading to the following solution under the exponential packet length distribu-
tion:

wi ≥ L̄i

C
(λi +

1
Di

), i = 1, 2, ..., N. (205)

That is to say that we should allocate at least the capacity of Ci,min = wi,minC =
L̄i(λi + 1/Di) to class i so that its mean packet delay can be guaranteed to be less
than Di during the charging period. As a result of the above solution to wi in
(205), we present the suboptimal resource allocation scheme for maximizing the
SLA revenue obtained in a GPS-based network node under a given amount of
network resources and flat pricing strategy as follows:

1. Set Ci,min = wi,minC = L̄i(λi + 1/Di), i=1,2,...,N,

2. If ∑N
i=1 Ci,min ≤ C, to reserve capacity Ci,min for any class i ∈ [1, N] is

the suboptimal resource allocation scheme in this case. By the suboptimal
scheme, the network service provider will receive the maximum SLA rev-
enue ∑N

i=1 Ri during one charging period under flat pricing strategy,

3. Otherwise, it means that the total capacity C of the GPS-based network node
is not enough to satisfy the reservation of capacity Ci,min for all the sup-
ported service classes. Hence, we should first guarantee the reservation of
capacity Ci,min for a set of selected service classes so that the obtained SLA
revenue is the highest in this situation. Then the remaining resources are
allocated to all the supported service classes other than the above selected
ones uniformly.

Note that the above set of selected service classes in Step 3 is acquired by the
comparison of the analytic SLA revenues under all possible resource allocation
schemes, which makes its calculation complexity increases quickly with larger
values of N. Hence, instead we may first reserve capacity C1,min for the highest
priority class, then reserve capacity C2,min for the second highest priority class
until the remaining capacity is not enough to satisfy the reservation of capacity
Ci,min for class i (we have assumed that class 1 is the highest priority class and
class N is the lowest one), which also tries to achieve the highest SLA revenue
in this case as the incurred penalty due to failing to meet the QoS guarantee of
higher class is larger.

For the network traffics which exhibit self-similarity nature, we use Bounded
Pareto to model the heavy-tailed distribution as used in [38]. In this Chapter,
BP(pi , qi, αi) is used to denote Bounded Pareto packet length distribution of class
i, where pi is the smallest length of class i packets, qi the largest (pi ≤ Li ≤ qi),
and αi the shape parameter. Then,
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FIGURE 55 Mean packet delay in the first simulation where exponential packet length
distribution is deployed.

E[Li ] = L̄i = αi p
αi
i (p1−αi

i − q1−αi
i )/[(αi − 1)(1− (pi/qi)αi)] and E[L2

i ] = L̄2
i =

αi p
αi
i (p2−αi

i − q2−αi
i )/[(αi − 2)(1− (pi/qi)αi)], resulting in E[Xi ] = X̄i = L̄i/(wiC),

E[X2
i ] = X̄2

i = L̄2
i /(wiC)2. Thus, the right inequality in (202) becomes as follows:

2L̄i(wiC − λi L̄i) + λi L̄2
i

2wiC(wiC − λi L̄i)
≤ Di

leading to the solution under the Bounded Pareto packet length distribution:

wi ≥
(1 + λiDi)L̄i +

√
[(1 + λiDi)L̄i ]2 − 2λiDi(2L̄i

2 − L̄2
i )

2DiC
, i = 1, 2, ..., N, (206)

i.e., Ci,min = wi,minC =
[
(1 + λiDi)L̄i +

√
[(1 + λiDi)L̄i ]2 − 2λiDi(2L̄i

2 − L̄2
i )
]

/2Di

in this case. Then the suboptimal resource allocation scheme under the Bounded
Pareto packet length distribution can also be derived based on the above ap-
proach.

3.2.3 Simulation results

In this section, we present some simulation results to illustrate the effectiveness
of the above derived suboptimal resource allocation scheme in GPS-based net-
work node under flat pricing strategy. Throughout the following simulations,
three representative GPS-based FQ algorithms were used in a GPS-based net-
work node: WFQ [44, 114], SCFQ [58] and SPFQ [149].

In the first simulation, we consider a GPS-based network node which has
initial capacity C=1Mb/s and supports two service classes (namely Gold class
and Silver class) with Poisson arrivals. The arrival rates of Gold and Silver classes
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are λ1 = 350 packets/s and λ2 = 200 packets/s, respectively (class 1 indicates
Gold class and class 2 means Silver class). The packet length distributions of
the two classes are both exponential with L̄1 = 1000 bits and L̄2 = 2000 bits.
Moveover, the parameters deployed in the two flat pricing functions are summa-
rized as follows: D1 = 10ms, R1 = 10 money units, P1 = 15 money units and
D2 = 20ms, R2 = 5 money units, P2 = 8 money units.

By the calculation of the inequality in (205), it is shown that at least capacity
0.45Mb/s should be reserved for Gold class (i.e., C1,min=0.45Mb/s) and at least
capacity 0.5Mb/s for Silver class (i.e., C2,min=0.5Mb/s) to guarantee the satisfac-
tion of both d̄1 ≤ D1 = 10ms and d̄2 ≤ D2 = 20ms. As C1,min + C2,min < C, the
suboptimal resource allocation scheme is that the reserved capacity for Gold class
is 0.45Mb/s, the reserved capacity for Silver class is 0.5Mb/s and only 0.95Mb/s
of capacity is needed. Hence, the real capacity of the GPS-based node is set to
0.95Mb/s in the first simulation and the simulation results are presented in Fig-
ure 55, where it can be seen that d̄i ≤ Di holds for each class i ∈ [1, 2] during each
charging period (20s here) when any one of WFQ, SCFQ and SPFQ is deployed.
Hence, it is demonstrated that the derived suboptimal resource allocation scheme
achieves the maximum value ∑2

i=1 Ri=15 money unit of SLA revenue in the GPS-
based network node under flat pricing strategy.

In the second simulation, the above GPS-based network node is fed by two
classes of Poisson packet streams with arrival rates λ1 = 100 packets/s, λ2 = 120
packets/s and a heavy-tailed packet length distributions. The packet length dis-
tributions of the two classes are both modelled by Bounded Pareto with parame-
ters b1 = 40 bits, p1 = 12800 bits, α1 = 0.137 (thus L̄1 = 2000 bits), and b2 = 320
bits, p1 = 16000 bits, α2 = 0.164 ( thus L̄2 = 3360 bits). The parameters of the two
flat pricing functions in this case are: D1 = 15ms, R1 = 20 money units, P1 = 30
money units and D2 = 20ms, R2 = 10 money units, P2 = 15 money units.

Similarly, by the calculation of the inequality in (206), it is gotten that C1,min =
0.3694Mb/s, C2,min = 0.5857Mb/s and C1,min + C2,min = 0.9551Mb/s < C =
1Mb/s. Hence, the suboptimal resource allocation scheme in this case is that the
reserved capacity for Gold class is 0.3694Mb/s, the reserved capacity for Silver
class is 0.5857Mb/s and only 0.9551Mb/s of capacity is needed. Hence, the real
capacity of the GPS-based node is set to 0.9551Mb/s in the second simulation and
Figure 56 shows the simulation results.

The results in Figure 56 also indicate that d̄i ≤ Di is satisfied for each class
i ∈ [1, 2] during each charging period (50s in this case), leading to the achieve-
ment of the maximum SLA revenue ∑2

i=1 Ri=30 money unit obtained within one
charging period in this case.

Finally, the third simulation was made to evaluate the performance of the
suboptimal resource allocation scheme derived by the above approach for the
case that the capacity C of a GPS-based network node is not enough to guar-
antee the reservation of Ci,min for all its supported service classes. Hence, the
same parameter settings and exponential packet length distributions as the ones
in the first simulation are deployed in the third simulation except that the arrival
rates of Gold and Silver classes are λ1 = 450 packets/s and λ2 = 200 pack-
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FIGURE 56 Mean packet delay in the second simulation where Bounded Pareto packet
length distribution is deployed.

ets/s, respectively. By the inequality in (205), we know that C1,min=0.55Mb/s,
C2,min=0.50Mb/s and C1,min + C2,min = 1.05Mb/s> C =1Mb/s. Thus, according
to our proposed approach, the suboptimal resource allocation scheme under flat
pricing strategy in this case is as follows: the reserved capacity for Gold class is
0.55Mb/s, the reserved one for Silver class is 0.45Mb/s and all of the capacity
C=1Mb/s of the GPS-based node is used. The simulation results are presented in
Figure 57. It is shown in Figure 57 that both d̄1 ≤ D1 and d̄2 ≤ D2 are satisfied
when any one of WFQ, SCFQ and SPFQ is deployed, which also results in the
achievement of the maximum SLA revenue ∑2

i=1 Ri=15 money units, although
the reserved capacity for Silver class is less than C2,min in this case. The reason is
that in a network node which deploys any GPS-based FQ algorithm, the reserved
resources (the capacity in this case) for a certain class indicate only the minimum
guaranteed resources allotted to that class and the actual real resources received
by that class may exceed the reserved one. However, as we do not know the ex-
act amount of resources received by a certain class in the real situation due to the
characteristic of GPS-based FQ algorithms, it is the best to derive the suboptimal
resource allocation scheme by the tightest upper delay bound of GPS-based FQ
algorithms.

Therefore, based on the above simulation results, we can conclude that the
above approach of deriving the suboptimal resource allocation scheme in a GPS-
based network node is effective and the derived resource allocation scheme can
achieve the highest SLA revenue under a given amount of network resources and
flat pricing strategy. More importantly, it also fits a class of GPS-based packetized
FQ algorithms.
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FIGURE 57 Mean packet delay in the third simulation where exponential packet length
distribution is deployed.



4 QOS FRAMEWORKS

Up to this point, we have been considering the adaptive models as the means to
ensure the QoS requirements at one node. However, as a packet moves through
the network, it traverses multiple nodes that may belong to different adminis-
trative domains. Thus, each intermediate node must provide some level of QoS
so that the network provides some level of the end-to-end QoS parameters. In
most cases, the problem is formulated so: "having the set of the end-to-end QoS
requirements, what should the router configuration be?" It is understandable,
that the adaptive models cannot solve this problem since they do not possess
the network-wide picture. Instead, they solve the problem of the local optimal
configuration. Thus, other technologies are necessary, which will make decisions
based on the state of the whole network, while the adaptive models will achieve
the optimal resource allocation within routers.

As an example, it is possible to consider the following simple scenario. Sup-
pose the end-to-end service requirements of a data flow are 100 Kbps and the
worst-case end-to-end delay of 100 ms. It means that all the intermediate routers
must allocate 100 Kbps for the flow. However, some entity must transform the
end-to-end delay into the worst-case queuing delay of each intermediate router
based on their number and the characteristics of links that connect them. After
that the bandwidth and the worst-case queuing delay can be passed to the adap-
tive model that will recalculate the optimal parameters for the scheduler.

At the moment, the IETF has proposed two QoS frameworks for the In-
ternet: Integrated Service and Differentiated Services. The subsequent sections
present the overview of these frameworks and the way the proposed adaptive
models can be integrated into them.

4.1 Integrated Services

The Integrated Services (IntServ) [21] represents the application-signalled ap-
proach of the QoS architecture. The application frames its service request within
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the RSVP protocol [22] and then passes this request into the network. The net-
work can either respond positively in terms of its agreement to commit to this
service profile, or it can reject the request. If the network commits to the request
with a resource reservation, the application can send traffic into the network. The
reservation remains in force until the application explicitly requests termination
of the reservation, or the network signals to the application that it is unable to
continue with a service commitment. The essential feature of the IntServ model
is "all or nothing" nature. In other words, the IntServ framework either provides
all the QoS guarantees or replies negatively.

The IntServ QoS model requires that the network must maintain the remem-
bered state to describe the resources that have been reserved and the network
path over which the reserved service will operate. In addition, each active net-
work element within the network must maintain a local state that allows incom-
ing IP packets to be correctly classified into a reservation class.

4.1.1 Service classes

In addition to the BE class, the IntServ framework specifies two kinds of services:
the Guaranteed Service (GS) and the Controlled Load (CL). It should be noted
that a term class does not refer to the way the scheduler allocates resources, but
rather to the treatment that packets, which belong to a certain service class, re-
ceive. Table 2 presents a brief summary of the IntServ classes and the QoS pa-
rameters that each class can provide.

TABLE 2 Summary of the IntServ classes.

Class
QoS requirements

Policy action
Bandwidth Delay Loss

GS √ √ √ drop, mark, shape
CL √ √ mark

BE/NULL

Guaranteed Service

The GS class [142] is intended for applications that need a firm guarantee that
datagrams will arrive within the guaranteed delivery time and will not be dis-
carded due to the queue overflows. For these purposes, the IntServ routers esti-
mate the worst-case delay of the network and allocate such amount of bandwidth,
that this delay estimation is met. The GS service does not attempt to minimize the
jitter, but rather controls the maximum queuing delay. If the maximum queuing
delay is bounded by a certain value, then the jitter cannot exceed it.

Though each application informs network about the anticipated traffic load,
it can happen that for some reason the traffic load increases. In fact, in certain cir-
cumstances a large number of packets may fail the conformance test as a matter
of normal operation. Thus, the IntServ routers have to meter the incoming traffic
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to classify it into the in- and out-profile. There are several forms of policing in
GS for the out-profile packets. They can be treated as the best-effort traffic and
forwarded appropriately. However, such a behaviour may lead to the packet re-
ordering. Thus, another, and the more preferred, action for the out-profile packets
is to drop them. A provider may also implement a shaper, which restores traffic
shape to conform to its profile.

Controlled Load

The CL class [161] is intended to support a broad class of applications that are
highly sensitive to overloaded conditions. It approximates the behaviour of net-
work visible to applications receiving the best-effort service under unloaded con-
ditions. The aim of this service is to provide sufficient bandwidth and buffer
resource to ensure the bandwidth requirement and to minimize the packet loss.
The CL class does not try to ensure any delay requirements.

The CL service has no strict requirements concerning the non-conforming
packets. It is permissible to degrade the service delivered to all of the flow’s
packets equally. In other words, if an application start to send data at higher data
rates, then some packets may be dropped including the ones that conform to the
profile. Another solution is to sort packets into a conformant and non-conformant
sets and deliver different levels of service for each set.

Best Effort/NULL service

As follows from the name, the BE class does not provide any QoS requirements
for the applications, which, in turn, do not use the RSVP signalling. Since each
RSVP router keeps a list of the GS and CL flows, all flows that are not on this list
will be mapped automatically to the BE class.

Along with ordinary network services, there are also mission critical appli-
cations that require some form of prioritization, but cannot readily specify their
resource requirements. To serve such applications, the notion of the NULL ser-
vice was introduced [14]. The NULL service allows applications to identify them-
selves to a network using the RSVP protocol, however, it does not require them
to specify the resource requirements. Such a behaviour is useful for those cases
when an application wants better than the BE treatment and the network is re-
sponsible for allocating resources based on the application type. A customer
and/or an application can identify themselves to the network by including the
policy object [72] into the RSVP message, as described in [165]. This mode of
usage is particularly applicable to networks that combine differentiated services
QoS mechanisms with the RSVP signalling.

4.1.2 Adaptive model

The proposed adaptive models can be integrated into the IntServ QoS framework
easily. The adaptive model is capable of providing the bandwidth and delay
guarantees that are necessary for the GS and CL service classes. At the same time,
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some fixed portion of the output bandwidth may be reserved for the BE class.
One source of complexity is that the IntServ router uses to allocate bandwidth
for individual flows, while the adaptive models allocate resources for classes.
This problem can be overcome if a router groups all flows that belong to the
same class and shares resources between the classes. As mentioned earlier, the
fairness between data flows within a service class can be achieved by the per-
flow buffer mechanism or by the per-flow traffic regulation mechanisms used in
the network. Another problem is that the adaptive model assumes that all flows
belonging to the same class have the same QoS requirements, while in the IntServ
framework applications belonging to same class may request different amount of
bandwidth resources. This problem can be solved if we modify all the expressions
and substitute ∑ Bk

i to NiB
f
i , where Bk

i is the bandwidth requirements of the kth
flow within the ith class. The same considerations can be applied to the burst
size.

Ideally, the adaptive model should be placed at every RSVP router that has
the bottleneck links. Since it is not feasible, at the first stage, the adaptive model
should be deployed to the routers that aggregate a significant number of flows,
i.e. either to the core routers or to the routers that connect access networks to
the high-speed cores. Such an approach can ensure that the adaptive resource
allocation will affect the larger number of flows and that it will not be diminished
by some router with the static configuration.

According to the IntServ framework, the RSVP protocol informs routers
along the data path when a new flow arrives or an existent one stops functioning.
Thus, each RSVP-capable router always possesses information about the number
of active data flows. Besides, each PATH message carries the traffic specification
in the from of the TSpec object, which consists of the token bucket rate, the burst
size, the minimum policed unit, and the maximum datagram size. All these pa-
rameters have the direct correspondence to the input parameters of the adaptive
models. Besides, Lmin

i is the minimum datagram size over all values received in
TSpec, and Lmax

i is the maximum value over all maximum datagram sizes. The
TSpec also carries the peak rate, which can be used to create the upper constraints.

The RSVP protocol does not carry the pricing information. However, a net-
work provider may have the static price associated with each service class, which
eliminates the need to include this data into the RSVP messages. On the other
hand, due to the extendable nature of the RSVP protocol, a new object may be
introduced easily.

1. PATH 1. PATH

2. RESV4. RESV

3. Recalculate
parameters

FIGURE 58 Adaptive model in the IntServ framework.
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Fig. 58 illustrates a typical usage of the adaptive model in the IntServ frame-
work. As the PATH message travels from the sender to the receiver, all the RSVP
routers process this message according to the standard rules. At this stage, no in-
teraction with the adaptive model is necessary. When the RESV message arrives
at the RSVP router with the adaptive model, new QoS requirements for each ser-
vice class are constructed and passed to the adaptive model, which calculates new
optimal parameters for the scheduler. If the router has enough resources, then a
new scheduler configuration takes effect and the RESV message is sent along the
data path to the sender. Otherwise, the RESVERROR message is sent to the re-
ceiver, and the parameters of the scheduler remain intact. When a flow stops
functioning, the PATHTEAR message is sent that causes the removal of the state
information, recalculation and the update of the scheduler parameters. The same
happens when either the RESVTEAR message arrives or the reservation state ex-
pires. The RESVCONFIRM message, which a sender may send to confirm the
reservation, will be just ignored.

One of the disadvantages of the IntServ QoS framework is that there is no
node that possesses the network-wide picture concerning the reservation states,
which might be necessary to perform some network-wide optimizations or to
track the available resources. The solution for this problem is to outsource RSVP
messages. In such a framework, the RSVP router sends the received message
to a known network management station (NMS).1 For these purposes, the RSVP
message is encapsulated according to the rules specified in [73] and transmitted
over the COPS protocol [46]. This framework can be extended in such a way that
the NMS also makes decisions on behalf of the RSVP routers and performs the
admission control functions. In such a case, the routers will support only the basic
processing of the RSVP messages. It eliminates the need to install the complicated
software at every node. The outsourcing does not dictate the presence of one
NMS for all the RSVP routers. Instead, each administrative domain may have its
NMS.

Since the RSVP router has to make the policy control decisions concern-
ing the PATH message and the admission control decisions concerning the RESV
messages, it can outsource either all the message types, or only the RESV mes-
sages. It is often the case that the policy control module is simpler than the admis-
sion control algorithms, thus, the former can be implemented locally. According
to [73], the RSVP router can also outsource the PATHERROR and RESVERROR
messages. It should be noted that outsourcing RSVP messages does not change
the interaction between the adaptive model and the RSVP protocol. As the router
receives a positive answer from the NMS, it triggers the appropriate RSVP com-
ponents, which in turn trigger the adaptive model. This scheme is illustrated in
Fig. 59.

The price for such an architecture is the increased network response for the
QoS requests since it takes time before a request is sent to the network manager
and a decision is received. As mentioned above, one way to decrease this impact

1 In the terminology of the policy-based management [159] it is referred to as the Policy
Decision Point.
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1. PATH 1. PATH

2. RESV5. RESV
4. Recalculate

parameters

3. 
COPS-R

SVP

FIGURE 59 IntServ framework with the COPS protocol.

is to outsource only the RESV messages.

4.2 Differentiated Services

The Differentiated Services (DiffServ) [16] framework has a different approach
comparing to the IntServ. Instead of maintaining the per-flow information in
each router, flows with similar characteristics are grouped into a class, which is
referred to as an aggregate. As a packet enters the DiffServ domain, the appropri-
ate DiffServ codepoint (DSCP) is written into the IP header, which determines an
aggregate a packet belongs to. Now, routers classify and schedule packets based
on their DSCP values, not on their source/destination IP addresses, protocol, and
the port numbers.

P2
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D4

P0

D3

T3

D2

T2

D1

T1

D0

T0

X

DSCP

Precedence ToS
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X

FIGURE 60 Structure of DSCP.

The DSCP field occupies six bits and overlap with the ToS octet [2] of the
IPv4 packets. Fig. 60 illustrates the structure of the IPv4 ToS octet and its inter-
pretation for the DiffServ [108]. The remaining two bits are reserved for the ECN
technology [123]. It bears mention that the DSCP value is backward compatible
with the IPv4 precedence field. As follows from the figure, three higher bits of
DSCP overlap with the IP precedence bits. It must be noted that the higher bits
of DSCP determine a class, while the three lower bits determine a subclass, if any.
Thus, packets marked according to the DSCP value will be given the sufficient
level of QoS if a provider has the old switching equipment that relies upon the IP
precedence value. Consequently, packets marked according to the IP precedence
field will be forwarded appropriately within the DiffServ domain. The structure
of the IPv6 header is quite different [41]. It has a dedicated field called Traffic
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Class that can be used to carry the DSCP value. There are cases when applications
should exchange the DSCP value(s) before data communication can start. Exam-
ples include communication between bandwidth brokers and the MPLS support.
In this case, the actual encoding of the six-bit DSCP value follows the rules spec-
ified in [26].

Since the DiffServ routers classify and schedule packets based on their DSCP
values, resources are allocated not for a distinctive flow, like in the IntServ frame-
work, but for the aggregates. It may lead to the fairness problem when one flow
in an aggregate starts to consume more resources thus reducing the throughput
of other flows. To cope with this problem, the DiffServ framework uses the per-
flow metering and policing. So as not to overburden all the DiffServ routers with
this task, it is performed only when a flow enters the DiffServ domain. This ap-
proach results in two types of the DiffServ routers: edge and core. While the
edge routers perform sophisticated classification, metering, and marking func-
tions, the core routers perform a simple packet forwarding. Such a framework
simplifies the configuration of schedulers, reduces significantly the need for re-
sources, and increases the overall scalability of the framework. It is worth not-
ing that the performance requirements mandate the use of dedicated hardware
routers in the core networks because the software-based routers may face some
serious problems while handling large amount of data [15]. Instead, the QoS sup-
port in the edge routers is often software based because of the need for flexibility
and upgradability [66].

4.2.1 Per-hop behaviour

To provide different packet treatments, the DiffServ framework introduces sev-
eral types of traffic aggregates. Each type specifies the available QoS guarantees
and their concrete values. To ensure the QoS requirements, each DiffServ router
must provide a certain level of packet forwarding. Thus, if a packet belongs to
a certain aggregate, one can say about the treatment the packet will experience
while travelling through the router. In the terminology of the DiffServ frame-
work, it is referred to as the per-hop behaviour (PHB). In other words, PHB may
be thought of as the externally observable behaviour of packets [64]. Though
this definition may sound odd, it makes sense from the implementation point
of view. PHB specifies the desired behaviour, while a provider is free to choose
mechanisms to achieve it.

TABLE 3 Summary of the DiffServ aggregates.

Aggregate
QoS requirements Policy

actionBandwidth Delay/Jitter Loss

EF/DB √ √ √ drop
AF √ √ mark
BE

The DiffServ framework defines three major types of the per-hop behaviours:
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Expedited Forwarding (EF), Assured Forwarding (AF), and Best Effort (BE). Ta-
ble 3 summarizes briefly the differences between them. The major differences are
the QoS guarantees and the policy actions applied to packets. It must be noted
that AF is a traffic class that defines four traffic aggregates: AF1, AF2 and so
on. They have different values for the QoS parameters, but the general treatment
remains the same.

Expedited Forwarding/Delay Bound

The EF PHB [78] is intended to provide an end-to-end service with low loss, low
latency, low jitter, and assured bandwidth through the DiffServ domain. It is
very similar to the GS service of the IntServ framework. Such a service appears
to endpoints like a point-to-point connection or a "virtual leased line". Since
loss, latency, and jitter are mainly caused by queuing, which packets encounter
while transiting the network, the main purpose of the EF PHB is to offer packet
transport, in which appropriately marked packets usually enter short or empty
queues. Since buffering occurs when the short-term traffic arrival rate exceeds
the departure rate of a router, the minimum departure rate of an aggregate may
be set to be larger than its maximum arrival rate at every transit router. This can
guarantee that packets encounter no or very small queues. Another way to im-
plement EF PHB is to associate it with the highest priority of the PQ scheduler at
each router.

The original definition of the EF PHB stated that packets must be forwarded
as fast as possible through the domain. Though this definition corresponds to the
nature of the "virtual leased line" services, it results in an inefficient resource al-
location, especially when a service can tolerate some delays. Thus, the further
standardization process has refined requirements for this behaviour aggregate
[40]. The main difference is that a new specification adds mathematical formal-
ism to give more rigorous definitions to the QoS parameters, such as delay and
jitter. Practical issues for implementing the new interpretation of EF PHB have
been considered in [32]. There is also another interpretation of the EF PHB that
is referred to as the Delay Bound (DB) PHB [6]. The goal of the DB PHB is a
strict bound on the delay variation of packets through a hop. Though the EF and
DB PHBs have similar purposes, they have different implementation approaches.
The EF PHB achieves low delay by allocating bandwidth that is equal or bigger
than the input rate. In the case of the DB PHB, the scheduler’s output rate does
not need to be specified since it will be whatever is needed to achieve the target
delay variation.

As in the case of the IntServ GS class, a provider should not assume that a
client application always transmits data at the required rate. If a source applica-
tion for any reason increases its transmission rate, it can affect the behaviour of
all EF/DB streams. Such situations are prevented by applying a policer to flows
at the DiffServ edge nodes. The policing action for an EF/DB flow is to drop
excessive packets to bring this flow in conformance with its profile.

The EF/DB PHB is intended for the applications that uses the UDP protocol
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to send data because the absence of the acknowledgements allows to send real-
time audio and video data at the desired rate even if some packets are dropped.
Since the UDP protocol does not react to the packet drops, there is no need to
use the sophisticated active queue management (AQM) algorithms. Simple FIFO
queues are the best choice in this case.

Assured Forwarding

The AF PHB [69] is intended to offer different levels of forwarding assurance for
IP packets that need better service than is available for BE packets. It is similar
to the CL service since it aims to provide the bandwidth requirements. There are
no quantifiable timing requirements, such as delay or jitter, associated with the
forwarding of AF packets. In turn, four AF classes have been defined, which are
referred to as AF1, AF2, AF3, and AF4. For each AF class a certain amount of
forwarding resources, which can be expressed with bandwidth and buffer space,
is allocated. Within each AF class IP packets are marked with one of three pos-
sible drop precedence values. To differentiate them, an appropriate number is
added to the AF aggregate. For instance, aggregate AF2 has the following drop
precedence levels: AF21, AF22, and AF23. When a congestion occurs, the drop
precedence value determines the relative importance of the packet within the AF
class. Implementation of the AF PHB responds to the long-term congestion by
dropping packets, while the short-term congestion is handled by queuing them.

Unlike the EF PHB, source applications may exceed the subscribed profile
with the understanding that the excess traffic is not delivered with as high prob-
ability as in-profile traffic. The policing action for the out-profile AF packets is to
mark them to a higher drop probability. When a DiffServ router gets congested,
it avoids loss of packets with a lower drop precedence by preferably discard-
ing packets with a higher drop precedence value. It can guarantee low loss for
in-profile packets while improving the network utilization. Since the AF PHB
requests only the minimum bandwidth allocation, the over-subscribed AF traffic
can be transmitted when there is enough bandwidth available either from other
AF classes or from other PHB groups.

The AF PHB suits the TCP applications that can increase transmission rate
and react to the packet losses by reducing the window size. Since the TCP appli-
cations react to the packet losses by reducing the window size, the AF PHB uses
the AQM algorithms to avoid the drop-tail behaviour of the queues and, as a re-
sult, the effect of the global synchronization. Most of these algorithms are based
on RED technique that is extended to support several drop precedence levels.
They are often referred to as Multilevel RED (MRED). A good overview of the
existent MRED algorithms and their comparison is given in [101]. We mention
the names of the most important ones: Weighted RED (WRED) and RED with
in/out (RIO) [34], which is also referred to as RIO-C. The reason is that there is a
modification, called RIO with decoupled queues (RIO-DC) [141], in which the av-
erage queue for packets of each colour is calculated using the number of packets
of that colour in the queue.
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Best Effort

As in the case of the IntServ framework, the BE PHB is used to transmit non-
critical user data, which has no particular QoS requirements at all. A provider
can allocate some fixed bandwidth for this aggregate that is shared between all
active data flows. The absence of the QoS requirements eliminates the need to
perform per-flow metering. Technically speaking, a so-called NULL meter [12] is
used that does not analyse traffic characteristics. Flow rates within the BE aggre-
gate are controlled implicitly by the available bandwidth and by the buffer space
provided at each DiffServ router.

Along with the BE aggregate, the IETF has tried to standardize another PHB
called Lower Effort (LE) [18]. There are a lot of applications without the QoS re-
quirements that are mapped automatically to the BE aggregate. However, some
of them are more important than others. For instance, the mail data is of more im-
portance than some broadcast traffic. Thus, a certain differentiation between the
BE applications were necessary. It resulted in the idea of the lower-effort service
that may transmit data only if there are unused resources from other aggregates.
Based on this formulation, a possible implementation of the LE PHB is to allow to
transmit LE traffic if and only if all other sessions including the BE PHB are idle.
Fig. 61 depicts the structure of the scheduler that implements such a behaviour.
PQ will output LE data only if the WRR scheduler is idle, i.e. if the EF, AF, and
BE queues are empty.

WRR

PQ

AF

BE

LE

EF

FIGURE 61 Implementation of the LE PHB.

Unfortunately, no strict differences between the BE and LE aggregates in
terms of the quantifiable parameters were given. Thus, at the moment, the LE
PHB is an optional solution that a provider can use while classifying the incoming
BE traffic. As the LE traffic leaves a domain, it must be re-marked back into BE to
achieve compatibility with the downstream domains that do not support the LE
PHB.

4.2.2 Meters

To classify the incoming traffic into the in- and out-profile packets, the edge
routers must implement meters that are responsible for analysing traffic char-
acteristics. Depending on a traffic aggregate and its requirements, various meters
are used. Table 4 presents several major meters used in the DiffServ framework.

The Token Bucket meter is based on the Token Bucket model of the traffic
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TABLE 4 Meters used in the DiffServ framework.
Meter Parameters Aggregate

Token Bucket CIR CBS EF
TSWTCM CIR PIR AF
srTCM CIR CBS PBS AF
trTCM CIR CBS PIR PBS AF
NULL – BE

profile. It takes two parameters into account: Committed Information Rate (CIR)
and Committed Burst Size (CBS). This meter is suitable for the EF aggregate since
the latter does not need to determine the drop precedence of a packet. It is enough
to decide whether a packet is within or out of a profile. Furthermore, by using
the burst size of the Token Bucket meter a provider can estimate the worst-case
queuing delay and allocate the necessary amount of buffer resources.

A provider can meter the incoming AF traffic with several different algo-
rithms. The time sliding window three-colour meter (TSWTCM) [47] determines
the drop precedence of the AF packets based on two configuration parameters:
Committed Information Rate and Peak Information Rate (PIR). If the flow rate
is less than CIR, a packet is marked with green colour. If it is higher than CIR
and less than PIR, then a packet is marked with yellow colour. Otherwise, it is
marked as red.2 The TSWTCM meter is simpler in configuration than the Tock-
enBucket since the former does not require the burst size. It may be a challenging
task to estimate the anticipated burst size for an unknown application. On the
other hand, TSWTCM fails to control the burstiness of the input traffic and it may
mark some packets wrongly due to the time-sliding window that calculates the
mean rate. The single-rate three-colour meter (srTCM) [70] is very similar to the
Token Bucket policer. The difference is that it uses two burst sizes - Committed
Burst Size and Peak Burst Size (PBS) - to decide whether to mark a packet with
yellow or red colour. The two-rate three-colour meter (trTCM) [71] is even more
complicated as it takes also Peak Information Rate (PIR) into account.

As mentioned above, the NULL meter does not analyse any traffic charac-
teristics at all. Such a behaviour is necessary for the BE aggregate. In some cases,
a provider can apply the NULL meter to the other aggregates if he trusts the traf-
fic pattern sent from the upstream domain or from a customer.

4.2.3 Per-domain behaviour

Along with PHB, the IETF has proposed the concept of the per-domain behaviour
(PDB) [109]. While PHB specifies how packets should be forwarded through the
DiffServ router, the PDB describes the behaviour experienced by a particular set

2 The three-colour meter can be turned into the two-colour one easily by setting CIR and
PIR to the same value. It may be necessary if a provider wants to classify the incoming
AF packets only into green and red ones. Sometimes two- and three-colour meters are also
referred to as TSW2CM and TSW3CM respectively.
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of packets as they cross the DiffServ domain. In other words, the DiffServ domain
can be treated as a node that is capable of providing certain QoS guarantees. Such
an approach simplifies the provision of the end-to-end services. Networks of the
DiffServ domains can be connected to provide the end-to-end QoS guarantees by
building on the PDB characteristics without regard to the particular PHBs used.
For instance, each PDB can correspond to some PHB. At the same time, one PHB
can implement several PDBs. This level of abstraction makes it easier to compose
cross-domain services as well as making it possible to hide details of a network’s
internals while exposing information sufficient to enable QoS.

Along with the BE PDB, the IETF has standardized only the Lower Effort
(LE)3 PDB [17]. It is used to transmit uncritical data, such as netnews, bulk
mail, content distribution, peer-to-peer file sharing, world-wide search engines
etc. Some work has also been done on the Virtual Wire (VW) [79] and Assured
Rate (AR) [140] PDBs.

4.2.4 Adaptive model

The proposed adaptive models can be used in the DiffServ framework as they
are capable of providing bandwidth and delay guarantees. Each PHB would
correspond to a certain service class in the adaptive model. It fully conforms to
the DiffServ architecture in which each PHB is associated with a separate queue.
Thus, the adaptive model will calculate optimal weight values for each PHB.

Taking into account types of traffic aggregates, defined in the DiffServ frame-
work, it is possible to arrive at the conclusion that it is better to allocate free band-
width to the AF classes. There is no need to allocate additional resources for the
EF aggregate, since it is represented predominantly with UDP sources that trans-
fer data at a constant rate. Even if there are TCP flows, then all the excess data
will be dropped in the edge routers due to the EF policing action. Since the BE
aggregate has no QoS requirements at all, the free resources can be provided for
the AF aggregates for which assured QoS guarantees are necessary and for which
end-users are willing to pay. The TCP flows, belonging to the AF aggregates, will
increase their window sizes thus consuming the allocated bandwidth. This is not
contrary to the concept of the DiffServ framework because the AF aggregates are
capable of transferring excess amount of data if a network has enough resources.

It is suggested to implement all major adaptive issues at the edge of a Diff-
Serv domain. It is often the case that the edge routers connect client networks to
the high speed core network. In this case, the edge routers have more impact on
the resulting bandwidth allocation between the traffic aggregates. Besides, un-
like the core routers, the edge routers have the per-flow information that enables
them to perform classification and policing. Thus, it is much more convenient to
perform the adaptive resource allocation at these routers. By tracking the num-
ber of active data flows and their QoS parameters, the adaptive edge routers can
allocate optimally the output bandwidth. At the same time, the core routers will
remain intact and will not be overburdened with additional adaptive software

3 The previous name for this PDB was bulk handling (BH).
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FIGURE 62 Adaptive model in the DiffServ framework.

that can slow the packet forwarding process. Such an approach fits into the Diff-
Serv concept, which states that the edge routers perform sophisticated functions,
while the core routers perform only the simple forwarding. It also bears mention
that though the edge routers perform the policing and charging of the incoming
traffic on the per-flow basis, the output bandwidth is allocated between the traffic
aggregates, i.e. on the per-class basis.

The DiffServ framework does not have a dedicated protocol to exchange in-
formation about the number of active flows and their QoS parameters. Instead,
the concept of the SLA was introduced. Its technical-level part, which is referred
to as the SLS, specifies the amount of resources to be allotted to each PHB. Mean-
while, the COPS [46] protocol and its extension for the provisioning (COPS-PR)
[31] can carry the actual configuration information. SLA can by dynamic, i.e. it
can state that depending on the time the different amount of resources should
be allocated. So, as the configuration changes and is transmitted to the DiffServ
routers, the routers can re-run the adaptive model that updates the parameters of
the scheduler.

Fig. 62 illustrates the adaptive model in the DiffServ environment. If the
centralized management entity, for instance bandwidth broker (BB) [110], wants
to change the configuration of the DiffServ routers, it sends a new configuration
over the COPS-PR protocol. The latter, in turn, can trigger the adaptive model
that will calculate new weight values and update the configuration of the sched-
uler. The configuration information is represented in the form of the Policy Infor-
mation Base (PIB) that has been standardized for the DiffServ framework in [30].
This PIB specifies actions that must be applied to the incoming packets based on
the model of the DiffServ router specified in [12].

Of course, the framework outlined above is not as efficient as IntServ from
the viewpoint of the presence of the RSVP protocol, which can carry all the neces-
sary signalling information in the horizontal plane. In other words, the DiffServ
framework is irrespective of the number of the active flows and relies upon the
configuration provided by SLA and carried by the COPS-PR protocol.

4.3 Hybrid architecture
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The DiffServ approach to service management is more approximate in the nature
of its outcome. There is no requirement for the network to inform the application
that the request cannot be admitted, and it is left to the application to determine
if the service has not been delivered. What appears to be required within the
DiffServ framework is the resource availability signalling. It is implemented in
the IntServ framework. However, there are several areas of concern about the
deployment of the IntServ architecture. The resource requirements for running
the per-flow resource reservations on routers increase in direct proportion to the
number of separate reservations. Besides, router forwarding performance may
be impacted by the packet classification and scheduling mechanisms that work
on the per-flow basis. IntServ also poses some challenges to the scheduling mech-
anisms, where there is the requirement to allocate absolute levels of the output
bandwidth to individual flows.

One approach is to attempt to combine both architectures into an end-to-
end model, using the IntServ as the architecture that allows applications to in-
teract with the network, and DiffServ as the architecture to forward data [10].
This approach combines the per-application view of the IntServ architecture and
the network boundary-centric view of the DiffServ architecture. If the RSVP re-
quest is accepted, it would imply that there is a committed resource reservation
within the IntServ-capable components of the network, and that the service re-
quirements have been mapped into a compatible aggregate within the DiffServ-
capable network. The DiffServ core must be capable of carrying the RSVP mes-
sages across the DiffServ network, so that further resource reservation is possible
within the IntServ network upon egress from the DiffServ environment.

Based on the interaction between the IntServ and DiffServ parts, it is possi-
ble to present three major scenarios [13, 1]:

• static allocation in the DiffServ domain

• dynamic allocation by RSVP in the DiffServ domain

• dynamic allocation by other means

The first case assumes that the DiffServ domain has the static configuration. From
the viewpoint of the IntServ routers, it can be treated as a link with a certain band-
width. As a result, the IntServ router at the ingress point performs the admission
control function for the whole DiffServ domain. The functioning of the adaptive
model in this scenario is very similar to the one considered in section 4.1.2. It
will be running in the IntServ router and react to the RSVP messages. The sec-
ond allocation scheme assumes that some or all DiffServ routers participate in
the RSVP signalling. From the viewpoint of RSVP, they act as the IntServ routers,
but they use the DiffServ mechanisms in the forwarding plane. Once again, the
functioning of the adaptive model will be the same as for the IntServ framework.

Fig. 63 illustrates the third allocation scheme, in which the RSVP protocol
informs the DiffServ domain about the required resources, but the COPS-PR pro-
tocol carries a new configuration. Such an approach has several important ad-
vantages. All routers, which participate in the signalling, outsource messages to
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BB that makes decisions. It eliminates the need to install the admission control
modules at every router. Furthermore, the overall amount of required memory
and the processing load is less when compared to the case when all the routers
participate in the RSVP signalling [42]. What is also important is that in such a
framework the BB possesses the domain-wide picture which enables a provider
to perform various optimizations and load balancing.

Referring back to Fig. 63, the DiffServ routers do not process the PATH
message. However, as the RESV message leaves the DiffServ domain, the bor-
der router sends it over the COPS-RSVP protocol [73] to BB that is eligible for
the admission control. If there are no resources, BB answers negatively, and the
RESVERROR message is sent to the receiver. If the DiffServ domain has enough
resources, then the BB answers positively and the RESV message is sent to the
sender. After that the BB can update the configuration of all the necessary Diff-
Serv routers. When the DiffServ router receives a new configuration, it can re-run
the adaptive model. It is worth noting that in this case the COPS protocol, not the
RSVP protocol, triggers the adaptive model. So, the functioning of the adaptive
model is the same as considered for the pure DiffServ framework.

Since the BB has to mimic the reservation states of each RSVP router that
outsources the RSVP messages, the number of states can be really huge. To re-
duce this overhead, a new COPS client type has been proposed in [102]. It is also
worth mentioning that the amount of the RSVP signalling information can be
reduced significantly in the core networks by aggregating the request and reser-
vation messages, as described in [7]. In this case, it will depend on the number
of aggregates rather than on the number of active data flows. Such an aggregate
can be mapped to one of the DiffServ PHBs by including the DCLASS object [11]
into the RSVP messages. However, it is a challenging task to map the RSVP reser-
vations into the existent set of PHBs. While the GS class can be mapped to the
EF PHB, the CL class is a more complicated task due to the availability of four
AF PHBs. Since a provider is not obliged to implement all the AF PHBs and may
support only a subset of them, it may be a complicated task to map automatically
the CL flow to one of the available AF aggregates. The IETF has made an attempt
to standardize it [163]. In [122], the dynamic approach for mapping the IntServ
CL flows into the AF PHB has been presented.

Apart from RSVP, other protocols developed by the IETF can be used to
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signal the network about the active data flows. As considered in [129], the frame-
work described in Fig. 63 can be modified easily so that the user applications
use the Session Initiation Protocol (SIP) [128]. As in the case of RSVP, the COPS
protocol can carry the encapsulated SIP messages to the centralized management
entity [63].

4.4 Next steps in signalling

Having analysed the IntServ and DiffServ approaches, it is possible to arrive at
the conclusion that it is almost impossible to build a proper QoS framework with-
out any signalling mechanisms [125]. Indeed, disappointed by the low scalability
of IntServ and the signalling overhead, the designers of the DiffServ framework
have not introduced any signalling mechanisms at all. Later, many authors have
pointed to this weakness of DiffServ in their scientific works. Though the COPS
protocol is capable of carrying the configuration information, it is used merely
for the vertical management, while the RSVP protocol aims to perform the man-
agement functions in the horizontal plane. Having realized the low efficiency
of the static configuration, the designers of the IntServ and DiffServ frameworks
have found a compromise in combining the RSVP signalling with the DiffServ
forwarding mechanisms. However, such an architecture was dictated predomi-
nantly by the available software in the routers, supplied by the major manufac-
tures, not by the fact that it provides an efficient functioning.
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The main source of problems is the RSVP protocol. Having been developed
for the IntServ framework, it has several serious disadvantages that are described
in detail in [103]. One of them is the incapability of the RSVP protocol to deliver
safely the signalling data. The RSVP messages are sent over the IP datagrams
and, as a result, can be dropped by the intermediate routers that do not prioritize
the incoming data. Another limitation of the RSVP protocol is that a receiver ini-
tiates a reservation when the PATH message arrives from a sender. It makes the
deployment of the RSVP protocol more complicated since two endpoints must
support it. Furthermore, the RSVP protocol is incapable of carrying the signalling
information between the routers, which may be necessary for the DiffServ frame-
work.

To overcome these limitations, the IETF has established the Next Steps In
Signalling (NSIS) working group, whose aims are to develop a new general sig-
nalling protocol for the Internet. In fact, these tasks are reflected in the name of
this protocol - General Internet Signalling Transport (GIST) [139]. Unlike RSVP,
GIST does not depend on a concrete transport environment and can carry data
over various protocols, such as TCP and SCTP [111]. It is noticeable, that the re-
liable transport protocol are used which makes GIST more robust under network
congestions. The GIST protocol is still under development including its applica-
tion for the DiffServ and IntServ QoS frameworks.

4.5 Policy-based management

Ensuring that all routers function properly is not a trivial task. As the network
grows and the number of nodes increases, the need for sophisticated technologies
that can assist in configuration becomes more evident. Traditional approaches to
network management focus on individual devices and often rely upon proven
technologies, such as the SNMP protocol [28]. However, it can be quite a time
consuming operation if the number of nodes to be managed is great. The intro-
duction of a policy-based management can significantly ease the configuration
of multiple routers in the network through the use of policy expressions [155].
An administrator has to provide all of the necessary data only once, enabling
any number of routers to retrieve configuration data. The central idea behind the
policy-based management is to provide a set of rules to manage and control the
changing and/or maintaining of the state of one or more managed objects.

According to [166], the policy-based management system has the following
components: a policy enforcement point (PEP), a policy decision point (PDP), a
policy repository, and a policy management tool. The task of the PDP is to retrieve
and interpret the policy information, and pass it to the PEP. The policy repository
is the place where all policies are stored and from which they are taken by PDPs.
The policy repository is populated with configuration data by an administrator,
who uses the policy management tool to specify the desired network behaviour.
Referring back to Fig. 63, the DiffServ routers may perform the functions of the
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PEP, while the BB may perform the functions of the PDP. To achieve the interoper-
ability across various devices from different vendors, the PEP and PDP exchange
the policy information in the form of PIB, which is very similar to Management
Information Base used in the SNMP protocol. The policy repository stores data
by using the Common Information Model (CIM) and its extensions for the policy
data [107, 106] and QoS [144].

However, the current information model for the QoS routers lacks the con-
cept of the adaptive router. In other words, it is impossible to specify settings for
the adaptive models by using concepts introduced in CIM. In [134], we have pro-
posed a solution to support the adaptive mechanisms. Since the policy repository
stores the rules in the form if <set of conditions> then do <set of actions>, where
conditions and actions are represented with instances of classes logically inter-
connected by a policy rule, it has been proposed to extend the set of policy actions
so that the adaptive models can function properly.

4.6 Summary

In this section, two major QoS frameworks - IntServ and DiffServ - have been
presented and parameters of their classes have been analysed. Since the adaptive
models are capable of ensuring the bandwidth and delay guarantees, they can
be used to implement the IntServ GS and CL classes and the DiffServ EF and
AF aggregates. Furthermore, the adaptive models are flexible in that they can
interact with the signalling protocols, such as RSVP and COPS, that communicate
the QoS requirements to the routers. As mentioned while considering the IntServ
QoS framework, it may be necessary to change the resource allocation method of
the IntServ router from the flow-based to the class-based. It is not contrary to the
concept of IntServ. Furthermore, recent standardization documents, such as the
aggregated RSVP, propose implicitly the class-based resource allocation for the
IntServ networks. On the other hand, as considered in section 2.8, the adaptive
models can be changed easily to calculate parameters for the per-flow scheduler.

Though the adaptive models increase the total revenue by allocating more
resource to some data flows, it is not contrary to the IntServ and DiffServ speci-
fications that allow to transmit excess data if a network has resources. However,
unlike the AF aggregate, the specification of the CL class is vague concerning the
transmission of the excess traffic. Thus, the DiffServ framework is more suitable
for increasing the total revenue. On the other hand, the IntServ framework relies
upon the RSVP protocol that informs routers about the required resources. Thus,
the ideal framework for the adaptive models is the network that uses the DiffServ
forwarding mechanisms in conjunction with the signalling protocols.



5 SIMULATION SCENARIOS WITH THE ADAPTIVE
SCHEDULING MODELS

The simulation is carried out by the NS-2 simulator [153]. It is a part of the Virtual
InterNetwork Testbed project, which aimed to provide improved simulation tools
to use in the design and deployment of new protocols and solutions. Reasons for
choosing the NS-2 simulator are [25]: a) a rich infrastructure for developing new
protocols, b) the opportunity to study large-scale protocol interactions in a con-
trolled environment, and c) easier comparison of results across research efforts.
The NS-2 simulator allows two levels of programming. Simple scripts, topology
layout, and parameters variation can be done in OTcl [160], which is the object-
oriented extension of the Tcl scripting language [112]. At the same time, core
components and protocols are implemented in C++ to achieve high efficiency
and to reduce the simulation time.

The implementation of the adaptive models followed the framework de-
scribed above. Fig. 64 illustrates the interconnection between the NS-2 simulator,
simulation scripts, and the adaptive models. The adaptive models are imple-
mented in C++ to achieve high efficiency and fast execution. They have a clear
Application Programming Interface (see appendix ??) that hides the implemen-
tation details and exposes a set of classes. As a result, the models can be used
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in any application, not only in the NS-2 simulator. To access the adaptive mod-
els from the simulation scripts written in OTcl, appropriate interface classes have
been introduced (see appendix ??) that forward function calls from within the
NS-2 simulator to the adaptive models and back to the NS-2 components. The
implementation of the adaptive models relies upon the LP_SOLVE library [95]
that is capable of solving LP and ILP tasks. Such a modular framework has sev-
eral advantages:

• it is possible to introduce subsequent improvements into the adaptive mod-
els without touching the NS-2 simulator and the simulation scripts

• it is possible to use different LP and ILP solvers to study the overall perfor-
mance of the adaptive models

• it is possible to create a set of simulation scripts to analyse the behaviour of
the same model within various environments and sets of parameters

Apart from the adaptive models, additional modules have been written for the
NS-2 simulator. Since the official release lacks WFQ, WRR and DRR, these schedul-
ing disciplines have been implemented (see Appendix ?? for more details). Be-
sides, while implementing WRR and DRR, the considerations presented in sec-
tion 2.5 were taken into account.

5.1 Simulation parameters

To study the adaptive resource allocation, simulation scenarios use several ser-
vice classes, which hence will be referred to as Gold, Silver, and Bronze. Since each
QoS architecture introduces its own terminology, we decided to use the olympic
names because they allow us to refer uniquely to a particular service class re-
gardless of the considered QoS framework. The details of each service class are
presented in Table 5. The Gold class corresponds to the real-time audio services.
It is the most demanding class that has bandwidth and delay guarantees. This
class is simulated by the G.711 audio codec [77] that transmits data over the Real
Time Protocol (RTP) [138]. The G.711 codec outputs data at the constant rate of
64,000 bps with the frame size of 240 bytes. In the case of the IP networks, frames
with audio data are encapsulated by the IP/UDP/RTP protocols that augment
the basic frame size with their headers. The overhead is 60 bytes for IPv6 and 40
bytes for IPv4.1 Since NS-2 simulates IPv6 by default, the resulting packet size for
the G.711 codec is 300 bytes. In turn, the resulting transmission rate is 80,000 bps.
Practically, it is also necessary to take the L2 header size into account, however
NS-2 does not simulate the L2 transmission.

1 The header size can be reduced significantly for the low-speed serial links by using the
IP/UDP/RTP header compression as proposed in [29].
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The Silver and Bronze classes represent general purpose services that have
only bandwidth requirements. These classes are simulated by FTP-like applica-
tions that generate bulk data transferred over the TCP protocol. The reason for
choosing such a type of application is that it always tries to send data thus be-
having very aggressively. If the adaptive models are capable of ensuring QoS
guarantees in an aggressive environment, then they will work in other environ-
ments as well. The bandwidth in Table 5 specifies the minimum rate that a flow
must obtain within its service class.

Service classes are assigned different packet sizes to check that bandwidth
is shared accurately regardless of the packet size value. It is especially important
for the adaptive model for the WRR scheduler since the latter does not take the
packet size into account and it is the responsibility of the model to calculate the
correct weight values. While choosing packet sizes, the analysis of the Internet
traffic patterns presented in [152] was taken into account.

At the beginning of a simulation run, all data streams from client applica-
tions are injected gradually into the network environment. To produce a random
number of active flows, the simulation uses the ON/OFF model, parameters of
which are given in Table 5. The ON-time represents a uniformly distributed ran-
dom number, taken from an appropriate interval, and the OFF-time follows the
exponential distribution with an appropriate mean value.

TABLE 5 Parameters of service classes.

Class
Price for

1Mb
Max
flows

Flow parameters
ON/OFF
time (s)

Band.
(Kbps)

Delay
(ms)

P.size
(bytes)

Gold 2 10 78 20 300 20–60/10
Silver 1 15 50 – 840 30–70/5

Bronze 0.5 25 10 – 640 10–40/10

During the simulation runs, parameter γi is set to 1 for the Silver and Bronze
classes, thus enabling allocation of an additional bandwidth only for them. As
considered earlier, there is no need to allocate additional resources for the Gold
class because it consists of the constant rate flows that will not increase their trans-
mission rates if additional bandwidth is available.

To analyse the behaviour of the adaptive models in various environments,
the following simulation cases will be considered:

• No QoS framework. No particular QoS framework and no signalling will
be used in this simulation case. It allows to compare the basic characteristics
of the adaptive models without the influence of the QoS mechanisms.

• IntServ framework. The RSVP protocol will be used to inform a router with
the adaptive models about the number of active data flows and their QoS
requirements.



163

Gold
class

Silver
class

Bronze
class

3 Mbps
2 ms

FCFS

WFQ
WRR
DRR

FIGURE 65 Simulation environment.

• DiffServ framework. The DiffServ classification and forwarding mecha-
nisms will be used to transmit data. At the same time, additional signalling
protocols will inform routers about the required resources.

To simplify further explanations, we will prefix the name of a scheduling disci-
pline with RA2 meaning that this is the adaptive model running on the top of the
appropriate scheduler. For instance, RA-DRR stands for the adaptive model for
the DRR scheduler. If either WRR or DRR works in the LLQ mode, then we will
refer to it as WRR+ and DRR+ respectively. Thus, the adaptive model that works
on the top of the WRR scheduler in the LLQ mode will be denoted as RA-WRR+.

5.2 No QoS framework

In this simulation case, we study the proposed adaptive models and compare
them to the queuing disciplines with a static configuration in terms of parameters,
such as the provided bandwidth and the obtained revenue. At first, we analyse
the adaptive resource allocation when only bandwidth guarantees are necessary
as if the Gold class has no delay requirements at all. For these purposes, the
adaptive models (17), (45) and (57) are used.

As mentioned above, this simulation case does not consider any signalling
protocol that the client nodes, the router, and the destination node can use to ex-
change information about the required resources. Instead, the inner possibilities
of the simulation environment are used to keep track of the number of active
flows at the routing node. On the one hand, it does not correspond to a real-life
scenario. On the other hand, the amount of additional signalling information,
which the nodes would exchange in the presence of such a protocol, is not great.
Furthermore, the absence of the signalling protocol allows the generation of the
same pattern of behaviour of flows regardless of the used scheduling discipline,
which ensures the accurate comparison of the results.

Fig. 65 illustrates an environment used in this simulation case. It consists
of a bottleneck router, a destination node, and a set of client nodes with applica-
tions. Depending on a simulation run, the bottleneck router implements either

2 In our previous articles, we have been using the A prefix. However, since other authors use
the same prefix quite often, we have changed it to RA meaning the revenue-based adaptive
model.
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TABLE 6 Static configuration of the schedulers.

Discipline
Parameters

Gold Silver Bronze
WFQ 0.3 0.6 0.1
WRR 6 4 1
DRR 3000 3500 640

WFQ, or WRR, or DRR. While testing the adaptive models, the router runs the
appropriate model for the underlying scheduler. To simplify the simulation and
avoid mutual interference of the applications, each client node hosts exactly one
application that generates exactly one stream of data, addressed to the destination
node. Every node is connected to the router with a link, whose bandwidth and
delay are set to 1 Mbps and 2 ms, respectively. It should be noted that the router
classifies and schedules the packets only when they move to the destination node.
All responses, if any, are sent back to the source applications unclassified in the
first-come-first-served order.

To compare the adaptive models and the scheduling disciplines with a static
configuration, independent simulation runs were made for every discipline in the
static and adaptive mode. In order to make this comparison a fair one, the same
behaviour pattern of data flows, which is presented in Fig. 66, was submitted in
each case. It is generated using the ON/OFF model, the parameters of which are
given in Table 5.
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In a static case, the scheduler configuration is chosen so that each service
class always has enough bandwidth, regardless of the number of active data flows.
It corresponds to the case when the network is overprovisioned. Table 6 presents
the static weight values for the schedulers.

As an opposite to this, the adaptive models recalculate the weight values
when the number of active flows changes. Depending on the underlying sched-
uler, the weights are calculated differently (see Fig. 67). In the case of WFQ, the
weights are the floating-point numbers in a range of 0 to 1, which enables the
adaptive model to calculate them precisely. In the case of WRR, weights are in-
teger numbers. So, the adaptive model has to find the optimal configuration that
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is based on the integer weight values. It results in small "jumps" that can be seen
from Fig. 67(b). Though the quantum values of the DRR scheduler are also inte-
ger numbers, they specify the number of bytes to output during one round. As
a result, calculated quantum values for the DRR scheduler look smoother than
weight values of WRR, but still they are not as accurate as weights of WFQ.
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FIGURE 67 Dynamics of weights.

It is worth noting that regardless of the underlying scheduling discipline,
the general dynamics of the calculated weights is the same. Adaptive models
try to allocate as much as possible resources for the Silver class, at the same time
providing enough bandwidth for the Gold and Bronze classes. Though the Gold
class is the most expensive one, it consists of UDP flows, for which there is no
sense in providing excess resources (the value of γi for this class is 0). Since the
Silver class is more expensive than Bronze, the latter is allotted only minimal
bandwidth resources. Thus, the remaining bandwidth is consumed by the Silver
packets. Such a resource allocation increases the total revenue.

Table 7 shows statistical data collected during the simulation runs. The fol-
lowing parameters are presented for every tested queuing discipline: the number
of transmitted packets, mean per-flow rate (measured in Kbps), and the total rev-
enue, which is calculated based on the amount of transmitted data by using (1).
The mean per-flow rate is obtained by using the exponentially weighted moving
average. As presented in Table 7, the same number of Gold packets are transmit-
ted under all scheduling disciplines and modes. The difference in a few packets
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TABLE 7 Simulation results (no QoS framework, bandwidth guarantees).

Quantity Discipline
Classes

Gold Silver Bronze

Departed packets

WFQ 22320 28548 6727
WRR 22319 27996 7232
DRR 22319 28222 6976

RA-WFQ 22287 31128 3355
RA-WRR 22315 30946 3362
RA-DRR 22304 31069 3246

Mean
per-flow

rate (Kbps)

WFQ 77.05 159.05 21.26
WRR 77.06 155.91 23.48
DRR 77.06 156.98 22.67

RA-WFQ 77.07 172.77 10.47
RA-WRR 77.06 171.89 10.88
RA-DRR 77.06 172.59 10.40

Total revenue

WFQ 316
WRR 313.6
DRR 314.5

RA-WFQ 324.6
RA-WRR 323.5
RA-DRR 323.9

is explained by the fact that some packets were being processed when the simu-
lation stopped. The number of the transmitted packets of the Silver and Bronze
classes are different. Since WFQ, WRR, and DRR rely upon the static weight
values, resources are not allocated optimally. Though all the bandwidth require-
ments are satisfied, the Bronze class has a higher mean per-flow rate than actually
required. As a result, the total revenue is lower than in the adaptive case. Since
the adaptive models calculate the parameters based on the number of flows and
their QoS requirements, a better resource allocation is achieved. The Silver class
has a larger number of transmitted packets, and a smaller number of packets are
transmitted within the Bronze class. However, it is noticeable that its mean per-
flow rate is not smaller than 10 Kbps.

If we compare the results obtained for different adaptive models then, not
surprisingly, we can notice that RA-WFQ provides the best results in terms of the
total revenue, while RA-WRR has the lowest total revenue among RA-WFQ and
RA-DRR. As explained earlier, weights for the WFQ scheduler are the floating-
point numbers. Thus, WFQ can provide higher accuracy in allocating resources
compared to the WRR and DRR schedulers. It is interesting to note that the RA-
DRR places the intermediate position. Its total revenue is less than the one ob-
tained under RA-WFQ but is larger than RA-WRR. In any case, as follows from
the simulation results, all the adaptive models give better results than the sched-
ulers with the static configuration.

Fig. 68 illustrates the dynamics of the per-flow rate within each service class
in the adaptive case. The per-flow rate is calculated by dividing the amount of
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data transmitted during a sufficiently small time interval by the number of ac-
tive data flows within a service class. As can be seen, there is a warm-up period
that lasts approximately 10-20 seconds. During that period new TCP flows of the
Silver and Bronze classes are injected into the network. As the network state sta-
bilizes, the Gold class has a per-flow rate that fluctuates near the value of 78 Kbps.
The rate fluctuations are explained by the nature of the transmitted data packets
and by the fact that the flows appear and disappear. Furthermore, it is notice-
able that under RA-WRR and RA-DRR the fluctuations are bigger. This is due to
the round-robin nature of these scheduling disciplines. Depending on whether
the static configuration or the adaptive model is used, different per-flow rates are
provided for the Silver and Bronze classes. When the scheduler parameters are
static, some Bronze flows obtain more bandwidth than necessary which results
in an inefficient allocation of resources. As can be seen from Table 7, the per-flow
rate is bigger than 10 Kbps for WFQ, WRR, and DRR. As an opposite to this, the
adaptive model tracks the number of active flows and allocates only the necessary
amount of bandwidth. As shown in Fig. 68, less bandwidth is allocated for the
Bronze class. Nonetheless, despite the fact that the number of active flows varies
all the time, the adaptive models calculate weights in such a way, the per-flow
rate of the Bronze class never goes below the value of 10 Kbps and the per-flow
rate within the Gold class is 78 Kbps.
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FIGURE 68 Dynamics of the per-flow rate.

The behaviour of the Silver per-flow rate is explained by the available band-
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width and by the number of active flows within this class. For instance, from 20
to 50 seconds of the simulation time, the number of active flows within the Silver
class has reached the maximum of 15 flows (see Fig. 66). As a result, the per-flow
rate was 150 Kbps on average. From 60 to 70 seconds, the number of active flows
within all the classes declined. Thus, a considerably bigger amount of bandwidth
was available for the Silver class and the per-flow rate has reached the value of
200 Kbps.
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Fig. 69 presents the progress of the total revenue under different queuing
disciplines, used in this simulation scenario. As considered earlier, the adaptive
models give higher revenue when compared to the disciplines with the static
configuration. Although it may seem that the total revenue increases insignifi-
cantly, Fig. 69 illustrates that as the time goes, the gap between the total revenue
obtained under the adaptive models and under the other queuing mechanisms
increases. In other words, if the difference between the total revenue under WRR
and RA-WFQ is 11 monetary units after 90 seconds of simulation, then the dif-
ference will double after 180 seconds. Of course, it is true when the behaviour of
flows remains the same.

It is also worth mentioning that relatively small revenue gain is explained
by the fact that the static configuration of the schedulers was quite close the mean
weight values calculated by the adaptive models. In fact, the static configuration
was determined based on the results obtained from the simulation of the adaptive
models. In the real-life scenario, a provider has no such a possibility. As a result,
the static configuration is far from being close to the optimal solution, and the
adaptive models will provide a significantly bigger revenue comparing to the
non-adaptive case.

5.3 Integrated Services

In this simulation case we consider a more realistic scenario to analyse the be-
haviour of the adaptive models. Now, the RSVP protocol3 is used to inform the
3 We have used the implementation of the RSVP protocol made for the NS-2 simulator by

Marc Greis. Since that implementation includes the admission control module and a simple
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TABLE 8 Traffic profile sent in the PATH message.

Class
IntServ

class
Bucket rate

(Kbps)
Bucket size

(B)

Gold GS 78 300
Silver CL 50 1680

Bronze CL 10 1280

router about the required resources. Such a framework corresponds to the IntServ
QoS model, in which the RSVP protocol signals the network about the required
resources. The general interaction between the adaptive models and the RSVP
protocol is the ssme as described in section 4.1.2, however, only PATH, RESV,
and RESVTEAR messages are sent between the nodes. We do not consider the
case when the router does not have the sufficient amount of resources and, as a
result, sends the RESVERROR message. Neither do we consider a case when the
router rejects the PATH message and sends the PATHERROR message.

The mapping of the service classes into the IntServ classes is quite straight-
forward. The Gold class corresponds to GS, while the flows of the Silver and
Bronze classes correspond to the CL service with the different level of required
resources.

Table 8 presents the parameters for the traffic profile sent in the PATH mes-
sage by the client applications. Note that the burst size of the Silver and Bronze
classes is not analysed by the adaptive models since these classes do not have
the delay guarantees. Practically, a router uses the bucket size to reserve enough
buffer space, but during the simulation runs buffers are configured statically.

Since the RSVP protocol sends messages along the forwarding path, ap-
propriate bandwidth resources must be provided for the RSVP packets as well.
Otherwise, important signalling information may be lost. The straightforward
solution is to send the RSVP packets with user data. However, according to our
preliminary simulations, it is not efficient since the RSVP packets can be delayed
in queues of the bottleneck router and, as a result, it does not receive notifications
about required or freed resources immediately. Furthermore, due to the finite
size of buffers, the RSVP packets can be even dropped. Another solution is to in-
troduce the strict priority queue for the signalling packets. Unfortunately, it may
result in the decreased accuracy of the QoS in user classes. In the core networks,
the signalling information may consist of data sent by routing, network man-
agement, and configuration protocols. Most of them, and especially the routing
protocols, are of the bursty nature [97], i.e. long periods of inactivity are followed
by the data transmission. As a result, they can impact the delay experienced by
user packets. Thus, to ensure all the QoS requirements, it is better to add a new
service class to the adaptive model for the signalling packets. The model will en-
sure that the router has enough resources and that all the QoS requirements will
be guaranteed.

WFQ scheduler, we have decoupled those components from RSVP to use the latter for pure
signalling purposes. See Appendix ?? for more details.
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All the adaptive models allocate 56 Kbps for the RSVP packets. Besides,
since the adaptive model for the WRR scheduler requires the mean packet size,
it has been set to 164 bytes, which corresponds to the size of the PATH message.4

Though the client applications also send the PATHTEAR messages, each of which
occupies 120 bytes, the number of the PATH messages is bigger because the client
applications have to refresh the reservation states periodically. As mentioned
earlier, the router does not classify packets as they more from the destination
node to the sources applications. Thus, the size of the RESV messages is not
critical.

To provide the detailed simulation of the adaptive models in the IntServ
framework, two simulation subcases are introduced. The first one corresponds to
the case when a provider has to ensure only the bandwidth guarantees, while in
the second subcase, both the bandwidth and delay guarantees must be ensured.

5.3.1 Bandwidth

The simulation environment for this subcase is exactly the same as presented in
Fig. 65. The only difference is that all the nodes participate in the RSVP signalling.
Before starting to transmit data, a client application sends the PATH message and
waits until the RESV message arrives. When an application stops data transmis-
sion, it sends the PATHTEAR message. Since the bottleneck router participates
in the RSVP signalling, it tracks the number of active flows and updates the pa-
rameters of the schedulers by using the adaptive models. As explained in section
4.1.2, the adaptive models are triggered by the RSVP protocol when the router
receives either the RESV or PATHTEAR message.

Since all the adaptive models provide the bigger total revenue comparing
to the scheduling disciplines with the static configuration, we will present the
simulation results with the RSVP protocol only for the adaptive models. Besides,
figures for the dynamics of weights and the per-flow rate will be omitted since
they are almost the same as for the previous simulation case.

Table 9 presents the results for this simulation case. Along with user classes,
the table also contains information for the RSVP protocol. As follows from the
results, all the adaptive models have ensured the QoS requirements of all the ser-
vice classes, including the class for the RSVP packets. The mean per-flow rate of
the Bronze packet is not lower than 10 Kbps, and the mean per-flow rate within
the Gold class is approximately 77 Kbps. It is not 78 Kbps since the router with
the adaptive models increments the number of active flows when the RESV mes-
sage arrives. However, the client application starts to send data a little bit later
when the RESV message reaches the client node. Thus, there is a small mistiming
between the number of active flows at the router and the number of flows that
actually send data.

4 The implementation of the RSVP protocol for the NS-2 simulator does not support the
ADSPEC object [162] that selects the service type. This object occupies 44 bytes in the case
of the CL and NULL service types, and 76 bytes in the case of GS. As a result, the size of
the PATH message is smaller.
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TABLE 9 Simulation results (IntServ, bandwidth guarantees).

Quantity Discipline
Classes

Gold
(GS)

Silver
(CL)

Bronze
(CL)

RSVP
PATH TEAR

Departed
packets

RA-WFQ 22308 31013 3426 197 76
RA-WRR 22290 30447 3925 232 74
RA-DRR 22288 31044 3324 231 74

Mean
per-flow

rate (Kbps)

RA-WFQ 77.12 172.26 10.71 4.30
RA-WRR 77.09 171.22 11.69 4.78
RA-DRR 77.11 172.81 10.68 4.73

Total
revenue

RA-WFQ 324.1 –
RA-WRR 321.5 –
RA-DRR 323.7 –

The number of the RSVP packets is significantly smaller comparing to the
number of packets sent within the user classes. Indeed, the client applications do
not have to send signalling data all the time. Rather, they refresh their reserva-
tion states periodically. For these reasons, the number of sent PATH messages is
bigger than the number of the PATHTEAR messages, which are sent when the
resources are not needed anymore.

The presence of the RSVP protocol has not changed the results significantly.
Comparing the results presented in Table 7 and Table 9, it is possible to notice that
they are almost the same. However, the total revenue is a little bit smaller. It is
explained by the fact the adaptive models have allocated some bandwidth for the
RSVP packets. As a result, less bandwidth was available for the Silver class. It is
also interesting to note that the difference in revenue between different adaptive
models was quite small in the previous simulation case, while after we had intro-
duced a new class for the RSVP packets, the gap has increased. The explanation
is that since RA-WFQ relies upon the floating-point weight values, it is capable
of allocating resources accurately regardless of the number of service classes and
their requirements. RA-WRR and RA-DRR have to rely upon the integer weight
values. As a result, the more service classes with diverse QoS requirements we
have, the bigger is the anticipated gap in the total revenue between RA-WFQ and
the adaptive models based on the round-robin schedulers.

5.3.2 Bandwidth & delay

The purpose of this simulation subcase is to analyse how the adaptive models
provide simultaneously the bandwidth and delay guarantees. Fig. 70 presents
the queuing delay of the Gold packets under the adaptive models when only
the bandwidth guarantees are ensured. As follows from this figure, the queuing
delay is much bigger than 20 ms, as specified in Table 5. Thus, the adaptive
models have to allocate enough bandwidth resources to ensure also the delay
guarantees.

The simulation environment is the same as presented in Fig. 65. As in the
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FIGURE 70 Queuing delay of the Gold class packets.

previous subcase, the RSVP protocol is used by all the client applications to signal
network about the required resources. The adaptive models running in the bot-
tleneck router calculate the optimal weight values to ensure the QoS guarantees
for all the service classes including RSVP. It should be noted that since we have to
ensure the delay guarantees, the adaptive models (44) and (56) are used. Besides,
the WRR and DRR schedulers have to work in the LLQ mode so that the delay
critical queue is served in between other queues.

Fig. 71 presents the dynamics of the weight values calculated by the adap-
tive models (for the sake of clarity, weight values of the RSVP class are omitted).
As follows from this figure, the general dynamics of weights is quite similar to
the one presented in Fig. 67 and is governed by the fact that the adaptive models
try to allocate as much as possible resources for the Silver class at the expense
of the other service classes. However, it is noticeable that this time the adaptive
models allocate more bandwidth to the Gold class to ensure the required delay
guarantees. For instance, as follows from Fig. 71(a), the weight of the Gold class
fluctuates near the value of 0.4, while in the previous simulation cases its mean
value was 0.2 (see Fig. 67(a)). The same is for the weight values of the WRR and
DRR schedulers. To provide the necessary delay guarantees, the adaptive mod-
els for these schedulers have to assign smaller weights for the Silver class, thus
providing more bandwidth for the Gold class.

Table 10 presents the results collected during these simulation runs. As fol-
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FIGURE 71 Dynamics of weights (IntServ).

TABLE 10 Simulation results (IntServ, bandwidth and delay guarantees).

Quantity Discipline
Classes

Gold
(GS)

Silver
(CL)

Bronze
(CL)

RSVP
PATH TEAR

Departed packets
RA-WFQ 22308 30489 4113 197 76

RA-WRR+ 22296 27199 8185 232 74
RA-DRR+ 22307 27167 8376 232 74

Mean
per-flow

rate (Kbps)

RA-WFQ 77.12 169.29 13.01 4.30
RA-WRR+ 77.02 156.13 23.45 4.73
RA-DRR+ 77.04 158.52 21.90 4.73

Mean delay (ms)
RA-WFQ 1 204 1829 –

RA-WRR+ 4 218 1003 –
RA-DRR+ 4 212 1216 –

Total revenue
RA-WFQ 322.3 –

RA-WRR+ 310.6 –
RA-DRR+ 310.9 –
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FIGURE 72 Dynamics of the per-flow rate (IntServ).

lows from the results, all the adaptive models provide sufficient amount of band-
width resources for all the service classes. It is interesting to note that the mean
per-flow rate of the Bronze class is higher than in the previous simulation sub-
case. It is explained by the fact that the adaptive models cannot allocate much
bandwidth for the Silver class as it will cause a larger queuing delay of the Gold
packets. Thus, the models try to increase the total revenue by allocating more re-
sources for the Bronze class. Exactly for these reasons, the total revenue is smaller
than in the previous simulation case, in which only the bandwidth guarantees
must be ensured. It is noticeable that the RA-WRR+ gives worse results in terms
of the total revenue among the other adaptive models. RA-DRR+ provides better
results than RA-WRR+, however it is not as good as RA-WFQ. So, if there are
tight delay requirements, it is better to use RA-WFQ. As in the previous simula-
tion subcase, the number of the RSVP packets is not large.

Fig. 72 presents the dynamics of the per-flow rate within each service class
under different adaptive models. All the classes are allotted sufficient bandwidth
resources so that the per-flow rate is equal to or bigger than the bandwidth spec-
ified in Table 5. The general behaviour of the per-flow rate under the RA-WFQ
model is quite similar to the one presented in Fig. 68(a), however, the per-flow
rate under RA-WRR and RA-DRR is different. As can be seen from Fig. 72(b) and
Fig. 72(c), there are cases in which the per-flow rate within the Bronze class is con-
siderably larger than 10 Kbps and reaches the value of 50-70 Kbps. As explained
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above, the adaptive models for the WRR and DRR schedulers cannot assign large
weight values for the Silver class because it will cause bigger queueing delays
within the Gold class. As a result, the adaptive models try to compensate it by
assigning larger weight values for the Bronze class which results in a bigger per-
flow rate. Another reason is the integer weight values of WRR and DRR.
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FIGURE 73 Queuing delay of the Gold class packets.

According to Table 10, regardless of the adaptive model, the mean delay
of the Gold class packets is less than 20 ms. While calculating this parameter,
we have removed the first 20 seconds of simulation when the network warms
up. Along with the mean delay, it is also important to ensure that the peak delay
is not more than 20 ms. Fig. 73 presents the queuing delay experienced by all
Gold packets under different adaptive models. This data also includes the first
20 seconds of the simulation when the network state stabilizes. It is interesting to
note that RA-WFQ provides the required delay guarantees even at the beginning
of the simulation, while RA-WRR and RA-DRR fail to do it. As explained in
section 2.3.5, we can rely upon expression (35) only if Nlσ � wiLmin

i , in other
words, when there is a significant amount of active flows within a class. However,
there are only a few flows within the Gold class at the beginning of the simulation
run. As a result, the queuing delay is bigger than 20 ms.

Having analysed Fig. 73 thoroughly, it is possible to arrive at the conclusion
that the adaptive models allocate a little bit more resources than necessary for the
Gold class. Indeed, having thrown off the first 20 seconds of the simulation, it
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is possible to notice that the peak delay is sometimes considerably smaller than
20 ms, which is especially the case for RA-WFQ. As considered in section 2.3.2,
the worst-case estimation used to calculate the burst size relies upon a simple
assumption that the resulting burst size of a class is just a sum of burst sizes of
all the flows that belong to this class. Though it ensures the delay guarantees,
it does not provide the efficient resource allocation. Thus, by using the more
sophisticated model for estimating the burst size, the better resource allocation
can be achieved and, as a result, the total revenue will increase.

5.4 Differentiated Services

In this simulation case, the adaptive models are analysed in the DiffServ QoS
framework. Among the models presented in chapter 2, only RA-WFQ and RA-
WRR will be considered because the official release of the NS-2 simulator does not
provide the implementation of the DRR scheduler for the DiffServ architecture.
As presented in the previous simulation cases, RA-WFQ provides the best results
from the viewpoint of the total revenue, while RA-WRR has the worst results
comparing to RA-WFQ and RA-DRR. Thus, it is enough to analyse RA-WFQ and
RA-WRR because the results for RA-DRR will place an intermediate position.

The service classes are exactly the same as presented in Table 5. In addition
to them, a new class for the BE data is introduced. It represents non-critical user
data, such as the mail system, that has no particular requirements. The inclusion
of this traffic class has several purposes. First, it is used to demonstrate how the
adaptive models protect other classes from the best-effort traffic. Second, it is also
important to ensure that certain amount of resources are allocated for the BE data.
Third, the BE class demonstrates the way the adaptive model allocates resources
between service classes with different pricing strategies. While the Gold, Silver,
and Bronze classes have the associated usage-based price, the BE class has no
price at all, or may have the flat price. The reason for not including the BE class
in the previous simulation cases was the desire to present the basic properties of
the adaptive models.

Since the BE flows do not have any QoS requirements, the bandwidth of
100 Kbps is reserved for the whole class and all the data streams compete for the
available resources. The Telnet application is chosen to generate general purpose
BE data that is carried over the TCP protocol. The packet size is set to 340 bytes.
It should be noted that the number of active BE flows do not change during a
simulation run. After all the 40 streams are injected, they create a constant load
on the network.

Fig. 74 illustrates the simulation environment used to test the adaptive mod-
els in the DiffServ framework. It is noticeable that it is an extended version of
the environment presented in Fig. 65. As in the previous simulation cases, all
the client applications are connected to the bottleneck router that performs the
adaptive sharing of resources. This router acts as the ingress node of the DiffServ
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FIGURE 74 Simulation environment for the DiffServ framework.

domain that consists of the core router and two border routers. Though the core
router does not have a bottleneck link, it is decided to use the PQ scheduling
discipline there to provide some basic QoS differentiation between the service
classes. The matter is that while the router outputs one big packet, two smaller
packets can arrive. Thus, the PQ discipline will ensure that the more important
data is sent first. The egress router implements a simple FCFS discipline. As in
the previous simulation cases, when packets move from the destination node to
the source applications, they are not classified and sent as the BE class. However,
to limit the impact of the user data on the signalling information, a separate class
is allocated for the signalling packets. The DiffServ routers use the RR scheduler
to share bandwidth between the user and signalling data.

To inform the DiffServ domain about the required resources, the client ap-
plications use the RSVP protocol. Traffic profiles carried in the PATH message
are exactly the same as specified in Table 8. Since the BE applications do not
have the QoS requirements, they do not participate in the signalling at all. Such
a framework corresponds to the hybrid QoS model described in section 4.3. The
difference between the IntServ framework is that only the client applications, the
ingress router, and the destination node exchange the RSVP messages. The core
and egress DiffServ routers forward the RSVP packets as the ordinary IP data-
grams. From the viewpoint of the RSVP protocol, the DiffServ domain appears
as one RSVP node. As mentioned in section 4.3, in such a framework the ingress
router must perform the admission control for the whole DiffServ domain when
the RESV message arrives. However, we assume that the domain always has
enough resources. Thus, the ingress router only performs the adaptive allocation
of resources.

The mapping of the service classes to the DiffServ PHB aggregates is quite
straightforward. The Gold class corresponds to the EF PHB because the former
has the bandwidth and delay guarantees. The Silver class corresponds to the
AF2 PHB since it has more demanding QoS requirements than the Bronze class,
which is mapped to the AF1 PHB. The RSVP signalling information is mapped to
the class-selector PHB value of 48, which means inter-domain management data.
Table 11 summarizes the DiffServ aggregates used in the simulation. Hence, we
will be using a term aggregate, not class, to conform to the DiffServ terminology
[64].

Table 11 also presents the configuration parameters for the aggregates. For
each behaviour aggregate, the in- and out-profile DSCP values and information
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TABLE 11 Parameters of the DiffServ aggregates.

Aggregate
DSCP Meter

in out Type Parameters

RSVP 48 – NULL
EF 46 – Token Bucket 78 Kbps, 300 B

AF2 18 20 TSW2CM 50 Kbps
AF1 10 12 TSW2CM 10 Kbps
BE 0 – NULL

on meters are given. It should be noted that the RSVP, EF, and BE aggregates do
not have the out-profile codepoints. The policing action for the EF packets is to
drop all the excessive traffic, thus the out-profile packets will not ever leave the
DiffServ router. The BE aggregate has no associated QoS parameters at all. As a
result, there is no need to measure its characteristics and to classify the incoming
data into in- and out-profile packets. For exactly these reasons, the NULL meter is
used for the BE aggregate. The RSVP aggregate has the same configuration. The
AF aggregates rely upon the TSW2CM meter that requires only one parameter
– the mean rate. It simplifies the policing of the incoming data since a provider
can set the mean rate to the bandwidth that has to be provided for each flow
(compare requirements in Table 5 and parameters in Table 11). The EF aggregate
uses the Token Bucket meter that polices the incoming packets by using the mean
rate and the burst size. By knowing the maximum burst size, the adaptive models
are capable of providing the delay guarantees.

As can be noticed from Table 11, two drop precedences are used for the
AF aggregates. As considered in [61], it makes sense to introduce three drop
precedences only if a provider has excess bandwidth. In such a case, the high-
est drop precedence level will act as an early notifier for the TCP flows to slow
down the data transmission. If the bandwidth requirements approach the avail-
able bandwidth resources, then the highest drop precedence queue will get full
immediately. Another reason to introduce three drop precedence levels is to iso-
late the out-profile congestion sensitive packets from the out-profile congestion
insensitive ones. In this simulation case, all the out-profile packets belong to
the TCP protocol and the bandwidth requirements approach the available band-
width. Thus, it is enough to use two levels.

It is also worth noting that two drop precedence levels simplify the inter-
action between the RSVP protocol and the DiffServ policing mechanisms. The
RSVP traffic profile contains the token bucket rate and size, but it does not carry
the peak burst size. Thus, if the RSVP messages are used to set up automatically
the DiffServ ingress routers, then it is impossible to use meters, such as srTCM
and trTCM. However, since the traffic profile object contains the peak rate, it is
still possible to classify packets into the three drop precedence levels by using the
TSW3CM meter.

To cope with the severe congestions and the effect of the global synchro-
nization, and to provide lower delay for the interactive services [24], the DiffServ
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TABLE 12 Parameters of the AQM mechanism.

Aggregate
AQM mechanism

Type Min thres. Max thres. Probability

RSVP DropTail – 10 –
EF DropTail – 15 –

AF2 RIO-C
in 30 60 0.05

out 15 30 0.2

AF1 RIO-C
in 45 90 0.07

out 20 45 0.2
BE RED 40 100 0.15

routers use the AQM techniques that are based on the RED mechanism. Table 12
presents the type and the parameters of the AQM mechanism used for each be-
haviour aggregate (threshold values are specified in the number of packets). The
RSVP and EF aggregates rely upon the simple drop-tail mechanism. The rea-
son is that neither RSVP nor the UDP packets of the EF aggregate can react to
the packet drops. Thus, simple drop-tail queues are the best choice for this non-
responsive traffic. Since the AF and BE aggregates have the applications that
send data over the TCP protocol, it is better to use RED to avoid the drop-tail
behaviour of queues. According to [101], RIO-C provides definite assurance for
packets of the lower precedence comparing to WRED. Furthermore, the staggered
settings provide better assurance for the in-profile packets than the overlapped
or partially overlapped parameters.

To provide a thorough analysis of the adaptive models in the DiffServ frame-
work, two simulation subcases will be considered. First, the adaptive models will
have to ensure only the bandwidth guarantees, and in the second simulation sub-
case, both the bandwidth and delay requirements must be ensured.

Referring back to Fig. 74, it should be mentioned that some data is gathered
at the ingress router, while some parameters are calculated at the egress router.
The number of transmitted packets, the mean per-flow rate, and the total revenue
are gathered at the egress router. Such an approach ensures that we measure and
analyse packets’ characteristics as they leave the DiffServ domain. For instance,
a provider considers a packet to be transmitted as it leaves a domain, and not
as a packet enters it. At the same time, the queuing delay and packet drops are
gathered at the ingress router, in which the adaptive model resides.

5.4.1 Bandwidth

In this simulation subcase we present the results for the adaptive models in the
DiffServ framework when a provider has to ensure only the bandwidth require-
ments. In such a case, the EF aggregate can be treated as AF3 with the more
demanding requirements when compared to the AF1 and AF2 aggregates.

Fig. 76 illustrates the calculated weight values. As in the previous simula-
tion cases (see Fig. 67), they are calculated so that the total revenue is maximized
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and all the QoS guarantees are ensured. As can be seen, the BE aggregate has a
fixed value of 0.03, which corresponds to 100 Kbps reserved for this aggregate. In
the case of RA-WRR, the BE weight value is either 1 or 2. Thus, the adaptive mod-
els calculate weight values accurately regardless of the fact whether an aggregate
has the per-flow or per-aggregate bandwidth requirements.
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TABLE 13 Simulation results (DiffServ, bandwidth guarantees).

Quantity Discipline
Classes

Gold
(EF)

Silver (AF2) Bronze (AF1)
BE

RSVP
in out in out PATH TEAR

Departed
packets

RA-WFQ 23188
8308 21094 2112 1750

2902 233 80
29402 3862

RA-WRR 23177
8361 19388 2358 3394

3245 233 80
27749 5852

Dropped
packets

RA-WFQ 0 0 3138 0 440 236 0 0
RA-WRR 0 0 3040 0 673 92 0 0

Per-flow
rate

(Kbps)

RA-WFQ 76.94
49.55 113.56 7.54 3.72

2.52 5.00
163.11 11.26

RA-WRR 76.88
50.28 107.93 7.96 5.98

2.88 5.01
158.21 13.94

Total
revenue

RA-WFQ 318.6 –
RA-WRR 312.5 –

Table 13 presents the results for this simulation subcase. Like in the IntServ
simulation, the table includes data, such as the number of transmitted packets,
the mean per-flow rate, and the total revenue. In addition, the number of trans-
mitted in- and out-profile packets is presented for the AF aggregates. In the same
way, the mean per-flow rate has been measured separately for the in- and out-
profile packets. As follows from Table 13, RA-WFQ and RA-WRR transmitted
approximately the same amount of EF packets. The difference of ten packets is
explained by the fact that under WRR these packets were queued at the end of
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the simulation run. While the amount of transmitted in-profile AF packets is
comparably the same for all the models, the number of the out-profile packets
differs. Being capable of sharing resources precisely, RA-WFQ allocates as much
bandwidth as possible for the AF2 aggregate. Consequently, only the minimum
amount of resources are allocated for the AF1 aggregate. As a result, under RA-
WFQ the AF2 aggregate has a larger number of out-profile packets. Although
RA-WFQ allocates such an amount of resources for the AF1 aggregate that only
in-profile packets are transmitted, there is always a certain number of forwarded
out-profile packets. This is due to the fact that there can be inactive sessions and
available bandwidth resources from other aggregates.

The mean per-flow rate of the AF2 in-profile packets approaches 50 Kbps
which corresponds to the bandwidth requirements for this aggregate. Since the
adaptive models allocate free bandwidth for the AF2 aggregate, the excess data
is transmitted as the out-profile packets. At the same time, the per-flow rate of
the AF1 in-profile packets is less than 10 Kbps. It is explained by the accuracy of
TSW2CM that marked some packets as out-profile. In support of this explanation,
one can notice that the mean per-flow rate for the whole AF1 aggregate is slightly
larger than 10 Kbps. Thus, the scheduler has allocated enough bandwidth, but
the TSW2CM meter has marked some packets wrongly. Though the BE flows do
not have the per-flow bandwidth requirements, the mean per-flow rate within
that aggregate is also presented. By multiplying this value by the number of the
BE flows we obtain 100.8 Kbps under RA-WFQ and 102.8 Kbps under RA-WRR.
Thus, the adaptive models reserved the sufficient amount of resources also for
the BE aggregate.

By analysing the number of the dropped packets it is possible to arrive at
the conclusion that the QoS requirements are ensured completely for the EF and
the AF in-profile packets since there were no dropped packets. There is always
a certain amount of dropped out-profile packets because by this the router in-
forms the client applications to slow down the data transmission. The number
of dropped AF2 out-profile packets is larger under RA-WFQ since the latter al-
locates more bandwidth for the AF2 aggregate. Having more bandwidth, the
client applications send more data, increase the transmission window size, and
are policed more aggressively by the DiffServ router. For exactly these reasons,
the number of dropped AF1 out-profile packets is larger under RA-WRR, which
allocates a little bit more bandwidth for AF1.

Fig. 76 illustrates the dynamics of the per-flow rate within each behaviour
aggregate at the egress router (for the sake of clarity, the BE and RSVP aggregates
are not included). There is a warm-up period that lasts approximately 20-30 sec-
onds. As explained for the previous simulation cases, during that period new
TCP flows of the AF and BE aggregates are injected into the network. Under RA-
WFQ and RA-WRR, the EF aggregate has the per-flow rate that fluctuates near
the value of 78 Kbps. For the AF aggregates, the adaptive models provide differ-
ent per-flow rates. RA-WFQ provides the AF2 aggregate with the highest rate.
Now and then, it reaches the value of 150 Kbps and even higher. Since RA-WRR
relies upon the integer weight values, it allocates sometimes more bandwidth to
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FIGURE 76 Dynamics of the per-flow rate (DiffServ).

the AF1 aggregate, the per-flow rate of which reaches the value of 30 Kbps.
The total revenue is a little bit less when compared to the results presented

in section 5.3.1, in which the IntServ QoS framework and the bandwidth guar-
antees have been analysed. The reason is that we have introduced a new traffic
aggregate for the BE data. Since it requires some bandwidth resources, less band-
width were allotted to the AF2 aggregate.

The previous simulation run was made with the ECN technology turned
off. However, since the ECN technology allows to reduce the number of dropped
packets, it was interesting to know its impact on the simulation results and, in
particular, on the total revenue. For these purposes, we have rerun the simulation
scenario with the ECN technology turned on. Table 14 presents results for the
modified simulation subcase.

TABLE 14 Simulation results (DiffServ, bandwidth guarantees, ECN).

Quantity Discipline
Classes

Gold
(EF)

Silver (AF2) Bronze (AF1)
BE

RSVP
in out in out PATH TEAR

Departed
packets

RA-WFQ 23186
8341 21163 1988 1712

2962 233 80
29504 3700

RA-WRR 23175
8352 19649 2419 3179

3093 237 82
28001 5598

Per-flow
rate

(Kbps)

RA-WFQ 76.98
49.59 113.62 7.31 3.86

2.53 5.00
163.21 11.17

RA-WRR 76.86
49.87 107.68 8.39 6.34

2.54 5.21
157.55 14.73

Total
revenue

RA-WFQ 318.9 –
RA-WRR 313.6 –
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As follows from the simulations results, it is possible to achieve zero packet
loss with the help of the ECN technology (that is why the number of dropped
packets has been omitted). Indeed, if the adaptive models provide enough band-
width resources for the in-profile packets, then all excess data will be classified
out-profile. Since RED in conjunction with ECN does not drop packets, but rather
marks them appropriately, the zero packet loss can be achieved. It is also impor-
tant to note that the total revenue is slightly bigger. The explanation is that since
RED and ECN do not drop packets, network bandwidth is utilized better.

5.4.2 Bandwidth & delay

In this simulation subcase, we present the results for the RA-WFQ adaptive model
when a provider has to ensure both the bandwidth and delay guarantees. Un-
fortunately, at the moment, the DiffServ framework of NS-2 does not support
the LLQ mode of the WRR scheduler and it is not possible to present results for
RA-WRR+. Thus, only RA-WFQ will be analysed.

TABLE 15 Simulation results (DiffServ, bandwidth and delay guarantees).

Quantity
Classes

Gold
(EF)

Silver (AF2) Bronze (AF1)
BE

RSVP
in out in out PATH TEAR

Departed
packets

23188
8372 20202 2364 2498

3063 233 80
28574 4862

Dropped packets 0 0 3027 0 560 0 0 0
Per-flow rate

(Kbps)
76.94

49.95 109.12 8.44 5.34
2.73 5.00

159.07 13.79
Mean delay (ms) 1.1 75.3 918.2 1.9 –

Total revenue 315.6 –

Table 15 presents the information gathered during this simulation subcase.
As expected, the total revenue is smaller comparing to the previous subcase be-
cause the adaptive model has to allocate more bandwidth resources for the EF
aggregate at the expense of AF2. Since the EF aggregate may have unused band-
width, it is allotted to the other aggregates with respect to their weight values.
As a result, the mean per-flow rate of the AF1 aggregate is slightly bigger than
in the previous simulation subcase and equals 13.79 Kbps. As follows from Ta-
ble 15, RA-WFQ ensures the required queuing delay the mean value of which is
less than 20 ms. The mean queuing delay of the AF1 and AF2 aggregates is signif-
icantly larger, which is explained by the greedy nature of the TCP flows and the
large buffer space at the ingress router. The BE aggregate has a relatively small
mean queuing delay since the underlying Telnet applications do not send data
constantly, as the FTP applications of the AF1 and AF2 aggregates do.

Fig. 77 presents the queuing delay experienced by all the EF packets during
the simulation run. As can be seen, the peak delay is also less than 20 ms. Thus,
being deployed to the DiffServ framework, RA-WFQ is capable of ensuring the
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bandwidth and delay guarantees simultaneously.

5.5 Analysis of computational complexity

As considered in section 2.4, it is important to ensure that the adaptive models
do not consume a lot of computational resources. Otherwise, they may slow
down the transmission of packets because the router will be busy with finding the
optimal solution. It is especially important for those routers that have only one
central processor and do not have additional processors on the interface cards.

Fig. 78 presents the number of iterations it took the adaptive models to cal-
culate the optimal parameters for the schedulers. This data was gathered during
the first simulation case presented and analysed before. As follows from this fig-
ure, only a few iterations are necessary by RA-WFQ. In the case of RA-WRR, 30-40
iterations are necessary on average which is more than acceptable in many cases.
However, RA-DRR needs a considerably bigger number of iterations. Though
it is also ILP, it has to deal with big integer numbers while finding the optimal
combination of quantum values, which is not the case for RA-WRR that operates
small integer numbers.
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One solution to reduce the number of iterations for RA-DRR is to use the
optimized ILP solvers that can take into account the form of the constrained area.
Another approach is to solve the optimization task as LP and then round calcu-
lated parameters. In the case of the large floating-point numbers, rounding to the
closest integer will not affect the results significantly. Let us suppose that the LP
solver finds the following optimal solution: (599.21 2500.98 3600.54). If we round
these numbers, then the solution is (599 2501 3601). It is understandable that it
may violate some QoS constraints because the ILP solver would give another so-
lution, for instance (600 2500 3600). One the one hand, if a provider has to ensure
only the bandwidth guarantees, then we can neglect easily this small difference.
On the other hand, if a provider has to ensure also the delay guarantees, then
even a small difference can impact the queuing delay. For instance, suppose that
the packet size is 300 bytes. If a queue is assigned the quantum value of 600 bytes,
the scheduler can output two packets per round. However, if the quantum value
is 599 bytes, the scheduler will output only one packet while the second packet
will be transmitted during the next round. As a result, the queuing delay will
increase. To avoid such a situation, it is possible to round the quantum value of
the LLQ to the largest integer value and the quantum values of the other queues
to the smallest integer value. It can ensure that the LLQ will be allotted sufficient
bandwidth resources.
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To check whether it is as it is, we have modified the underlying adaptive
model so that the quantum values are calculated as the LP, not as the ILP. Fig. 79
illustrates the number of iterations for the modified solver. As follows from the
figure, now RA-DRR needs 12 iterations, which is significantly less than in the
previous case. It is also worth mentioning that the simulation results are exactly
the same as for the RA-DRR that relies upon the ILP solver.

5.6 Summary

The simulations results presented in this section have confirmed the correctness
of the adaptive models. They are capable of ensuring the QoS requirements of
several service classes with various requirements and pricing schemes. At the



186

same time, the models enable a provider to increase the total revenue by allocat-
ing the unused bandwidth to the more expensive service classes. The simulation
results have also shown that the models can be applied easily to the DiffServ and
IntServ QoS frameworks.

Based on the simulation results, it is possible to arrive at the following con-
clusion concerning the choice of the adaptive model. If there is a high-speed
router in the core network, and the QoS requirements consist only of the band-
width guarantees, then RA-WRR is the best choice. In the case of the core net-
work, the router does not have much time for the scheduling decision. Thus, the
underlying scheduling discipline has to be as fast as possible. At the same time,
as the router has the significant output bandwidth, it is not a problem to find the
optimal integer values of weights. RA-WRR can be used efficiently in the ATM
networks where the cells always have the same size. The ideal place for the RA-
WFQ is the router in the access network that aggregates several incoming links
and has one output link, bandwidth of which is not great. In this case, the router
has time to make a scheduling decision and the accurate allocation of resources
is of a much bigger importance. Furthermore, the delay requirements of several
classes can be guaranteed efficiently. The RA-DRR model places the intermediate
position. On the one hand, its complexity is the same as for WRR, on the other
hand, it provides results that are very close to those obtained under RA-WFQ.
The only important limitation is that only one class can be provided with the
delay guarantees.



6 REVENUE-AWARE RESOURCE ALLOCATION
SCHEMES IN A MULTICLASS-SUPPORTED
NETWORK NODE

Resource allocation in the multiservice communication networks presents a very
important problem in the design of the future Internet. The main motivation for
the research in this field lies in the necessity for structural changes in the way
the Internet is designed. The current Internet offers a single class of ’best-effort’
service. However, the Internet is changing and a diverse set of services should
be provided in the future Internet to support the requirements of various appli-
cations and customers, which result in the definition of different service classes
with different requirements of QoS levels. For instance, new sophisticated real-
time applications (video conferencing, video on demand, distance learning, etc)
demand a better and more reliable network performance. Moreover, these ap-
plications require firm performance guarantees from the network where certain
resources should be reserved for them. On the other hand, in the future multi-
class Internet, each class of customers may have to pay network service providers
for their received level of QoS based on the pricing strategy agreed upon in the
Service-Level-Agreements between them. A Service-Level-Agreement (SLA) de-
fines the QoS parameters for each class of service, the anticipated per-class work-
load intensity and the pricing strategy by which the service payment will be de-
termined. Obviously, the pricing strategy will specify the relationship between
the QoS level offered to each class of customers and the relevant price which
should be paid by them. For example, the service provider will receive a certain
amount of revenue from a class of customers if the offered QoS level is more than
the minimal requirement of that class and suffer a certain amount of penalty for
failing to meet that. Thus, from service providers’ point of view, the optimal re-
source allocation scheme, which can achieve the maximization of SLA revenues
under a given amount of network resources (e.g., bandwidth) and a given pricing
strategy, is very desirable.

In this chapter, we focus on the delay performance of each service class and
mean packet delay and packet delay are chosen as the QoS metric in a SLA, respec-
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tively, in this Chapter. When the mean packet delay is used as the QoS metric
in a SLA, the measurement period of packet delays should also be specified in
the SLA so that the SLA revenues can be collected periodically based on the de-
ployed pricing strategies and the periodical QoS performance measurements (in
this case, the mean packet delay). Whereas, with packet delay as the QoS metric, the
SLA revenues are collected based on the used pricing strategies and the delay of
each inbound packet; in other words, a certain amount of revenue or penalty is
obtained as long as an inbound packet is served.

6.1 Linear pricing strategy

In this section, the linear pricing strategy, which has been demonstrated to be
of practical importance in the real world [169], is deployed in the derivation of
optimal resource allocation schemes for maximizing SLA revenues. Consider a
multiclass-supported network node with network bandwidth C bits/s, where m
service classes are supported and the inbound packets are queued in a multi-
queue system (each queue corresponds to one service class). Moreover, the delay
of class i packets in the network node is denoted by di and the mean delay of class
i packets during one measurement period is denoted by d̄i, i ∈ [1, m]. Then, when
mean packet delay is chosen as the QoS metric, the linear pricing strategy for class
i is characterized by the following definition of the linear pricing function.

Definition 1: The function

ri(d̄i) = bi − kid̄i, i = 1, 2, ..., m, bi > 0, ki > 0 (207)

is called the linear pricing function of class i under the QoS metric "mean packet
delay", where bi and ki are positive constants and bi ≥ bj and ki ≥ kj should hold
to ensure differentiated pricing if class i has higher priority than class j (in this
book, we assume that class 1 is the highest priority and class m is the lowest one).
With packet delay as the QoS metric, the linear pricing strategy of class i is charac-
terized by the linear pricing function defined below.

Definition 2: The function

ri(di) = bi − kidi, i = 1, 2, ..., m, bi > 0, ki > 0 (208)

is called the linear pricing function of class i under the QoS metric "packet delay",
where bi and ki are positive constants and bi ≥ bj and ki ≥ kj should also hold to
ensure differentiated pricing if class i has higher priority than class j.



189

6.2 Optimal resource allocation schemes for maximizing SLA rev-
enues under linear pricing strategy

Consider the above multiclass-supported network node fed by m Poisson packet
streams with arrival rates λ1, λ2, ..., λm, respectively. We assume that in this sec-
tion the packet length distribution is exponential and use L̄i to denote the mean
packet length of class i in bits. Let the weight allotted to class i be wi, i=1,2,...,m,
which means that the reserved bandwidth for class i packets is wiC (bits/s). With-
out loss of generality, only non-empty queues are considered, and thus wi �= 0.
Therefore, the natural constraint for the weights is ∑m

i=1 wi = 1, wi ∈ (0, 1]. As
class i is guaranteed to use a portion of the network resource wiC and the packets
of class i arrive at queue i with rate λi, the analytic mean delay of class i packets
in the network node (referred to as ˆ̄di) can be denoted as:

ˆ̄di =
1

wiC
L̄i

− λi
=

L̄i

wiC − λi L̄i
(209)

based on queueing theory. The natural constraint of Eq. (209) is wiC > λi L̄i due
to the fact that delay can not be negative.

With the mean packet delay chosen as the QoS metric in a SLA, we use ˆ̄di
to estimate the real mean delay of class i packets d̄i in the network node during
one measurement period. Thus, the SLA revenues F obtained in the network
node during one measurement period is defined by the following equation under
linear pricing strategy:

F =
m

∑
i=1

ri(d̄i) =
m

∑
i=1

ri( ˆ̄di) =
m

∑
i=1

(bi − ki L̄i

wiC − λi L̄i
). (210)

Based on the above definition, publication [179] derived the closed-form solution
to the optimal resource allocation scheme (the optimal weight) for this case under
the linear pricing strategy:

wi =

√
ki L̄i(C +

∑m
j=1

√
kj L̄j√

ki L̄i
λi L̄i − ∑m

j=1 λj L̄j)

C ∑m
j=1

√
kj L̄j

, i = 1, 2, ..., m. (211)

When packet delay is the QoS metric in a SLA, the real delay of class i packets
di in the network node is also estimated by ˆ̄di. As in this case a certain amount
of revenue or penalty is attained as long as one inbound packet is served, we
try to maximize the SLA revenues obtained in the network node per time unit
(also denoted by F). Thus, in this case, F is defined as follows under linear pricing
strategy:

F =
m

∑
i=1

λiri(di) =
m

∑
i=1

λiri( ˆ̄di) =
m

∑
i=1

λi(bi − ki L̄i

wiC − λi L̄i
). (212)



190

And the closed-form solution to the optimal resource allocation scheme for this
case is presented in publications [180] and [178]:

wi =

√
λiki L̄i(C +

∑m
j=1

√
λjkj L̄j√

λiki L̄i
λi L̄i − ∑m

j=1 λj L̄j)

C ∑m
j=1

√
λjkj L̄j

, i = 1, 2, ..., m. (213)

Furthermore, publication [176] proposed the suboptimal resource allocation scheme
for the case that all the supported service classes have their firm QoS (mean delay)
requirements, which can satisfy those required QoS guarantees while still being
able to achieve very high revenue close to the analytic maximum one under linear
pricing strategy.



7 MAXIMIZING SLA REVENUES IN
CLUSTER-BASED WEB SERVER SYSTEMS

The Web is changing from a sole communication and browsing infrastructure to
an important medium for conducting personal business and e-commerce, which
makes the Quality of Service (QoS) an increasingly critical issue. A fundamen-
tal characteristic of e-commerce environments is the diverse set of services pro-
vided to support the requirements of various businesses and customers, which
result in the definition of different service classes. In a typical e-commerce en-
vironment, an e-business operator contracts with a Web service provider to pro-
vide applications and services to its business customers, which can be consumers
(B2C) or other businesses (B2B); in other words, a Web service provider hosts
an e-commerce Web site via a contract with the e-business operator. In many e-
commerce contracts, the Web service provider agrees to offer a certain level of
QoS to each class of service in the hosting of the e-commerce site, and in return
the e-business operator agrees to pay the service provider based on the QoS lev-
els received by its customers. These contracts are based on a SLA (Service-Level-
Agreement) between the e-business operator and the Web service provider that
defines the QoS metrics for each class of service, the anticipated workload inten-
sity of per-class requests from the e-business and the pricing strategy by which
the SLA payment will be determined.

The exponential growth in Internet usage, much of which is fueled by the
growth and requirements of various aspects of e-commerce, has created the de-
mand for more and faster Web servers capable of serving over 100 million In-
ternet users. As mentioned in Chapter 2, server clustering has emerged as a
promising technique to build faster, scalable and cost-effective Web servers [137]
during recent years, which has made cluster-based Web server systems a major
means to hosting e-commerce sites. A state-of-the-art cluster-based Web server
system consist of a number of back-end server nodes and a specialized front-end
node, which acts as the single input point of customer requests and is responsible
for distributing the inbound requests among the back-end nodes. That is to say
that the back-end server nodes of a cluster-based Web server system which hosts
an e-commerce Web site are shared by the inbound requests of different service
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classes.
In this Chapter, we analyze the problem of maximizing the revenue attained

in the hosting of an e-commerce site with a SLA contract under a given amount
of server resources by optimally partitioning the server resources among all the
supported classes. Little work has been reported on this topic. The issue of max-
imizing SLA revenues in the cluster platform of Web server farms was recently
studied by Liu et al in [93]. A Web server farm is typically deployed to host sev-
eral Web sites simultaneously on the same platform. Moreover, they assumed
that each back-end server node in a Web server farm can serve multiple ser-
vice classes; they then tried to optimally allocate the resource (e.g., processing
capacity) of each server node among its supported service classes to maximize
the resulted SLA revenues. However, the closed-form solution to the optimal re-
source allocation scheme (i.e., the optimal service weights) in each back-end node
was not derived in [93]. Diao et al [45] proposed a profit-oriented feedback con-
trol system for maximizing SLA profits in Web server systems, which automated
the admission control decisions in a way that balances the loss of revenue due
to rejected work against the penalties incurred if admitted work has excessive
response times by a fuzzy control algorithm. Additionally, the issue of maxi-
mizing the expected value of a given cluster utility function by allocating server
resources of a cluster-based Web server system dynamically was studied in [94],
where the closed-form solution was also not derived.

7.1 Target Web cluster architecture for the hosting of an e-commerce
Web site

The target Web cluster architecture consists of a front-end component called Web
switch and a number of homogeneous back-end server nodes connected by a
high-speed LAN. The Web switch acts as the network representative for an e-
commerce Web site built upon the target cluster architecture, making the dis-
tributed nature of the site architecture completely transparent to its customers. In
such a way, the authoritative DNS server for the e-commerce site translates the
site name into the IP address of its Web switch, which receives all inbound re-
quests destined for the site and then distribute them across the back-end nodes.
Moreover, to enable QoS support in the e-commerce site, the Web switch must be
able to examine the content of a HTTP request and identify its requested service
class, i.e., it is the so-called layer-7 Web switch [137]. The above Web cluster archi-
tecture can be further classified on the basis of whether the data from the back-
end server nodes to clients (outgoing data) go through the Web switch. In our
target cluster architecture, the TCP handoff mechanism [113] is deployed to en-
able the back-end nodes respond to the clients directly without passing through
the front-end nodes as an intermediary. Thus the target cluster architecture can
be abstracted as a queuing system shown in Figure 80.

Suppose that an e-commerce Web site built upon the target cluster archi-
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FIGURE 80 Queuing model of the target Web cluster architecture upon which an e-
commerce Web site is built.

tecture consists of a layer-7 Web switch and N homogeneous back-end server
nodes, each of which has the processing capacity C bits/s; there are a total of m
service classes supported in the site. The idea of partitioning server resources
among the supported service classes is to partition the N back-end server nodes
into m disjoint server subsets so that each class of requests will be served only by
its own server subset assigned. Specifically, the server subset assigned to class
i is denoted by Si and the number of server nodes in Si is denoted by ni, then
Si ∩ Sj = , for i �= j and i, j ∈ [1, m], and ∑m

i=1 ni = N. Thus, the problem of
deriving the optimal/suboptimal resource partitioning scheme is actually to find
the optimal/suboptimal value of ni, i ∈ [1, m]. Note that ni does not have to be
an integer, which means that a back-end server node may actually be assigned
to multiple service classes with each class taking a portion of it. In this case, we
have that back-end node serve those service classes by WFQ algorithm and the
WFQ weights equal their shares in that node, respectively.

Based on the analysis in [175], the service time of a class i request at a back-
end node is proportional to the size of its requested Web object, i.e., Xi = Li/C,
where Li denotes the size (Bytes) of the Web object requested by class i customers
and C (Bytes/s) is the processing capacity of the back-end node. Thus, L̄i = E[Li ],
L̄i

2 = E[Li
2] and X̄i = E[Xi ] = L̄i/C, X̄i

2 = E[Xi
2] = L̄i

2/C2. In our scheme,
the layer-7 Web switch distributes the inbound requests from class i uniformly
among the back-end server nodes within server subset Si to make the server
loads balanced. In other words, if the overall arrival rate of class i requests to the
e-commerce site is λi requests/s and a back-end server node in Si is used exclu-
sively by class i requests, the mean arrival rate of class i requests to that back-end
node can be estimated as λi/ni. Furthermore, in this book, the processing delay
at the layer-7 switch is neglected due to the fact that in a Web environment the
client-to-server packets are typically much less than the server-to-client packets
and the chosen QoS metric in a SLA is the mean request delay in the e-commerce
Web site. Hence, according to the queuing theory of M/G/1, the analytic mean
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delay of class i requests ˆ̄di in the e-commerce site can be calculated as follows.

ˆ̄di = X̄i +
λi
ni

X̄i
2

2(1 − λi
ni

X̄i)
=

L̄i

C
+

λi L̄i
2

2C(niC − λi)L̄i
. (214)

The natural constraint of Eq. (214) is niC > λi L̄i due to the fact that delay can not
be negative.

7.2 Optimal resource partitioning scheme for the hosting of an e-
commerce site under linear pricing strategy

Consider an e-commerce Web site built upon the target cluster architecture with
N back-end server nodes and m service classes supported. The processing capac-
ity of each back-end node is C bytes/s. Additionally, the arrival rate of class i
requests is denoted by λi requests/s and the mean delay of class i requests in the
e-commerce site denoted by d̄i. The linear pricing strategy for class i requests is
characterized by the following definition of the linear pricing function ri(d̄i).
Definition 4: The function

ri(d̄i) = bi − kid̄i, i = 1, 2, ..., m, bi > 0, ki > 0 (215)

is called the linear pricing function of class i, where d̄i is the mean request delay of
class i, bi and ki are both positive constants and bi ≥ bj and ki ≥ kj hold to ensure
differentiated pricing if class i has a higher priority than class j.

As the QoS metric considered in the SLA is the mean request delay, the mean
delay d̄i of class i requests in the e-commerce site will be measured periodically
and the SLA revenue due to serving class i requests can be determined also peri-
odically based on class i pricing function and the above QoS (mean request delay)
measurement. Specifically, we use Eq. (214) to estimate d̄i. Thus, the SLA revenue
F obtained in the hosting of the e-commerce site during one measurement period
is defined as follows under the linear pricing function in Eq. (215):

F =
m

∑
i=1

ri(d̄i) =
m

∑
i=1

[bi − ki(
L̄i

C
+

λi L̄i
2

2C(niC − λi L̄i)
)]. (216)

Moreover, the issue of maximizing SLA revenue in the hosting of an e-commerce
Web site under linear pricing strategy can be formulated as follows:

max F =
m

∑
i=1

[bi − ki(
L̄i

C
+

λi L̄i
2

2C(niC − λi L̄i)
)] (217)

s.t.
m

∑
i=1

ni = N, 0 < ni < N, (218)

niC > λi L̄i. (219)
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By the Lagrangian optimization approach, we derived the following op-
timal resource partitioning scheme in publication [180], which can achieve the
maximum SLA revenue F under linear pricing strategy when hosting an e-commerce
site built upon the above target cluster architecture.

ni =
(CN − ∑m

j=1 λj L̄j)
√

kiλi L̄i
2

2

C ∑m
j=1

√
kjλj

¯Lj
2

2

+
λi L̄i

C
, i ∈ [1, m]. (220)

Publication [180] made two sets of simulations to evaluate the effectiveness of the
derived optimal resource partitioning scheme for maximizing the SLA revenue
under linear pricing strategy, where the Bounded Pareto distribution (BP(p, q, α))
[38] is used to model the heavy-tailed characteristic of Web objects. The simu-
lation results there demonstrate that our derived optimal resource partitioning
scheme can succeed in implementing the maximization of SLA revenues under a
given amount of server resources and linear pricing strategy when a Web service
provider hosts an e-commerce Web site by the above target Web cluster architec-
ture.

7.2.1 Suboptimal resource partitioning scheme for the hosting of an e-commerce
site under flat pricing strategy

The suboptimal resource partitioning scheme is proposed here for maximizing
SLA revenue in the hosting of an e-commerce Web site under flat pricing strategy.

7.2.2 Flat pricing strategy for the hosting of an e-commerce site

As mean request delay is deployed as the QoS metric in the SLA, the definition of
flat pricing strategy in this case is almost the same as the one defined in Chapter
5.2.1 except that d̄i denotes the mean request delay of class i here. Specifically,
consider an e-commerce Web site built upon the above target cluster architecture
with N back-end server nodes and m service classes supported. The flat pric-
ing strategy for class i is characterized by the following definition of flat pricing
function.

Definition 5: The function

ri(d̄i) =
{

Ri if d̄i ≤ Di
−Pi if d̄i > Di

, i = 1, 2, ..., m (221)

is called the flat pricing function of class i in the hosting of an e-commerce Web site,
where Di is the QoS (mean request delay) guarantee required by class i requests
and Ri and Pi are both positive constants. The above flat pricing function specifies
that if the real mean delay offered to class i requests is less than Di during one
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charging period, the Web service provider will receive a revenue Ri, otherwise a
penalty Pi is incurred for failing to meet that Di. Moreover, Ri ≥ Rj and Pi ≥ Pj
should hold to ensure differentiated pricing if class i has higher priority than class
j, which are expected under the SLA requirement.

7.2.3 Suboptimal resource partitioning scheme under the flat pricing strategy

Suppose that an e-commerce Web site built upon the above target cluster archi-
tecture consists of N homogeneous back-end server node, each of which has the
processing capacity C bits/s, and supports a total of m service classes with Pois-
son arrival rate λ1, λ2, ..., λm, respectively. As the analytic mean delay ˆ̄di of class
i requests in Eq. (214) can be used to estimate the real mean request delay d̄i,
ˆ̄di has to be less than Di so that the SLA revenue Ri can be obtained during one
charging period for serving class i requests. The minimum number of back-end
server nodes which has to be assigned to class i to meet its QoS guarantee Di can
be derived from the inequality ˆ̄di ≤ Di. However, the real mean request delay d̄i

of class i will definitely differ by a small amount from ˆ̄di as shown in publication
[180]. Hence, to guarantee d̄i ≤ Di in the real situation, we may deploy a small
constant parameter εi for class i and then construct the following inequality:

ˆ̄di + εi =
L̄i

C
+

λi L̄i
2

2C(niC − λi)L̄i
+ εi ≤ Di. (222)

By solving this inequality, the solution to ni for a general distribution of Web
object size can be calculated as follows:

ni ≥ λi L̄i
2

2C[(Di − εi)C − L̄i]
+

λi L̄i

C
(223)

under the constraint
m

∑
i=1

ni ≤ N, 0 < ni ≤ N. (224)

Note that the parameter εi determines how well the inequality d̄i ≤ Di will be
guaranteed. We should set the value of εi carefully based on the system param-
eter settings and the burstiness of class i traffic. As a result of the above solution
to ni in (223), we present the suboptimal resource partitioning scheme for max-
imizing the SLA revenue in the hosting of an e-commerce site built upon the
target cluster architecture under a given amount (N back-end server nodes here)
of server resources and flat pricing strategy as follows:

1. Set ni,min = λi L̄i
2

2C[(Di−εi)C−L̄i]
+ λi L̄i

C , i=1,2,...,m,

2. If ∑m
i=1 ni,min ≤ N, then the above ni,min, i=1,2,...,m, is the suboptimal re-

source partitioning scheme in this case,

3. Otherwise, it means that the N back-end server nodes are not enough to
guarantee that d̄i ≤ Di, i ∈ [1, m] for all the supported service classes.
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Hence, we should first satisfy the QoS guarantees of a set of selected service
classes so that the obtained SLA revenue (actually revenue plus penalty) is
the highest in this situation. The remaining server resources are allocated to
all the supported service classes other than those selected ones uniformly.

Note that the above set of selected service classes in Step 3 is acquired by the
comparison of the resulted SLA revenues under all possible resource partitioning
schemes, which makes its calculation complexity increases quickly with larger
values of m. Hence, instead we may first assign n1,min back-end server nodes to
class 1, n2,min nodes to class 2,..., and nj,min nodes to class j (j ∈ [1, m − 1]) until

∑
j+1
i=1 ni,min > N. The derivation of suboptimal resource partitioning scheme is

illustrated in the next section.

7.2.4 Simulation results

Here some simulation results are presented to illustrate the effectiveness of our
above approach by which the suboptimal resource partitioning scheme can be
derived for the hosting of an e-commerce Web site under flat pricing strategy.
Throughout this section, we study an e-commerce site built upon the target Web
cluster architecture which consists of a layer-7 Web switch and 16 homogeneous
back-end server nodes (N=16) that support three service classes (m=3, namely,
Gold, Silver and Bronze classes). Moreover, each back-end server node has the
processing capacity of C=5.95MB/s and the parameters of the three flat pricing
functions for Gold, Silver and Bronze classes are summarized below: D1=18ms,
R1=10 money units, P1=15 money units, D2=25ms, R2=5 money units, P2 =8
money units, and D3=45ms, R3=2 money units, P3=4 money units. Furthermore,
ε1=3ms, ε2=4ms and ε3=6ms are set for Gold, Silver and Bronze classes, respec-
tively.

For actual Web workloads, it is recognized that Web object sizes are dis-
tributed with a heavy tail. Here the Bounded Pareto distribution (BP(p, q, α))
[38] is used to model the heavy-tailed characteristic of Web objects. Specifically,
the mean size of Web objects is set to 21KB as measured in [5] with p=1KB and
q=10MB are chosen as the reasonable minimum and maximum Web object size,
respectively. The resulting α=0.8037 is within the range of α values measured in
[4] and [37]. The arrival process of client requests destined for the e-commerce
site was modelled by Poisson distribution. Additionally, for each of the following
simulations, we first derive the suboptimal resource partitioning scheme by our
above approach and then deploy it as well as another proportional resource par-
titioning scheme in the simulation for comparison. Specifically, the proportional
resource partitioning scheme assigns the following number of back-end server
nodes to class i requests: ni,proportional = λi L̄i/ ∑m

j=1(λj L̄j), i ∈ [1, m].
In the first simulation, λ1=100 requests/s, λ2=150 requests/s and λ3=250

requests/s. Thus, we see that n1,min=5.3899, n2,min=5.4919 and n3,min=4.9559 by
Eq. (223). As ∑3

i=1 ni,min=15.8377 < N=16, the e-commerce site has enough
server resources to satisfy the QoS guarantees of Gold, Silver and Bronze classes
and the above set of n1,min, n2,min and n3,min is the suboptimal resource parti-
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TABLE 16 For the first simulation: mean request delay in the e-commerce Web site.

Mean request delay Mean request delay Mean request delay

of Gold class (d̄1) of Silver class (d̄2) of Bronze class (d̄3)

By the suboptimal scheme 16.2579 ms 22.4538 ms 36.1440 ms

By the proportional scheme 25.7174 ms 24.1147 ms 23.8124 ms

tioning scheme in this case. Moreover, because the remaining server resources
(N−∑3

i=1 ni,min=0.1623) is less than 1 and in a back-end server node which will
serve multiple service classes, the requests from the multiple classes share the
back-end node by WFQ algorithm, we allotted the remaining server resources to
Gold class requests in the simulation. Hence, the deployed suboptimal resource
partitioning scheme is as follows: n1,suboptimal = 5.5522, n2,suboptimal = 5.4919 and
n3,suboptimal = 4.9559. The simulation results of the mean request delays in the
e-commerce site are presented in Table 16.

It can be seen from Table 16 that d̄1 ≤ D1 = 18ms, d̄2 ≤ D2 = 25ms and
d̄3 ≤ D3 = 45ms are all satisfied by the derived suboptimal resource partitioning
scheme. Hence, the suboptimal resource partitioning scheme achieves the max-
imum value ∑3

i=1 Ri=17 money units of the SLA revenue during one charging
period (400s here) for the hosting of the e-commerce site under the flat pricing
strategy. Whereas, the proportional resource partitioning scheme can not have
d̄1 ≤ D1 hold, which results in −P1 + R2 + R3 = −8 money units of the SLA
revenue during the same charging period. In other words, the service provider
will get the loss of 8 money units due to failing to satisfy the QoS guarantee of
Gold class requests when using the proportional scheme.

Next, the workload intensity with λ1=120 requests/s, λ2=180 requests/s
and λ3=300 requests/s is fed into the e-commerce Web site in the second simula-
tion, which leads to n1,min=6.4679, n2,min=6.5903 and n3,min=5.9471 by Eq. (223).
As ∑3

i=1 ni,min = 19.0053 >N=16, it means that the e-commerce site does not have
enough server resources available to satisfy the QoS guarantees of all supported
service classes (Gold, Silver and Bronze classes here). However, it is noticed
that n1,min + n2,min < 16 holds in this case. Hence, we can derive the following
suboptimal resource partitioning scheme by first guaranteeing the satisfaction
of QoS requirements of both Gold and Silver classes: n1,suboptimal=n1,min=6.4679,
n2,suboptimal=n2,min=6.5903 and n3,suboptimal=N − n1,min − n2,min=2.9418. The simu-
lation results for this case are presented in Table 17.

Table 17 shows that d̄1 ≤ D1 = 18ms and d̄2 ≤ D2 = 25ms both hold
although d̄3 > D3 = 45ms when the above suboptimal resource partitioning
scheme is deployed. Hence, the suboptimal scheme can achieve the highest rev-
enue in this case, i.e., R1 + R2 − P3=11 money units. Whereas, although the pro-
portional resource partitioning scheme satisfies the QoS guarantee of Bronze class
(d̄3 < 45 ms), it sacrifices the QoS performances of Gold and Silver classes (i.e.,
d̄1 > 18 ms and d̄2 > 25 ms). Thus, the Web service provider will get the loss
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TABLE 17 For the second simulation: mean request delay in the e-commerce Web site.

Mean request delay Mean request delay Mean request delay

of Gold class (d̄1) of Silver class (d̄2) of Bronze class (d̄3)

By the suboptimal scheme 16.7959 ms 21.8557 ms 90.8417 ms

By the proportional scheme 26.3930 ms 27.4331 ms 30.4962 ms

of P1 + P2 − R3=21 money units during each charging period for the hosting of
the e-commerce site by the proportional resource partitioning scheme. Therefore,
based on the above simulation results, it can be concluded that the suboptimal re-
source partitioning scheme derived by our proposed approach is able to achieve
the highest SLA revenue for the hosting of an e-commerce site under flat pricing
strategy.

7.3 Summary

Cluster-based Web server systems have become a major means to hosting e-commerce
sites. In this Chapter, we linked the issue of resource partitioning scheme with the
pricing strategy in a Service-Level-Agreement (SLA) and analyzed the problem
of maximizing the revenues obtained in the hosting of an e-commerce site with a
SLA contract by optimally partitioning the server resources among all supported
service classes. In publication [180], the optimal resource partitioning scheme
is derived under a given amount of server resources and linear pricing strategy
when the QoS metric in the SLA is mean request delay, which has the closed-form
solution to the optimal number of the back-end server nodes assigned to each
service class. Moreover, the closed-form solution can apply to any general distri-
bution of requested Web object size. Finally, the suboptimal resource partitioning
scheme is proposed based on the analysis of the target cluster architecture when
the mean request delay is chosen as the QoS metric in the SLA, which can achieve
the highest SLA revenue obtained for the hosting an e-commerce site under a
given amount of back-end server nodes and flat pricing strategy. The suboptimal
resource partitioning scheme can also apply to any general size distribution of
requested Web object.



8 CONCLUSIONS

The presence of services, such as VoIP and VoD, create a strong impetus to intro-
duce service differentiation in modern networks. In such a framework, a provi-
der has to use appropriate mechanisms to share the limited bandwidth resources.
Though the existent scheduling mechanisms enable a provider to allocate re-
sources between the service classes, they fail to react appropriately to the varying
number of active flows and, as a result, to the varying bandwidth requirements.
Thus, it is anticipated that the static configuration of routers will be replaced with
more sophisticated algorithms. Though the static configuration can ensure that
the certain class will obtain a better treatment, it is not capable of ensuring that
flows within that class will be provided with the desired QoS guarantees.

The models presented in this book are capable of translating individual flow
bandwidth and delay requirements into the configuration for the given sched-
uler so that all the QoS guarantees are ensured. The QoS constraints of Adaptive
models specify the set of feasible configurations for the scheduler. If there is no
feasible configuration, then a router does not have enough resources. By this, the
models perform the admission control. Finally, by using the optimization criteria,
such as the price for network services, the models choose a configuration that al-
locates free resources in such a way that the given criterion is maximized. By this,
the proposed models can help a provider to remove the gap between the high-
level SLA information and the low-level configuration of a particular scheduler.
The input parameters of the models relate to the SLA and its technical level part,
SLS. The output of the models is the weight values for the given scheduler type.

The simulation results have confirmed the correctness of the presented adap-
tive models. They are capable of ensuring the QoS guarantees of several service
classes with various requirements and pricing schemes. At the same time, free
resources are allotted in such a way that the total revenue is maximized. As con-
sidered theoretically and presented in the simulation results, the models can be
applied easily to the DiffServ and IntServ QoS frameworks. Depending on the
link speed and the available network equipment, a provider can choose the model
for the particular underlying scheduler.

Since Adaptive models depend neither on a concrete signalling protocol,
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nor on specific traffic characteristics, they can be used almost in any QoS frame-
work. In particular, Adaptive model based on the WRR scheduler can be used in
the ATM networks that have cells of a fixed size. It also worth mentioning that the
adaptive models can also be adopted for sharing the resources on the link layer.
For instance, they can be used at the hybrid coordinator of the 802.11e WLAN
networks. Since the hybrid coordinator has to allocate resources between the
WLAN nodes in such a way, that all the QoS requirements are satisfied within the
contention-free period, Adaptive models can calculate the optimal distribution of
transmission opportunities. In the same way, Adaptive models can calculate the
number of slots within the 802.16 WiMax frame to ensure the QoS requirements
of each station.
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