Simulation

Variance reduction
 Example

Wash machine

- Consider the wash machine example from introduction
- Goal is to simulate the utilization rate U/T
- Compare between two variants
- Fast service time Unif(4,8) ($s=6$)
- Slow service time Unif(6,10$)(\mathrm{s}=8)$
- Interarrival time $\operatorname{Exp}(a), a=8$

Utilization rate

- Different ways to estimate the utilization rate U/T
- Compute directly the utilization time U
- Estimate the lost clients
- U=Ts/a - Ls
- Estimate the queue full time and potential of losing the clients
- $\mathrm{U}=\mathrm{Ts} / \mathrm{a}-\mathrm{s}(\mathrm{F} / \mathrm{a})=(\mathrm{T}-\mathrm{F}) \mathrm{s} / \mathrm{a}$

Utilization rate

- Estimate lost clients
- 200 runs of 1000 time units
- Direct evaluation
- Mean 11,525, stddev $=4,81$ (fast variant)
- Mean 22,905, stddev= 7,18 (slow)
- Monitoring full time
- Mean 11,675, stddev $=3.25$ (33% reduction)
- Mean 22,780, stddev = 5,44 (23\% reduction)

Comparison

- Compare the lost clients for two variants
- Direct comparison
- Difference of mean $=11,38$
- Stddev = stddev(fast)+ stddev(slow)
- $=4,81+7,18=11,99$
- Pairwise comparison (common random streams
- Stddev = 3.82 (75% reduction, 16 times speedup)

