
Simulation

Object based simulation

Process based simulation

• Logically related events are collected to a
single life cycle (instead of separate event
routines)

– Easier to manage subprocesses or -entities

• Several concurrent life cycles have to be
managed

• Same life cycle/process may have several
instances running simultaneously

Client process

• In wash machine example each client has

a clear life cycle.

• Example can be modelled with one life

cycle that is copied for each client.

• How to manage concurrent processes if

this is not supported by the programming

language?

Client process

• Life cycle is divided to phases (one event

per phase), that can be refered to and

stored for each instance of the process.

• Event list refers to the process instance

and the phase (and time).

• Simulation main routine
• Reads the event list.

• Calls for a process instance to execute a given

phase.

Client process

ClientProcess(me, Phase) //”me” stands for client in question

CASE Phase

Arrival {

Car = new Client // Calls for next client

Schedule(Car,”Arrival”, ArrivalTimeDistribution())

If (!Service.IsFull()) //if place in queue available

me.NextPhase=”Start”

Service.Add(me)

Service.Reserve()

Else // Lost client

me.NextPhase=”Departure” }

Start {

Schedule(me,”End”,ServiceTimeDistribution())

}

Client process

End {

Service.Release()

Service.Reserve()

Schedule (me,”Departure”,0.)

}

Departure {

// Collect statistics

me.Remove //destructor

}

ENDCASE

Service

//Service has methods like Add, TakeNext, Length,

and IsFull for internal queue, and

Reserve/Release

Reserve()

ClientType :: Car

{

If(Free and Length()>0) {

Car=TakeNext() //gives next from the queue

Free = false

Schedule(Car,Car.NextPhase,0.) //Start

}

}

Analysis

• Traditional (i.e. non-object) languages

require separate actions

– To communicate the phase of execution

– To communicate internal variables

– To divide life cycle to explicit phases

– To build conditional life cycles

• Programming is easier if these are

inherent in the process instance -> Object

Object simulation

• Objects were invented to encapsulate

process instances (SIMULA, 1967).

• Inheritance was needed to hide the control

structures related to concurrent processes

(threads).

• Common terms and methods for process

phases and mutual communication.

States of process object

• Four possible states

– Active (currently executed)

– Scheduled

• Event list has reference to future activation of the

object

– Passive (no future event scheduled)

• Some other object has to schedule/activate this

– Terminated

• Can not be activated by any means

State changes

• Only active object can make state
changes

– To itself
• Passivate (waits until some other activates it)

• Hold (waits for given time)

• Terminate (if the life cycle is over)

– To others
• Activate (wakes up a passive object (now or later))

• Cancel (cancel scheduled activation)

• Terminate (removes the entire process)

Example

• Wash machine can be modeled in many

ways

• Different divisions to active objects (with

own life cycle) and other entities (classes

with methods for process objects to use).

– Active clients, passive service resource and

queue

– Passive client and queue, active service with

life cycle

Client life cycle

Client Car

Service Q

Car = new Client

Car.Activate(ArrivalTimeDistribution()) // next one

If (!Q.IsFull())

Q.Reserve(*this) // reserve service after evt
// queuing up

Hold(ServiceTimeDistribution()) // control shifts

Q.Release()

// Collect statistics

Terminate // client dies and control shifts away

Service

Setup() // Initialize empty queue etc

Reserve(Client Car)

If Free

Free=false

else

Queue.Add(Car) // Wait in queue if service not free

Car.Passivate() // Shift control away

Release()

If(Length >0)

Car = Queue.Next()

Car.Activate(0.) // Activate to use the service

else

Free=true // Service is set idle

”Main”

Q = New Service

Q.Setup

Car = New Client

Car.Activate(ArrivalTimeDistribution())

Hold(DurationOfSimulation)

// Report the results

// Terminate the clients at queue, remove queue

// Shift control to the actual main thread

• ”Main”, controller, is a process object with

simulation process methods

• Is created in the actual main-thread

Analysis

• Concurrent processes needed
– Use (of threads) is in the background

– Simulation classes are inherited from the thread
classes of the programming language

– Cf class libraries of JavaSim and C++Sim

• Example does not work in practice
• Dynamic clients create new clients

• When first client-thread dies, the others get unstable

• ”Permanent ” client-generator is needed

• Also reserving services may need elaboration

Service based model

• Example can be modeled with two process

instances

– Client generator

– Service process

• Clients and queue as ordinary classes (no

life cycle/simulation methods)

• Modification of JavaSim ”Basic” example

Container harbor

• Several possible strategies to model the

situation

– Ships can be active processes or passive

load containing only routing information

– Harbor can be a collection of active services

(docks), a single service with given capacity

or a passive resource (with given capacity)

– Dock can be an active service or passive

resource

Container harbor

• Each strategy has its own pitfalls
• How to manage passive ship to right harbor at right

time

• If harbor is active and dock a passive resource,

where is the ship when it is unloaded

• Even fully passive harbor-dock needs own

structures (queues, capacity management)

• Common higher level constructs are useful

Higher level constructs

• Semaphore/resource

– Construct for a critical reservable resource

that enables queuing for it

• Given (fixed) capacity

• Internal queue for demands

• Methods for reserving and releasing the capacity

• Blocks the reserving process if capacity is not

available, activates the (next) waiting process

when capacity is released

Higher level constructs

• Bin/Stock

– For storing things between two processes

(provider/user)

• Internal storage for things

• Internal queue for users waiting (when storage

empty)

• Internal queue for providers (if stock with finite

capacity) waiting at full stock

Higher level constructs

• Wait queues

– Needed to handle asynchronous events

– Queues for processes that can wait for some

condition to become true

• Certain time/event

• Ending of a certain process

• Some other trigger

Passive harbor

• Consider active ships (ProcessObject) and

passive harbor resources

– Harbor H as a semaphore/resource with capacity with

two methods

• H.Get (ProcessObject) and H.Release()

• Get

– enqueues ProcessObject internally

– reserves the resource

– passivates ProcessObject if resource not available

• Release frees the resource and activates the next waiting

ProcessObject

Harbor as semaphore

• Flow of a ship through sequence of

harbours H[]

– Assume H as JavaSim Semaphore
For (int i=0; i< N; i++)

{

Hold(traveltime(i));// travel to next harbour

H[i].Get(this); //get the resource

Hold(servicetime(i)); // actual unloading

H[i].Release(); release the resource

}

Harbor as resource

– Assume ship has methods Get and Release
For (int i=0; i< N; i++)

{

Hold(traveltime(i));// travel to next harbour

Get(H[i]); //get the resource

Hold(servicetime(i)); // actual unloading

Release(H[i]); release the resource

}

• Get passivates the process if H[i] is not available, Release activates
the next in line

Harbor as resource

• Results to rather simple model structure

– The flow of events is all in the client (ship) life

cycle

• Client based data collection is easy to arrange

• Monitoring the resources requires extra work

• The whole flow of events (with all variants) is to be

modeled explicitly

• Hierarchical subtasks/systems not available

Real examples

• Most simulation models have several

components

– Many services, queues, client streams

– Life cycle of a single component is relatively

easy to manage (class with parameters)

– Mutual interactions between components

have to modelled (routing tables and

diagrams, visualisation, graphical editor)

– In practice graphical classes are needed also

Links

• JavaSim
– Essentially the SIMULA environment as an open Java

implementation

– Course examples mainly for newest version
• https://github.com/nmcl/JavaSim

• Desmo-J
– More elaborate Java-based environment containing

event and object based approaches
• http://desmoj.sourceforge.net/home.html

• SimPy (http://simpy.readthedocs.org/en/latest/index.html)

– Python package of simulation objects but not using
Simula-based terminology

https://github.com/nmcl/JavaSim
http://desmoj.sourceforge.net/home.html
http://simpy.readthedocs.org/en/latest/index.html

Links

• JaamSim
– Discrete event simulation environment with graphical

user interface

– Allows both event and process based modelling (+
drag and drop model building)

– http://jaamsim.com/index.html
• See >Downloads >programmer manual for the basic internal

constructs

• Makes no explicit use of SIMULA type constructs

http://jaamsim.com/index.html

