
Simulation

Discrete event systems

Discrete event simulation 1

• Consider systems with finitely many

components.

• Each component has only finitely many

states.

• Components interact through events.

• Event takes place at a particular time (it

has no duration).

Discrete event simulation 2

• Event can change states, generate other

events (for the same or later time).

• Typical structural components
• ”machine resources” (busy/free)

• ”human resources” (busy/free)

• ”raw materials” (availability/quantity)

• ”products” (stage of production/availability)

• Events are actions or beginnings and

endings of activities

Wash machine

• Components of car wash
• Wash machine (free/busy)

• Queuing space (M available slots)

• Clients (unwashed/being washed/washed)

• Events
• Client arrival/departure

• Wash start/end

• Entering/leaving the queue

• Some events occur always together

Main simulation functionalities 1

• Simulation software has 5 main

functionalities

– Description of model structure
• System parts -> state variables

• Interaction logic -> ”flow chart”

• Event logic-> ”code”

– Random processes

• Random numbers from desired distribution

– Collecting and reporting statistics

• Visualisation, confidence intervals, analysis

Main simulation functionalities 2

• Time management

– Advancing the clock event by event

– Activating events in right order

• Management of simulation experiment

– Starting/ending simulation

– Adding/removing events

– Controlled replication of experiments

Main simulation functionalities 3

• Some functions are common to all models

and experiments

– Time management

– Random numbers

– Data collection and reporting

• Some are model and case dependent

– Model structure and logic

– Control flow in (series of) experiment(s)

Simulation paradigms

• Different approaches to simulation

– Event based

• State changes linked to certain time

– Process based

• Life cycle of events related to a system component.

– Activity based

• Activities that tie up resources of system components

– Agent based

• ”Intelligent” entities able to commit and coordinate activities

• These lead to different model/code structures

– Fit for different modelling situations

Event based simulation

• Event routines have central role

– One routine for each type of event

– Model logic is in the event routines

– Event routines can change state variables

and create event notices.

– Scheduler manages event notices (time,

event)

• One routine at a time is active.

Process/object based s.

• Subprocesses as objects with own state

variables and event routines.
• All actions related to a system component are within a single

object

• Specific methods to communicate with

Scheduler and other objects.
• No separate event notices

• Several processes (virtually) active

simultaneously (threads, coroutines).

Activity based s.

• Logic within activity routines

– Each routine is linked to some resource

– Two interfaces

• Activation (if conditions are true, then reserve the resource

and fix ending time)

• Passivation: free the resource at given time

• All activities are scanned systematically
• If conditions are true, routine is activated.

• If no routine activates, time is incremented to next known

ending time.

Agent based s.

• Synthesis of process and activity based

approaches
– Key entities modeled as ”intelligent” agents

– Actions related to entity collected to agent script

– Instead of a preprogrammed life cycle a set of subactions and ability to select

appropriate ones for the situation

– Agent’s personal activity list

– Coordination between entities using agent communication instead of simulation

object methods

– Typically employed in cases where there are many similar interacting entities

(agent population) that create emergent behavior

Simulation

Event based simulation

Event based simulation

• Historically the oldest approach

• Logic is within sequentially executed

routines

– Easy to implement with any procedural

language

– Logic gets easily fragmented

• Successive/dependent events are in separate

routines

Wash machine (event b.)

• At least two types of events (arrival and
departure (see introduction))

– Both events can reserve the machine and
generate departure

– Potential maintainability problem

• Use 4 atomic events
• Arrival (generates the client)

• Start (reserve the resource and start service)

• End (end service, free resource)

• Departure (exits the client)

Wash machine 2

• Arrival
• If queue not full

– Create new client and put to the queue

– Create a Start-event

• Create new Arrival event (for later time)

• Start
• If machine is free and clients in the queue

– Take client from queue

– Set machine busy

– Create an End-event (for later time)

Wash machine 3

• End
• Set machine free

• Create Departure-event (for same time)

• Create Start-event (for same time)

• Departure
• Collect needed information from the client (if any)

• Remove client

Wash machine

Arrival
Start

End

Departure

Wash machine - implementation

• Using OES (JavaScript based environment for object-event based
simulation modeling, sim4edu.com)

• One ObjectType (WashStation), 4 EventType:s (classes with
specific routines)

• For events EventType (Arrival, Start, End, Departure)

• Events create new events and push them to EventList

• Simplistic implementation
– No tracking of individual clients -> no need to maintain queues etc

• This implementation is for older version (1.1) of OES!

Wash machine - implementation

• 4 event (sub)routines

• For events EventType (Arrival, Start,End, Departure)

• For bookkeeping EventNotice(Time, Event)

• Event list to keep EventNotice

– Methods
• NextEvent

• AddEvent (Time, Event)

• (RemoveEvent (Event))

• Queue

– No real queue implemented for the clients

Wash machine - main

Initialize

T=0;

AddEvent(ArrivalTimeDistribution(),Arrival);

While (T< TMax) \\ (ending condition)

Notice=NextEvent();

T=Notice.Time;

CASE Notice.Event of

…

\\ call for corresponding event routine

END CASE

End While

CustomerArrival

properties: {"washStation": {range: "WashStation"}},

methods: {"applyRule": function () {

var srvTm=0, events = [];

sim.stat.arrivedCustomers++;

if(this.washStation.queueLength >1){

this.washStation.lostClients++;}

else {

this.washStation.queueLength++;

events.push(new StartService({occTime: this.occTime,washStation:

this.washStation}));}

return events;}}

// Any exogenous event type needs to define a static function "recurrence"

CustomerArrival.recurrence = function () {

return rand.exponential(0.12); };

// Any exogenous event type needs to define a static function "createNextEvent"

CustomerArrival.createNextEvent = function (e) {

return new CustomerArrival({

occTime: e.occTime + CustomerArrival.recurrence(),

washStation: e.washStation });

StartService

properties: {"washStation": {range: "WashStation"}},

methods: {"applyRule": function () {

var srvTm=0, events = [];

if (this.washStation.queueLength >0 &&

!this.washStation.working) {

this.washStation.working=true;

srvTm = WashStation.serviceDuration();

events.push(new EndService({

occTime: this.occTime + srvTm,

serviceTime: srvTm,

washStation: this.washStation}));}

return events;}}

EndService

properties: {"washStation": {range: "WashStation"},

"serviceTime": {range: "nonNegativeNumber"}},

methods: {"applyRule": function () {

var events = []

this.washStation.queueLength--;

this.washStation.working=false;

events.push(new StartService({

occTime: this.occTime,

washStation: this.washStation}));

events.push(new CustomerDeparture({

occTime: this.occTime));

sim.stat.totalServiceTime += this.serviceTime;

return events;}}

CustomerDeparture

properties: {},

methods: {"applyRule": function () {

var events = [];

sim.stat.departedCustomers++;

return events;

}

}

Observations

• Event creation/event notice requires different
data depending on event and its needed
properties
– References to objects dealt with, time information,etc

• Modelling customer times would need customer
object and queues etc for them

• Many possibilities to model the needed time
logging (customer based, service based, event
notice based)

Simulation

Event based harbor network

Container harbors

• Main events

– Ship i arrives to harbor j

• Ship i to queue of harbor j at time t

• Try to start loading (if queue empty)

– Loading begins at a dock

• Ship i from queue, dock k reserved, loading end

event for time t2

Container harbours

• Main events

– Unloading of the ship ends

• Dock k becomes free at t3

• Try to start loading (if ships in queue)

– Ship leaves for the next harbor

• Ship i is scheduled to arrive to harbor j’ at t4

Questions ?

• Main events

– Ship i arrives to harbor j

• Ship i enters the queue of j at time t

• What information is contained in the event notice.

How the rest is communicated.

– Unloading begins

• Ship i taken from the queue, dock k reserved, end

unloading –event for time t1

• Is reference to dock k needed, where to keep link

to ship i

Questions?

• Main events

– Unloading ends

• Dock k becomes free at time t3

• Where is knowledge about the dock, about the

ship

– Ship leaves for next harbor

• Arrival of ship i to harbor j’ is scheduled at time t4

• Who knows the value of j’ for ship i

Event notices

• For traditional languages event notices are

problematic

– Static data types

– Limited amount of information can be

communicated

• Use of objects and inheritance helps

– Inherited notice class for each type of event

