Simulation

Random numbers

Random numbers

— "Anyone who considers arithmetic methods of
producing random digits is, of course, in a
state of sin”, John v. Neumann

— Only seemingly random (pseudo random
numbers) are used in simulation

— Random numbers should be
* Reproducable and efficiently generated

» Reflect the desired properties of the intended truly
random sequence (apparent independency,
statistics)

— Intended use dictates which features are
iImportant

History

Need to generate random numbers boomed
after invention of computers
— Simulation of nuclear reactions, Los Alamos

Simplicity and computational efficiency were
emphasized in the beginning
— Simple arithmetics, simple parameters

Later portability and quality issues
— Efficient implementation with high level languages
— Statistical properties

Generation of random numbers

* Divided in two stages

— Generation of Uniform (0,1) random numbers

» Generate uniformly (O,m-1) distributed integers
and divide with m

* Requires deep analysis for statistical properties
— Generation of random numbers with given
probability density function

e |s done using Unif(0,1) random streams
« Mainly a technical exercise

Modelling of randomness

« Consider generation of pseudo random
numbers as a case of simulation.

— We go through the steps of simulation
modelling process

Modelling randomness

* Recognition of the system/problem

« Which statistical properties of a truly random
sequence we have to reproduce?

» Right probability density function (easy part)

 Sufficient (!) statistical independence between
sampled values

* Long enough segquences

« Case: Sequences of millions of independent
Unif(0,1) random numbers

Modelling randomness

* Model design
« System components and their interactions

« Deterministic model with fixed parameters, (large
but finite) state that is updated and fixed transform
for output

e X Nn=F(X (n-1)), R_ n=1(X_n)

» Data collection and parameter estimation
* Not relevant for U(0,1)

Lehmer generator

* Developed in 40s (D Lehmer) for first
computers (Eniac)

» Basic operations: addition, multiplication

and taking reminder
e X=(a X+ c) mod m, R=X/m
« Parameters a, ¢ and m influence the properties of
the sequence

 Original generator was implemented as a separate
physical unit. Random stream was read when
needed (-> additional randomness)

Lehmer generator

 QOriginal Eniac generator
« m= 1078 +1
« A= 23
«C=0
— Simple and efficient to implement

Lehmer generator

— Next X Is uniquely defined from the previous
value.
« Sequence starts to repeat at first reoccurence of X
 Domain of X:n defines the theoretical maximum for
the length of sequence (=m)
— Conditions for reaching the maximum cycle
are known
* If q divides m (being prime or 4), a-1 =0 mod g

« C and m have no common divisors (and c is
nonzero)

Modelling randomness

« Software design

» Description model structures and interaction
patterns
— Set up phase and iterator delivering the next instance

« Software implementation

 Actual programming of the simulator
— Portability + handling the intermediate large integers

« Software testing
* Debugging

Lehmer generator

real (dp) ,parameter :: m=2. dp**31-1. dp

m 1=1. dp/m
a=16807. dp

real (wp) function random/()
seed=modulo (seed*a, m)
random=seed*m 1

return

end function random

Modelling randomness

« Model validation

 Qualitative/quantitative analysis of the model (comparisons to
observation, intuitive expectations, simplified test cases,

dependency of uncertain parameters)
« Counter example (mid square)

* Model experimentation

« Does the sequence appear as random?

* In what sense we can prove that the sequence is valid (for
our purposes)?

« What kind of experiments are needed?

Mid square method

integer,parameter :: m0=100,m1=10000
integer :: seed

real function random/()
seed=seed*seed
seed=seed/m0

seed=modulo (seed, ml)
random=real (seed) /real (ml)
return

end function random

3456

0.9439 9.47000E-02 0.8968 0.425 6.25000E-02 0.3906 0.2568 0.5946

0.

3549 0.5954 0.4501 0.259 0.7081 0.1405 0.974 0.8676 0.2729

0.4474 1.66000E-02 2.75000E-02 7.56000E-02 0.5715 0.6612 0.7185
0.
0
0

06242 0.9625 0.6406 3.68000E-02 0.1354 0.8333 0.4388 0.2545

.477 0.7529 0.6858 3.21000E-02 0.103 6.09000E-02 0.3708 0.7492
.13 0.69 0.61 0.21 0.41 0.81 0.61 0.21 0.41 0.81 0.61 0.21

Model validation

* "All models are wrong but some may still
be useful”
— We can not prove models to be "right”

— Goal Is to find models that resist our attempts
to prove them wrong (in given regime at least)

— For stochastic models the basic technique is
hypothesis testing

Testing of randomness

— Easy tests

« Test distribution of X_1 under condition x_(i-1) from
[a,b]

» Test distribution of k successive values within the
unit cube of Rk or distribution of
max(x_1i,...,Xx_(i+k-1)) in R.

* Try these to original Lehmer generator

Testing of randomness

— More elaborated tests

« See Knuth vol Il for history
 DIEHARD (classical test pattern from 1995, see

http://www.phy.duke.edu/~rgb/General/rand rate.php)

 Big Crush (collection of 100+ tests, see
http://Awww.iro.umontreal.ca/~simardr/testu01/t01.html for tutorial +
software downloads)

http://www.phy.duke.edu/~rgb/General/rand_rate.php
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

Lehmer generator

— Popular basic generators in practice

— Conceptually simple arithmetics

— 2"31-1 (maxint) Is prime

— Portable implementation simple (using double

precision arithmetics and small a if 64 bit
Integers are not supported)

— Well studied and known
* Too short cycle for modern needs

Combined generators

— Developed in the era of 16-bit processors,
(Wichman-Hill)
— Uses several generators with short cycles
« Takecyclesm 1, m 2jam_3
* Produce streams X 1and U 1= X _i/m_|i
e SetU=U 1+U 2+U 3 mod 1
— With appropriate choices the cycle is
m 1"m_2*m_3
 Fully standard (32-bit) arithmetics (if m_i<2"14)

Shuffled generators

— Used both for longer cycles and reduced
serial correlation

 Generate random numbers with method A to a
table

« Using generator B to select value from the table
(for output) and replace it with new value from A

« Requires an Initialization, some memory and two
random numbers for each output value

» Cycle can be longer (but how much)

Shuffled generator

Modern RNGs

— Current de facto standard is Mersenne
Twister
* Developed at late1990s
* Very long cycle (2* 19937 -1)
* Needs a working memory (and initialization) of
624-words
 Available for several languages

« Some serial correlation problems
— Slow escape of "zero state”

Mersenne twister

 The main ideas
— X (N+1) =F(X_N,..., X (N-623))
« "State vector’” has 624*32 = 19968 bits

» Theoretical maximal cycle would go through all
states

* Ruling out some bits of X (N-623) and the zero
state from possible states we get the wanted
length of theoretical maximal cycle (Mersenne
prime which gives the name)

Mersenne twister

— We need an F, that

* |s computationally light
 Leads to reaching the maximal cycle

— Can be found in the family of
« X (N+1)=X N*A 0+ ... X (N-k) *A k
* A _i:s are coefficient matrices
* The family has theory for maximum cycles

* Found F with only three A:s with non zero values

— l.e. only three distinct old X values are used on each
round.

Mersenne twister

— Method produces a very long cycle
— Is computationally relatively light

— Serial correlation has to be addresed
» This can be affected shuffling bits in the output

« Use Y=BX as output (B permutates the least
correlated bits to be the most significant)

— More recent versions (WELL) with improved
serial correlation available

Xorshift generators

« Simple generators based on efficient bit-level
shift and XOR operations

— Marsaglia (2003)
— Three successive right/left shifts and XORs

— Full cycle for selected parameters, good properties

— Standard int/long operations for 32/64 bits
y = (y<<13); y "= (y>>17); return y "= (y<<5);
— For longer cycles few ints needed
tmp=(x" (x<<15)); x=y; y=2z; Z=W;
return w=(w" (w>>21)) " (tmp” (tmp>>4)) ;

Summary

— Generation of random numbers has over 60-years of
history

Tested and known generators are available
Don’t try to do it yourself

Do not use unknown and undocumented generator (details,
references missing) without testing (vs the "secret” generator
of IBM PC:s Basic language)

You have to understand the generator to make controlled
replications
— Initialization, ensuring independent streams

Random numbers and
probabillity distributions

* How to generate random numbers with
given probability distribution function (pdf).

* Method of inverse probability

— Let f be a given pdf. It has a cumulative
probability function F: x-> (0,1).

N

Inverse probabllity method

* Pick u from Unif (0,1)

« Set x = F(-1) (u).

« Pdf of x is f.

* We have to know F*(-1) in closed form

N “

Inverse probabllity method

« Consider the exponential distribution
— Pdf f. is f(x) = a e”(-ax)
— Cumulative pf is F(x) = 1- e”(-ax)
— S0 FA(-1) (U) = - In(1-U)/a
— Numbers obeying exponential pdf are
obtained generating U ~ Unif(0,1) and
reporting
 Either —In(1-U)/a
e Or —In (U)/a if U>0 always

Elimination method

— General method that requires only pdf values
 Let f be a pdf supported on (a,b) with values 0O<f<c.
* Pick x in Unif(a,b), y in Unif(0,c).
* If y< f(x), accept x.
 Else reject x and pick new values for x,y

Elimination method

— Method 1s most efficient when there Is least
amount of rejections

* One can divide (a,b) to subintervals and/or change
the pdf of y to approximate f better.

* |If f< cg (on some subinterval), g is a known pdf,
pick x from g-distribution and y from Unif(0O, cg(x))

Elimination method

— When using subintervals

* First one has to draw which subinterval to select
for x (probabilites computed beforehand)

* Then draw x from g corresponding to subinterval
and y Unif(0,cg(x)) and test for y<f(x).

« Subdivision of interval can be an art (Marsaglia, cf
Knuth vol 1D

