
Simulation

Random numbers

Random numbers

– ”Anyone who considers arithmetic methods of
producing random digits is, of course, in a
state of sin”, John v. Neumann

– Only seemingly random (pseudo random
numbers) are used in simulation

– Random numbers should be
• Reproducable and efficiently generated

• Reflect the desired properties of the intended truly
random sequence (apparent independency,
statistics)

– Intended use dictates which features are
important

History

• Need to generate random numbers boomed

after invention of computers

– Simulation of nuclear reactions, Los Alamos

• Simplicity and computational efficiency were

emphasized in the beginning

– Simple arithmetics, simple parameters

• Later portability and quality issues

– Efficient implementation with high level languages

– Statistical properties

Generation of random numbers

• Divided in two stages

– Generation of Uniform (0,1) random numbers

• Generate uniformly (0,m-1) distributed integers

and divide with m

• Requires deep analysis for statistical properties

– Generation of random numbers with given

probability density function

• Is done using Unif(0,1) random streams

• Mainly a technical exercise

Modelling of randomness

• Consider generation of pseudo random

numbers as a case of simulation.

– We go through the steps of simulation

modelling process

Modelling randomness

• Recognition of the system/problem
• Which statistical properties of a truly random

sequence we have to reproduce?

• Right probability density function (easy part)

• Sufficient (!) statistical independence between

sampled values

• Long enough sequences

• Case: Sequences of millions of independent

Unif(0,1) random numbers

Modelling randomness

• Model design
• System components and their interactions

• Deterministic model with fixed parameters, (large

but finite) state that is updated and fixed transform

for output

• X_n = F(X_(n-1)), R_n= f(X_n)

• Data collection and parameter estimation
• Not relevant for U(0,1)

Lehmer generator

• Developed in 40s (D Lehmer) for first
computers (Eniac)

• Basic operations: addition, multiplication
and taking reminder

• X= (a X+ c) mod m, R=X/m

• Parameters a, c and m influence the properties of
the sequence

• Original generator was implemented as a separate
physical unit. Random stream was read when
needed (-> additional randomness)

Lehmer generator

• Original Eniac generator
• m= 10^8 +1

• A= 23

• C= 0

– Simple and efficient to implement

Lehmer generator

– Next X is uniquely defined from the previous

value.

• Sequence starts to repeat at first reoccurence of X

• Domain of X:n defines the theoretical maximum for

the length of sequence (=m)

– Conditions for reaching the maximum cycle

are known

• If q divides m (being prime or 4), a-1 =0 mod q

• C and m have no common divisors (and c is

nonzero)

Modelling randomness

• Software design
• Description model structures and interaction

patterns

– Set up phase and iterator delivering the next instance

• Software implementation
• Actual programming of the simulator

– Portability + handling the intermediate large integers

• Software testing
• Debugging

Lehmer generator

real(dp),parameter :: m=2._dp**31-1._dp

m_1=1._dp/m

a=16807._dp

real(wp) function random()

seed=modulo(seed*a,m)

random=seed*m_1

return

end function random

Modelling randomness

• Model validation
• Qualitative/quantitative analysis of the model (comparisons to

observation, intuitive expectations, simplified test cases,
dependency of uncertain parameters)

• Counter example (mid square)

• Model experimentation
• Does the sequence appear as random?

• In what sense we can prove that the sequence is valid (for
our purposes)?

• What kind of experiments are needed?

Mid square method

integer,parameter :: m0=100,m1=10000

integer :: seed

real function random()

seed=seed*seed

seed=seed/m0

seed=modulo(seed,m1)

random=real(seed)/real(m1)

return

end function random

3456

0.9439 9.47000E-02 0.8968 0.425 6.25000E-02 0.3906 0.2568 0.5946
0.3549 0.5954 0.4501 0.259 0.7081 0.1405 0.974 0.8676 0.2729
0.4474 1.66000E-02 2.75000E-02 7.56000E-02 0.5715 0.6612 0.7185
0.6242 0.9625 0.6406 3.68000E-02 0.1354 0.8333 0.4388 0.2545
0.477 0.7529 0.6858 3.21000E-02 0.103 6.09000E-02 0.3708 0.7492
0.13 0.69 0.61 0.21 0.41 0.81 0.61 0.21 0.41 0.81 0.61 0.21

Model validation

• ”All models are wrong but some may still

be useful”

– We can not prove models to be ”right”

– Goal is to find models that resist our attempts

to prove them wrong (in given regime at least)

– For stochastic models the basic technique is

hypothesis testing

Testing of randomness

– Easy tests

• Test distribution of x_i under condition x_(i-1) from

[a,b]

• Test distribution of k successive values within the

unit cube of R^k or distribution of

max(x_i,…,x_(i+k-1)) in R.

• Try these to original Lehmer generator

Testing of randomness

– More elaborated tests

• See Knuth vol II for history

• DIEHARD (classical test pattern from 1995, see

http://www.phy.duke.edu/~rgb/General/rand_rate.php)

• Big Crush (collection of 100+ tests, see

http://www.iro.umontreal.ca/~simardr/testu01/tu01.html for tutorial +

software downloads)

http://www.phy.duke.edu/~rgb/General/rand_rate.php
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

Lehmer generator

– Popular basic generators in practice

– Conceptually simple arithmetics

– 2^31-1 (maxint) is prime

– Portable implementation simple (using double

precision arithmetics and small a if 64 bit

integers are not supported)

– Well studied and known

• Too short cycle for modern needs

Combined generators

– Developed in the era of 16-bit processors,

(Wichman-Hill)

– Uses several generators with short cycles

• Take cycles m_1, m_2 ja m_3

• Produce streams X_i and U_i= X_i/m_i

• Set U= U_1+U_2+U_3 mod 1

– With appropriate choices the cycle is

m_1*m_2*m_3

• Fully standard (32-bit) arithmetics (if m_i<2^14)

Shuffled generators

– Used both for longer cycles and reduced

serial correlation

• Generate random numbers with method A to a

table

• Using generator B to select value from the table

(for output) and replace it with new value from A

• Requires an initialization, some memory and two

random numbers for each output value

• Cycle can be longer (but how much)

Shuffled generator

A B

Modern RNGs

– Current de facto standard is Mersenne

Twister

• Developed at late1990s

• Very long cycle (2^ 19937 -1)

• Needs a working memory (and initialization) of

624-words

• Available for several languages

• Some serial correlation problems

– Slow escape of ”zero state”

Mersenne twister

• The main ideas

– X_(N+1) = F(X_N,…, X_(N-623))

• ”State vector” has 624*32 = 19968 bits

• Theoretical maximal cycle would go through all

states

• Ruling out some bits of X_(N-623) and the zero

state from possible states we get the wanted

length of theoretical maximal cycle (Mersenne

prime which gives the name)

Mersenne twister

– We need an F, that

• Is computationally light

• Leads to reaching the maximal cycle

– Can be found in the family of

• X_(N+1) = X_N*A_0 + … X_(N-k) * A_k

• A_i:s are coefficient matrices

• The family has theory for maximum cycles

• Found F with only three A:s with non zero values

– I.e. only three distinct old X values are used on each

round.

Mersenne twister

– Method produces a very long cycle

– Is computationally relatively light

– Serial correlation has to be addresed

• This can be affected shuffling bits in the output

• Use Y=BX as output (B permutates the least

correlated bits to be the most significant)

– More recent versions (WELL) with improved

serial correlation available

Xorshift generators

• Simple generators based on efficient bit-level

shift and XOR operations

– Marsaglia (2003)

– Three successive right/left shifts and XORs

– Full cycle for selected parameters, good properties

– Standard int/long operations for 32/64 bits

y ^= (y<<13); y ^= (y>>17); return y ^= (y<<5);

– For longer cycles few ints needed
tmp=(xˆ(x<<15)); x=y; y=z; z=w;

return w=(wˆ(w>>21))ˆ(tmpˆ(tmp>>4));

Summary

– Generation of random numbers has over 60-years of

history

• Tested and known generators are available

• Don’t try to do it yourself

• Do not use unknown and undocumented generator (details,

references missing) without testing (vs the ”secret” generator

of IBM PC:s Basic language)

• You have to understand the generator to make controlled

replications

– Initialization, ensuring independent streams

Random numbers and

probability distributions
• How to generate random numbers with

given probability distribution function (pdf).

• Method of inverse probability

– Let f be a given pdf. It has a cumulative
probability function F: x-> (0,1).

Inverse probability method

• Pick u from Unif (0,1)

• Set x = F^(-1) (u).

• Pdf of x is f.

• We have to know F^(-1) in closed form

u

x

Inverse probability method

• Consider the exponential distribution

– Pdf f. is f(x) = a e^(-ax)

– Cumulative pf is F(x) = 1- e^(-ax)

– So F^(-1) (U) = - ln(1-U)/a

– Numbers obeying exponential pdf are

obtained generating U ~ Unif(0,1) and

reporting

• Either –ln(1-U)/a

• Or –ln (U)/a if U>0 always

Elimination method

– General method that requires only pdf values
• Let f be a pdf supported on (a,b) with values 0<f<c.

• Pick x in Unif(a,b), y in Unif(0,c).

• If y< f(x), accept x.

• Else reject x and pick new values for x,y

y

x

Elimination method

– Method is most efficient when there is least
amount of rejections

• One can divide (a,b) to subintervals and/or change
the pdf of y to approximate f better.

• If f< cg (on some subinterval), g is a known pdf,
pick x from g-distribution and y from Unif(0, cg(x))

y

x

Elimination method

– When using subintervals
• First one has to draw which subinterval to select

for x (probabilites computed beforehand)

• Then draw x from g corresponding to subinterval
and y Unif(0,cg(x)) and test for y<f(x).

• Subdivision of interval can be an art (Marsaglia, cf
Knuth vol II)

y

x

