Simulation

Random numbers

Random numbers

- "Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin", John v. Neumann
- Only seemingly random (pseudo random numbers) are used in simulation
- Random numbers should be
 - Reproducable and efficiently generated
 - Reflect the desired properties of the intended truly random sequence (apparent independency, statistics)
- Intended use dictates which features are important

History

- Need to generate random numbers boomed after invention of computers
 - Simulation of nuclear reactions, Los Alamos
- Simplicity and computational efficiency were emphasized in the beginning
 - Simple arithmetics, simple parameters
- Later portability and quality issues
 - Efficient implementation with high level languages
 - Statistical properties

Generation of random numbers

- Divided in two stages
 - Generation of Uniform (0,1) random numbers
 - Generate uniformly (0,m-1) distributed integers and divide with m
 - Requires deep analysis for statistical properties
 - Generation of random numbers with given probability density function
 - Is done using Unif(0,1) random streams
 - Mainly a technical exercise

Modelling of randomness

- Consider generation of pseudo random numbers as a case of simulation.
 - We go through the steps of simulation modelling process

Modelling randomness

- Recognition of the system/problem
 - Which statistical properties of a truly random sequence we have to reproduce?
 - Right probability density function (easy part)
 - Sufficient (!) statistical independence between sampled values
 - Long enough sequences
 - Case: Sequences of millions of independent Unif(0,1) random numbers

Modelling randomness

- Model design
 - System components and their interactions
 - Deterministic model with fixed parameters, (large but finite) state that is updated and fixed transform for output
 - $X_n = F(X_{n-1}), R_n = f(X_n)$
- Data collection and parameter estimation
 - Not relevant for U(0,1)

- Developed in 40s (D Lehmer) for first computers (Eniac)
- Basic operations: addition, multiplication and taking reminder
 - X= (a X+ c) mod m, R=X/m
 - Parameters a, c and m influence the properties of the sequence
 - Original generator was implemented as a separate physical unit. Random stream was read when needed (-> additional randomness)

- Original Eniac generator
 - m= 10^8 +1
 - A= 23
 - C = 0
 - Simple and efficient to implement

- Next X is uniquely defined from the previous value.
 - Sequence starts to repeat at first reoccurence of X
 - Domain of X:n defines the theoretical maximum for the length of sequence (=m)
- Conditions for reaching the maximum cycle are known
 - If q divides m (being prime or 4), a-1 = 0 mod q
 - C and m have no common divisors (and c is nonzero)

Modelling randomness

- Software design
 - Description model structures and interaction patterns
 - Set up phase and iterator delivering the next instance
- Software implementation
 - Actual programming of the simulator
 - Portability + handling the intermediate large integers
- Software testing
 - Debugging

```
real(dp), parameter :: m=2. dp**31-1. dp
m 1=1. dp/m
a = 16807. dp
real(wp) function random()
seed=modulo(seed*a, m)
random=seed*m 1
return
end function random
```

Modelling randomness

Model validation

- Qualitative/quantitative analysis of the model (comparisons to observation, intuitive expectations, simplified test cases, dependency of uncertain parameters)
- Counter example (mid square)

Model experimentation

- Does the sequence appear as random?
- In what sense we can prove that the sequence is valid (for our purposes)?
- What kind of experiments are needed?

Mid square method

```
integer, parameter :: m0=100, m1=10000
integer :: seed
real function random()
seed=seed*seed
seed=seed/m0
seed=modulo(seed, m1)
random=real(seed)/real(m1)
return
end function random
3456
0.9439 9.47000E-02 0.8968 0.425 6.25000E-02 0.3906 0.2568 0.5946
  0.3549 0.5954 0.4501 0.259 0.7081 0.1405 0.974 0.8676 0.2729
  0.4474 1.66000E-02 2.75000E-02 7.56000E-02 0.5715 0.6612 0.7185
  0.6242 0.9625 0.6406 3.68000E-02 0.1354 0.8333 0.4388 0.2545
  0.477 0.7529 0.6858 3.21000E-02 0.103 6.09000E-02 0.3708 0.7492
  0.13 0.69 0.61 0.21 0.41 0.81 0.61 0.21 0.41 0.81 0.61 0.21
```

Model validation

- "All models are wrong but some may still be useful"
 - We can not prove models to be "right"
 - Goal is to find models that resist our attempts to prove them wrong (in given regime at least)
 - For stochastic models the basic technique is hypothesis testing

Testing of randomness

- Easy tests
 - Test distribution of x_i under condition x_(i-1) from [a,b]
 - Test distribution of k successive values within the unit cube of R^k or distribution of max(x_i,...,x_(i+k-1)) in R.
 - Try these to original Lehmer generator

Testing of randomness

- More elaborated tests
 - See Knuth vol II for history
 - DIEHARD (classical test pattern from 1995, see http://www.phy.duke.edu/~rgb/General/rand_rate.php)
 - Big Crush (collection of 100+ tests, see
 http://www.iro.umontreal.ca/~simardr/testu01/tu01.html for tutorial + software downloads)

- Popular basic generators in practice
- Conceptually simple arithmetics
- 2^31-1 (maxint) is prime
- Portable implementation simple (using double precision arithmetics and small a if 64 bit integers are not supported)
- Well studied and known
 - Too short cycle for modern needs

Combined generators

- Developed in the era of 16-bit processors,
 (Wichman-Hill)
- Uses several generators with short cycles
 - Take cycles m_1, m_2 ja m_3
 - Produce streams X_i and U_i= X_i/m_i
 - Set U= U_1+U_2+U_3 mod 1
- With appropriate choices the cycle is m_1*m_2*m_3
 - Fully standard (32-bit) arithmetics (if m_i<2^14)

Shuffled generators

- Used both for longer cycles and reduced serial correlation
 - Generate random numbers with method A to a table
 - Using generator B to select value from the table (for output) and replace it with new value from A
 - Requires an initialization, some memory and two random numbers for each output value
 - Cycle can be longer (but how much)

Shuffled generator

Modern RNGs

- Current de facto standard is Mersenne Twister
 - Developed at late1990s
 - Very long cycle (2¹ 19937 -1)
 - Needs a working memory (and initialization) of 624-words
 - Available for several languages
 - Some serial correlation problems
 - Slow escape of "zero state"

Mersenne twister

The main ideas

$$-X_{N+1} = F(X_{N,..., X_{N-623}})$$

- "State vector" has 624*32 = 19968 bits
- Theoretical maximal cycle would go through all states
- Ruling out some bits of X_(N-623) and the zero state from possible states we get the wanted length of theoretical maximal cycle (Mersenne prime which gives the name)

Mersenne twister

- We need an F, that
 - Is computationally light
 - Leads to reaching the maximal cycle
- Can be found in the family of
 - $X_{N+1} = X_N A_0 + ... X_N A_k$
 - A_i:s are coefficient matrices
 - The family has theory for maximum cycles
 - Found F with only three A:s with non zero values
 - I.e. only three distinct old X values are used on each round.

Mersenne twister

- Method produces a very long cycle
- Is computationally relatively light
- Serial correlation has to be addresed
 - This can be affected shuffling bits in the output
 - Use Y=BX as output (B permutates the least correlated bits to be the most significant)
- More recent versions (WELL) with improved serial correlation available

Xorshift generators

- Simple generators based on efficient bit-level shift and XOR operations
 - Marsaglia (2003)
 - Three successive right/left shifts and XORs
 - Full cycle for selected parameters, good properties
 - Standard int/long operations for 32/64 bits

```
y ^= (y << 13); y ^= (y >> 17); return y ^= (y << 5);
```

For longer cycles few ints needed

```
tmp=(x^{(x<<15)}); x=y; y=z; z=w;
return w=(w^{(w>>21)})^{(tmp^{(tmp>>4)})};
```

Summary

- Generation of random numbers has over 60-years of history
 - Tested and known generators are available
 - Don't try to do it yourself
 - Do not use unknown and undocumented generator (details, references missing) without testing (vs. the "secret" generator of IBM PC:s Basic language)
 - You have to understand the generator to make controlled replications
 - Initialization, ensuring independent streams

Random numbers and probability distributions

- How to generate random numbers with given probability distribution function (pdf).
- Method of inverse probability
 - Let f be a given pdf. It has a cumulative probability function F: x-> (0,1).

Inverse probability method

- Pick u from Unif (0,1)
- Set $x = F^{(-1)}(u)$.
- Pdf of x is f.
- We have to know F^(-1) in closed form

Inverse probability method

- Consider the exponential distribution
 - Pdf f. is $f(x) = a e^{-(-ax)}$
 - Cumulative pf is $F(x) = 1 e^{-(-ax)}$
 - So F^(-1) (U) = $\ln(1-U)/a$
 - Numbers obeying exponential pdf are obtained generating U ~ Unif(0,1) and reporting
 - Either –In(1-U)/a
 - Or –In (U)/a if U>0 always

Elimination method

- General method that requires only pdf values
 - Let f be a pdf supported on (a,b) with values 0<f<c.
 - Pick x in Unif(a,b), y in Unif(0,c).
 - If y< f(x), accept x.
 - Else reject x and pick new values for x,y

Elimination method

- Method is most efficient when there is least amount of rejections
 - One can divide (a,b) to subintervals and/or change the pdf of y to approximate f better.
 - If f< cg (on some subinterval), g is a known pdf, pick x from g-distribution and y from Unif(0, cg(x))

Elimination method

- When using subintervals
 - First one has to draw which subinterval to select for x (probabilites computed beforehand)
 - Then draw x from g corresponding to subinterval and y Unif(0,cg(x)) and test for y<f(x).

 Subdivision of interval can be an art (Marsaglia, cf Knuth vol II)

