
Simulation 

Random numbers 



Random numbers 

– ”Anyone who considers arithmetic methods of 
producing random digits is, of course, in a 
state of sin”, John v. Neumann 

– Only seemingly random (pseudo random 
numbers) are used in simulation 

– Random numbers should be 
• Reproducable and efficiently generated 

• Reflect the desired properties of the intended truly 
random sequence  (apparent independency, 
statistics) 

– Intended use dictates which features are 
important 



History 

• Need to generate random numbers boomed 

after invention of computers 

– Simulation of nuclear reactions, Los Alamos 

• Simplicity and computational efficiency were 

emphasized in the beginning 

– Simple arithmetics, simple parameters 

• Later portability and quality issues 

– Efficient implementation with high level languages 

– Statistical properties 



Generation of random numbers 

• Divided in two stages 

– Generation of Uniform (0,1) random numbers  

• Generate uniformly (0,m-1) distributed integers 

and divide with m 

• Requires deep analysis for statistical properties  

– Generation of random numbers with given 

probability density function  

• Is done using Unif(0,1) random streams  

• Mainly a technical exercise 

 



Modelling of randomness 

• Consider generation of pseudo random 

numbers as a case of simulation. 

– We go through the steps of simulation 

modelling process 



Modelling randomness 

• Recognition of the system/problem 
• Which statistical properties of a truly random 

sequence we have to reproduce? 

• Right probability density function (easy part) 

• Sufficient (!) statistical independence between 

sampled values  

• Long enough sequences 

• Case: Sequences of millions of independent 

Unif(0,1) random numbers  

 



Modelling randomness 

• Model design 
• System components and their interactions 

• Deterministic model with fixed parameters, (large 

but finite) state that is updated and fixed transform 

for output 

• X_n = F(X_(n-1)), R_n= f(X_n) 

• Data collection and parameter estimation 
• Not relevant for U(0,1)   

 



Lehmer generator 

• Developed in 40s (D Lehmer) for first 
computers (Eniac) 

• Basic operations: addition, multiplication 
and taking reminder 

• X= (a X+ c) mod m, R=X/m  

• Parameters a, c and m influence the properties of 
the sequence 

• Original generator was implemented as a separate 
physical unit. Random stream was read when 
needed (-> additional randomness) 



Lehmer generator 

• Original Eniac generator 
• m= 10^8 +1 

• A= 23 

• C= 0 

– Simple and efficient to implement 



Lehmer generator 

– Next X is uniquely defined from the previous 

value. 

• Sequence starts to repeat at first reoccurence of X  

• Domain of X:n defines the theoretical maximum for 

the length of sequence (=m) 

– Conditions for reaching the maximum cycle 

are known 

• If q divides m (being prime or 4), a-1 =0 mod q 

• C and m have no common divisors (and c is 

nonzero) 



Modelling randomness 

• Software design 
• Description model structures and interaction 

patterns 

– Set up phase and iterator delivering the next instance 

• Software implementation 
• Actual programming of the simulator 

– Portability + handling the intermediate large integers 

• Software testing 
• Debugging 



Lehmer generator 

real(dp),parameter :: m=2._dp**31-1._dp 

 

m_1=1._dp/m 

a=16807._dp 

 

real(wp) function random() 

seed=modulo(seed*a,m) 

random=seed*m_1 

return 

end function random 

 



Modelling randomness 

• Model validation 
• Qualitative/quantitative analysis of the model (comparisons to 

observation, intuitive expectations, simplified test cases, 
dependency of uncertain parameters) 

• Counter example (mid square) 

• Model experimentation 
• Does the sequence appear as random? 

• In what sense we can prove that the sequence is valid (for 
our purposes)? 

• What kind of experiments are needed? 



Mid square method 

integer,parameter :: m0=100,m1=10000 

integer :: seed 

 

real function random() 

seed=seed*seed 

seed=seed/m0 

seed=modulo(seed,m1) 

random=real(seed)/real(m1) 

return 

end function random 

3456  

0.9439 9.47000E-02 0.8968 0.425 6.25000E-02 0.3906 0.2568 0.5946 
0.3549 0.5954 0.4501 0.259 0.7081 0.1405 0.974 0.8676 0.2729 
0.4474 1.66000E-02 2.75000E-02 7.56000E-02 0.5715 0.6612 0.7185 
0.6242 0.9625 0.6406 3.68000E-02 0.1354 0.8333 0.4388 0.2545 
0.477 0.7529 0.6858 3.21000E-02 0.103 6.09000E-02 0.3708 0.7492 
0.13 0.69 0.61 0.21 0.41 0.81 0.61 0.21 0.41 0.81 0.61 0.21 



Model validation 

• ”All models are wrong but some may still 

be useful” 

– We can not prove models to be ”right” 

– Goal is to find models that resist our attempts 

to prove them wrong (in given regime at least) 

– For stochastic models the basic technique is 

hypothesis testing 



Testing of randomness 

– Easy tests 

• Test distribution of x_i under condition x_(i-1) from 

[a,b] 

• Test distribution of  k successive values within the 

unit cube of R^k or distribution of  

max(x_i,…,x_(i+k-1)) in R. 

• Try these to original Lehmer generator 



Testing of randomness 

– More elaborated tests 

• See Knuth vol II for history 

• DIEHARD (classical test pattern from 1995, see 

http://www.phy.duke.edu/~rgb/General/rand_rate.php) 

• Big Crush (collection of 100+ tests, see 

http://www.iro.umontreal.ca/~simardr/testu01/tu01.html  for tutorial + 

software downloads) 

 

http://www.phy.duke.edu/~rgb/General/rand_rate.php
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html


Lehmer generator 

– Popular basic generators in practice 

– Conceptually simple arithmetics 

– 2^31-1 (maxint) is prime 

– Portable implementation simple (using double 

precision arithmetics and small a if 64 bit 

integers are not supported) 

– Well studied and known 

• Too short cycle for modern needs 



Combined generators 

– Developed in the era of 16-bit processors, 

(Wichman-Hill) 

– Uses several generators with short cycles 

• Take cycles m_1, m_2 ja m_3 

• Produce streams X_i and U_i= X_i/m_i 

• Set U= U_1+U_2+U_3 mod 1 

– With appropriate choices the cycle is 

m_1*m_2*m_3 

• Fully standard (32-bit) arithmetics (if m_i<2^14) 



Shuffled generators 

– Used both for longer cycles and reduced 

serial correlation  

• Generate random numbers with method A to a 

table  

• Using generator B to select value from the table 

(for output) and replace it with new value from A  

• Requires an initialization, some memory and two 

random numbers for each output value 

• Cycle can be longer (but how much) 



Shuffled generator 

A B 



Modern RNGs 

– Current de facto standard is Mersenne 

Twister 

• Developed at late1990s 

• Very long cycle (2^ 19937 -1) 

• Needs a working memory (and initialization) of 

624-words   

• Available for several languages 

• Some serial correlation problems 

– Slow escape of ”zero state” 

 



Mersenne twister 

• The main ideas 

– X_(N+1) = F(X_N,…, X_(N-623)) 

• ”State vector”  has 624*32 = 19968 bits 

• Theoretical maximal cycle would go through all 

states 

• Ruling out some bits of X_(N-623) and the zero 

state from possible states we get the wanted 

length of theoretical maximal cycle (Mersenne 

prime which gives the name)  

 



Mersenne twister 

– We need an F, that 

• Is computationally light 

• Leads to reaching the maximal cycle 

– Can be found in the family of 

• X_(N+1) = X_N*A_0 + … X_(N-k) * A_k 

• A_i:s are coefficient  matrices 

• The family has theory for maximum cycles 

• Found F with only three A:s with non zero values 

– I.e. only three distinct old X values are used on each 

round. 

 



Mersenne twister 

– Method produces a very long cycle 

– Is computationally relatively light 

– Serial correlation has to be addresed 

• This can be affected shuffling bits in the output 

• Use Y=BX as output (B permutates the least 

correlated bits to be the most significant) 

– More recent versions (WELL) with improved 

serial correlation available 

 



Xorshift generators 

• Simple generators based on efficient bit-level 

shift and XOR operations 

– Marsaglia (2003)  

– Three successive right/left shifts and XORs 

– Full cycle for selected parameters, good properties 

– Standard int/long operations for 32/64 bits 

y ^= (y<<13); y ^= (y>>17); return y ^= (y<<5); 

– For longer cycles few ints needed 
tmp=(xˆ(x<<15)); x=y; y=z; z=w;  

return w=(wˆ(w>>21))ˆ(tmpˆ(tmp>>4)); 

 



Summary 

– Generation of random numbers has over 60-years of 

history 

• Tested and known generators are available 

• Don’t try to do it yourself 

• Do not use unknown and undocumented generator (details, 

references missing) without testing (vs  the ”secret” generator 

of IBM PC:s Basic language) 

• You have to understand the generator to make controlled 

replications 

– Initialization, ensuring independent streams 



Random numbers and 

probability distributions 
• How to generate random numbers with 

given probability distribution function (pdf). 

• Method of inverse probability 

– Let  f be a given pdf. It has a cumulative 
probability function F: x-> (0,1). 



Inverse probability method 

• Pick u from Unif (0,1)  

• Set x = F^(-1) (u). 

• Pdf of x is f. 

• We have to know F^(-1) in closed form  

 

u 

x 



Inverse probability method 

• Consider the exponential distribution 

– Pdf f. is f(x) = a e^(-ax) 

– Cumulative pf is F(x) = 1- e^(-ax) 

– So F^(-1) (U) = - ln(1-U)/a 

– Numbers obeying exponential pdf are 

obtained generating U ~ Unif(0,1) and 

reporting  

• Either –ln(1-U)/a 

• Or –ln (U)/a if U>0 always 



Elimination method 

– General method that requires only pdf values 
• Let f be a pdf supported on (a,b) with values 0<f<c. 

• Pick x in Unif(a,b), y in Unif(0,c). 

• If y< f(x), accept x. 

• Else reject x and pick new values for x,y 

y 

x 



Elimination method 

– Method is most efficient when there is least 
amount of rejections 

• One can divide (a,b) to subintervals and/or change 
the pdf of y to approximate f better. 

• If f< cg (on some subinterval), g is a known pdf, 
pick x from g-distribution and y from Unif(0, cg(x)) 

 

y 

x 



Elimination method 

– When using subintervals 
• First one has to draw which subinterval to select 

for x (probabilites computed beforehand) 

• Then draw x from g corresponding to subinterval 
and y Unif(0,cg(x)) and test for y<f(x). 

• Subdivision of interval can be an art (Marsaglia, cf 
Knuth vol II) 

 
y 

x 


