Simulation

Example cases

Examples

- Following cases will be elaborated within the course (to varying degree of detail)
 - A car wash station
 - Complete toy example
 - A logistic/delivery network
 - Draft of more realistic set ups
 - Surgery unit
 - Hands on case to work on

Car wash (1/8)

- System consists of
 - Stream of potential clients
 - Queuing place of limited capacity
 - Car wash machine
- Goal
 - Compare the profit for two machines with different capacity

Car wash (2/8)

- Profit/time unit
 - P= aU -b
 - b = fixed cost/time unit
 - a = profit/time unit during active utilization
 - U = utilization rate
 - a and b are known or can be estimated
 - U is to be simulated

Car wash (3/8)

- We know
 - Behavior of potential clients (distribution of arrival times)
 - Maximal allowable length of the queue
 - Distribution of the service times
- We want
 - Utilization rate U =T_busy/T_total
 - Or 1 T_idle/T_total
 - Or the difference of rates for different models

Car wash (4/8)

- One variable can describe the state
 - N(t)= number of clients at time t
- Two types of events effect the state
 - Arrival: new client (i) arrives at time t= t_a(i)
 - Departure: client (j) leaves at time t= t_d(j)
- If N=0, system is empty (machine not used). = > Simulation has to provide times when N=0 (or N>0).

Car wash (5/8)

- If N(0), t_a:s and t_d:s are known, N(t) is uniquely determined and computable.
 - Simulation is needed to determine the arrival and (in particular) departure times.
 - Four variables + some counters
 - AT, DT (next arrival/departure time)
 - N (number of clients in the system)
 - t (current time)
 - E, T_idle (counters for collecting the idle time)

Car wash (6/8)

- Set the duration of simulation (T), maximal queue length M. Initialize time t=0, counters (T0=0, E=0), Set N=0 (empty system), DT=maxint
- AT= t+ "arrival time"
- Repeat until t>T
 - If AT<DT play event "arrival", else play event "departure"
- Report the results

Car wash (7/8)

- "arrival"
 - t = AT;
 - $If N \le M, N = N + 1;$
 - If N=1
 - DT=t+ "service time"
 - T0=T0+t-E;
 - AT=t+"arrival time";

- "departure"
 - t=DT;
 - N = N 1;
 - If N>0
 - DT=t+ "service time"
 - Else
 - DT=maxint;
 - E=t;

Car wash (8/8)

- "Brute force" approach for a simple case.
- Hard to generalize to more complex situations
 - More event types, more complex state, need to follow the clients
- "Everything" is selfmade
 - Date collection, book keeping of events and system state etc.

More complex examples

- Examples with several components and their interactions
 - Supply/delivery chain with loading/unloading operations and transport delays
 - Hierachical systems
 - Chain of critical services that may block the flow in upstream direction

Harbor network

- Consider traffic in a network of several harbors
- Assume average traffic between the harbors as known and given
- Harbors have different properties (number and capacity of loading docks)
- Ships have various fixed routes

- What can be simulated/varied
 - Utilization rates, waiting times
 - Needed number of ships, durations of routes (average and variability) (impact on crew scheduling)
 - Effects of different routing strategies
 - Effects of different queuing strategies
 - Etc

- Structural components of the model
 - Harbors
 - Docks
 - Ships
 - Containers?
 - Anything else?
- Which components have to be identified

- Events and interactions
 - Ship S arrives to harbor H
 - Loading/unloading of S begins at dock D
 - Loading/unloading of S ends at D
 - Ship S leaves for next harbor H(S)
 - (Ship S is created to the system)
 - (Ship S exits the system)

- Simplified situation (ship arrives to a dock and is unloaded)
- Most simple client-service –model
 - Create a ship and put it to a queue
 - Take a ship from a queue to the dock and start the loading (of known number of containers)
 - Unloading ends, dock becomes free, ship is removed

- Big harbor has several docks
- If docks are similar, no need to model them individually
- Create a pool of empty docks
 - In the beginning all docks in empty-pool
 - On ship's arrival pick a dock from the pool
 - Reinsert the dock to the pool on ship departure

- Details of unloading may be relevant to model
 - Think of unloading using a pool of container carriers
 - Allocation of carriers to different docks/ships can be varied
 - Submodel for unloading phase needed

- Ships have routes.
 - Create a ship, associate a route and place ship to starting position and state (loaded/empty/etc)
 - Ship starts journey to next harbor
 - Ship arrives, gets unloaded and moves forward
 - At the end of the route the ship exits (or starts the next round)

Surgery unit

- Typical surgery involves three stages
 - (supervised) preparation of the patient (anesthetics etc)
 - Actual operation theatre
 - (supervised) recovery
- For each stage separate facilities are needed
 - How to plan the capacity for each stage

Surgery unit

- Main modelling challenge is the capacity bottlenecks
 - If the next stage is fully booked the patient can not move forward
 - Operation theatre can not be freed without capacity in the recovery
 - Correct modelling is needed