
Simulation

Discrete event systems

Discrete event simulation 1

• Consider systems with finitely many

components.

• Each component has only finitely many

states.

• Components interact through events.

• Event takes place at a particular time (it

has no duration).

Discrete event simulation 2

• Event can change states, generate other

events (for the same or later time).

• Typical structural components
• ”machine resources” (busy/free)

• ”human resources” (busy/free)

• ”raw materials” (availability/quantity)

• ”products” (stage of production/availability)

• Events are beginnings and endings of

actions

Wash machine

• Components of car wash
• Wash machine (free/busy)

• Queuing space (M available slots)

• Clients (unwashed/being washed/washed)

• Events
• Client arrival/departure

• Wash start/end

• Entering/leaving the queue

• Some events occur always together

Main simulation functionalities 1

• Simulation software has 5 main

functionalities

– Description of model structure
• System parts -> state variables

• Interaction logic -> ”flow chart”

• Event logic-> ”code”

– Random processes

• Random numbers from desired distribution

– Collecting and reporting statistics

• Visualisation, confidence intervals, analysis

Main simulation functionalities 2

• Time management

– Advancing the clock event by event

– Activating events in right order

• Management of simulation experiment

– Starting/ending simulation

– Adding/removing events

– Controlled replication of experiments

Main simulation functionalities 3

• Some functions are common to all models

and experiments

– Time management

– Random numbers

– Data collection and reporting

• Some are model and case dependent

– Model structure and logic

– Control flow in (series of) experiment(s)

Simulation paradigms

• Different approaches to simulation

– Event based

• State changes linked to certain time

– Process based

• Life cycle of events related to a system component.

– Activity based

• Activities that tie up resources of system components

– Agent based

• ”Intelligent” entities able to commit and coordinate activities

• These lead to different model/code structures

– Fit to different modelling situations

Event based simulation

• Event routines have central role

– One routine for each type of event

– Model logic is in the event routines

– Event routine can change state variables and

create event notices.

– Scheduler manages event notices (time,

event)

• One routine at a time is active.

Process/object based s.

• Subprocesses as objects with own state

variables and event routines.
• All actions related to a system component are within a single

object

• Specific methods to communicate with scheduler

and other objects.
• No separate event notices

• Several processes (virtually) active

simultaneously (threads, coroutines).

Activity based s.

• Logic within activity routines

– Each routine is linked to some resource

– Two interfaces

• Activation (if conditions are true, then reserve the resource

and fix ending time)

• Passivation: free the resource at given time

• All activities are scanned systematically
• If conditions are true, routine is activated.

• If no routine activates, time is incremented to next known

ending time.

Agent based s.

• Synthesis of process and activity based

approaches
– Key entities modeled as ”intelligent” agents

– Actions related to entity collected to agent script

– Instead of a preprogrammed life cycle a set of subactions and ability to select

appropriate ones for the situation

– Agent’s personal activity list

– Coordination between entities using agent communication instead of simulation

object methods

– Typically employed in cases where there are many similar interacting entities

(agent population) that create emergent behavior

Simulation

Event based simulation

Event based simulation

• Historically the oldest approach

• Logic is within sequentally executed

routines

– Easy to implement with any procedural

language

– Logic gets easily fragmented

• Successive/dependent events are in separate

routines

Wash machine (event b.)

• At least two types of events (arrival and
departure (see introduction))

– Both events can reserve the machine and
generate departure

– Potential maintainability problem

• Use 4 atomic events
• Arrival (generates the client)

• Start (reserve the resource and start service)

• End (end service, free resource)

• Departure (exits the client)

Wash machine 2

• Arrival
• If queue not full

– Create new client and put to the queue

– Create a Start-event

• Create new Arrival event (for later time)

• Start
• If machine is free and clients in the queue

– Take client from queue

– Set machine busy

– Crate an End-event (for later time)

Wash machine 3

• End
• Set machine free

• Create Departure-event (for same time)

• Create Start-event (for same time)

• Departure
• Collect needed information from the client (if any)

• Remove client

Wash machine

Arrival
Start

End

Departure

Wash machine - implementation

• 4 event (sub)routines

• For events EventType (Arrival, Start,End, Departure)

• For bookkeeping EventNotice(Time, Event)

• Event list to keep EventNotice

– Methods
• NextEvent

• AddEvent (Time, Event)

• (RemoveEvent (Event))

• Queue

– Contains instances of Client –type

– Methods Add, Next, Length

– Serves Start-event

– Another queue (or like) is needed for Departure

Wash machine - main

Initialize

T=0;

AddEvent(ArrivalTimeDistribution(),Arrival);

While (T< TMax) \\ (ending condition)

 Notice=NextEvent();

 T=Notice.Time;

 CASE Notice.Event of

 …

 \\ call for corresponding event routine

 END CASE

End While

Arrival

Arrival_Event()

 ClientTypePointer :: Car

 {

 AddEvent(ArrivalTimeDisribution(),Arrival);

 If Queue.Length() < M then

 Car= New Client();

 Queue.Add(Car)

 AddEvent(0.,Start)

 Endif

 }

Start

Start_Event()

 ClientTypePointer :: Car

 {

 If(Machine.Free() and Queue.Length()>0) then

 Car=Queue.Next();

 Machine.Reserve(Car);

 AddEvent(ServiceTimeDistribution(),End)

 Endif

 }

End

End_Event()

 ClientTypePointer :: Car

 {

 Car= Machine.Free()

 Departure.Reserve(Car) \\ To keep track of the

client pointer

 AddEvent(0.,Departure)

 AddEvent(0.,Start)

 }

Departure

Departure_Event()

 ClientTypePointer :: Car

 {

 Car=Departure.Free()

 // Collect statistics

 RemoveClient(Car)

 }

// Reserve-Free for departure is a hack to keep the

client pointer in absence of a real queue.

Observations

• Different queuing strategies can be hidden
within Queue

• In case of several services, routing, client types
etc requires replication or parametrization of
events.

• More data has to be communicated than what
fits to the minimal EventNotice

• In practice the service and its queue can be
modeled as one entity where to the client is
routed.

Simulation

Event based harbor network

Container harbors

• Main events

– Ship i arrives to harbor j

• Ship i to queue of harbor j at time t

• Try to start loading (if queue empty)

– Loading begins at a dock

• Ship i from queue, dock k reserved, loading end

event for time t2

Container harbours

• Main events

– Unloading of the ship ends

• Dock k becomes free at t3

• Try to start loading (if ships in queue)

– Ship leaves for the next harbor

• Ship i is scheduled to arrive to harbor j’ at t4

Questions ?

• Main events

– Ship i arrives to harbor j

• Ship i enters the queue of j at time t

• What information is contained in the event notice.

How the rest is communicated.

– Unloading begins

• Ship i taken from the queue, dock k reserved, end

unloading –event for time t1

• Is reference to dock k needed, where to keep link

to ship i

Questions?

• Main events

– Unloading ends

• Dock k becomes free at time t3

• Where is knowledge about the dock, about the

ship

– Ship leaves for next harbor

• Arrival of ship i to harbor j’ is scheduled at time t4

• Who knows the value of j’ for ship i

Event notices

• For traditional languages event notices are

problematic

– Static data types

– Limited amount of information can be

communicated

• Use of objects and inheritance helps

– Inherited notice class for each type of event

