Simulation

Discrete event systems

Discrete event simulation 1

Consider systems with finitely many
components.

Each component has only finitely many
states.

Components interact through events.

Event takes place at a particular time (it
has no duration).

Discrete event simulation 2

* Event can change states, generate other
events (for the same or later time).

* Typical structural components
* "machine resources” (busy/free)
« "human resources” (busy/free)
* “raw materials” (availability/quantity)
* "products” (stage of production/availability)

* Events are beginnings and endings of
actions

Wash machine

« Components of car wash

« Wash machine (free/busy)
* Queuing space (M available slots)
 Clients (unwashed/being washed/washed)

e Events

 Client arrival/departure
« Wash start/end
* Entering/leaving the queue

* Some events occur always together

Main simulation functionalities 1

 Simulation software has 5 main
functionalities

— Description of model structure

e System parts -> state variables
* Interaction logic -> "flow chart”
« Event logic-> "code”

— Random processes
« Random numbers from desired distribution

— Collecting and reporting statistics
* Visualisation, confidence intervals, analysis

Main simulation functionalities 2

* Time management
— Advancing the clock event by event
— Activating events in right order

 Management of simulation experiment
— Starting/ending simulation

— Adding/removing events
— Controlled replication of experiments

Main simulation functionalities 3

« Some functions are common to all models
and experiments

— Time management
— Random numbers
— Data collection and reporting

 Some are model and case dependent
— Model structure and logic
— Control flow In (series of) experiment(s)

Simulation paradigms

« Different approaches to simulation
— Event based
« State changes linked to certain time

— Process based
 Life cycle of events related to a system component.

— Activity based
 Activities that tie up resources of system components

— Agent based
* "Intelligent” entities able to commit and coordinate activities
 These lead to different model/code structures
— Fit to different modelling situations

Event based simulation

* Event routines have central role
— One routine for each type of event
— Model logic is in the event routines

— Event routine can change state variables and
create event notices.

— Scheduler manages event notices (time,
event)

« One routine at a time Is active.

Process/object based s.

« Subprocesses as objects with own state

variables and event routines.

 All actions related to a system component are within a single
object

« Specific methods to communicate with scheduler
and other objects.
 No separate event notices
« Several processes (virtually) active
simultaneously (threads, coroutines).

Activity based s.

 Logic within activity routines
— Each routine is linked to some resource

— Two Interfaces

« Activation (if conditions are true, then reserve the resource
and fix ending time)

« Passivation: free the resource at given time

 All activities are scanned systematically

 |If conditions are true, routine is activated.

* If no routine activates, time is incremented to next known
ending time.

Agent based s.

« Synthesis of process and activity based
approaches

Key entities modeled as "intelligent” agents
— Actions related to entity collected to agent script

— Instead of a preprogrammed life cycle a set of subactions and ability to select
appropriate ones for the situation

— Agent’s personal activity list

— Coordination between entities using agent communication instead of simulation
object methods

— Typically employed in cases where there are many similar interacting entities
(agent population) that create emergent behavior

Simulation

Event based simulation

Event based simulation

 Historically the oldest approach

* Logic Is within sequentally executed
routines

— Easy to implement with any procedural
language
— Logic gets easily fragmented

» Successive/dependent events are in separate
routines

Wash machine (event b.)

At least two types of events (arrival and
departure (see introduction))

— Both events can reserve the machine and
generate departure

— Potential maintainability problem

« Use 4 atomic events

 Arrival (generates the client)

 Start (reserve the resource and start service)
* End (end service, free resource)

* Departure (exits the client)

Wash machine 2

e Arrival

* |f queue not full
— Create new client and put to the queue
— Create a Start-event

« Create new Arrival event (for later time)

e Start

* If machine is free and clients in the queue
— Take client from queue
— Set machine busy
— Crate an End-event (for later time)

Wash machine 3

* End

e Set machine free
» Create Departure-event (for same time)
» Create Start-event (for same time)

* Departure

 Collect needed information from the client (if any)
« Remove client

Wash machine

Wash machine - implementation

* 4 event (sub)routines
« Forevents EventType (Arrival, Start,End, Departure)
« For bookkeeping EventNotice (Time, Event)
 Eventlistto keep EventNotice

— Methods

* NextEvent
e AddEvent (Time, Event)
e (RemoveEvent (Event))
 Queue
— Contains instances of Client —type
— Methods Add, Next, Length
— Serves Start-event
— Another queue (or like) is needed for Departure

Wash machine - main

Initialize
T=0;
AddEvent (ArrivalTimeDistribution () ,Arrival) ;
While (T< TMax) \\ (ending condition)
Notice=NextEvent () ;
T=Notice.Time;
CASE Notice.Event of

\\ call for corresponding event routine

END CASE
End While

Arrival

Arrival Event ()
ClientTypePointer :: Car
{
AddEvent (ArrivalTimeDisribution () ,Arrival) ;
If Queue.Length() < M then
Car= New Client (),
Queue.Add (Car)
AddEvent (0., Start)
Endif

}

Start

Start Event ()
ClientTypePointer :: Car
{
If (Machine.Free () and Queue.Length()>0) then
Car=Queue.Next () ;

Machine.Reserve (Car) ;
AddEvent (ServiceTimeDistribution (), End)

Endif

End

End Event ()
ClientTypePointer :: Car
{
Car= Machine.Free ()

Departure.Reserve (Car) \\ To keep track of the
client pointer

AddEvent (0., Departure)
AddEvent (0., Start)

}

Departure

Departure Event ()
ClientTypePointer :: Car
{
Car=Departure.Free ()
// Collect statistics
RemoveClient (Car)

}

// Reserve-Free for departure is a hack to keep the
client pointer 1n absence of a real queue.

Observations

Different queuing strategies can be hidden
within Queue

In case of several services, routing, client types
etc requires replication or parametrization of
events.

More data has to be communicated than what
fits to the minimal EventNotice

In practice the service and its queue can be
modeled as one entity where to the client is
routed.

Simulation

Event based harbor network

Container harbors

« Maln events

— Ship I arrives to harbor |
« Ship 1 to queue of harbor | at time t
« Try to start loading (if queue empty)
— Loading begins at a dock

« Ship | from queue, dock k reserved, loading end
event for time t2

Container harbours

« Maln events

— Unloading of the ship ends
* Dock k becomes free at t3
 Try to start loading (if ships in queue)

— Ship leaves for the next harbor
« Ship i is scheduled to arrive to harbor | at t4

Questions ?

« Maln events

— Ship I arrives to harbor |
« Ship | enters the queue of | at time t
« What information is contained in the event notice.
How the rest is communicated.
— Unloading begins
« Ship I taken from the queue, dock k reserved, end
unloading —event for time tl1

* |s reference to dock k needed, where to keep link
to ship i

Questions?

« Maln events

— Unloading ends
* Dock k becomes free at time t3
* Where is knowledge about the dock, about the
ship
— Ship leaves for next harbor
« Arrival of ship i to harbor j is scheduled at time t4
* Who knows the value of |’ for ship |

Event notices

 For traditional languages event notices are
problematic

— Static data types

— Limited amount of information can be
communicated

» Use of objects and inheritance helps
— Inherited notice class for each type of event

