Simulation

Random numbers
Random numbers

– ”Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin”, John v. Neumann
– Only seemingly random (pseudo random numbers) are used in simulation
– Random numbers should be
 • Reproducable and efficiently generated
 • Reflect the desired properties of the intended truly random sequence (apparent independency, statistics)
– Intended use dictates which features are important
History

• Need to generate random numbers boomed after invention of computers
 – Simulation of nuclear reactions, Los Alamos

• Simplicity and computational efficiency were emphasized in the beginning
 – Simple arithmetics, simple parameters

• Later portability and quality issues
 – Efficient implementation with high level languages
 – Statistical properties
Generation of random numbers

• Divided in two stages
 – Generation of Uniform (0,1) random numbers
 • Generate uniformly (0,m-1) distributed integers and divide with m
 – Generation of random numbers with given probability density function
 • Is done using Unif(0,1) random streams
Modelling of randomness

• Consider generation of pseudo random numbers as a case of simulation.
 – We go through the steps of simulation modelling process
Modelling randomness

- Recognition of the system/problem
 - Which statistical properties of a truly random sequence we have to reproduce?
 - Right probability density function (easy part)
 - Sufficient (!) statistical independence between sampled values
 - Long enough sequence
 - Case: Millions of independent Unif(0,1) random numbers
Modelling randomness

• Model design
 • System components and their interactions
 • Deterministic model with fixed parameters, (large but finite) state that is updated and fixed transform for output
 • $X_n = F(X_{n-1})$, $R_n = f(X_n)$

• Data collection and parameter estimation
 • Not relevant here
Lehmer generator

• Developed in 40s (D Lehmer) for first computers (Eniac)
• Basic operations: addition, multiplication and taking reminder
 • $X = (a \cdot X + c) \mod m$, $R = X/m$
 • Parameters a, c and m influence the properties of the sequence
 • Original generator was implemented as a separate physical unit. Random stream was read when needed (\(\rightarrow \) additional randomness)
Lehmer generator

- Original Eniac generator
 - $m = 10^8 + 1$
 - $A = 23$
 - $C = 0$
 - Simple and efficient to implement
Lehmer generator

– Next X is uniquely defined from the previous value.
 • Sequence starts to repeat at first reoccurrence of X
 • Domain of X:n defines the theoretical maximum for the length of sequence (=m)

– Conditions for reaching the maximum cycle are known
 • If q divides m (being prime or 4), a-1 =0 mod q
 • C and m have no common divisors (and c is nonzero)
Modelling randomness

• Software design
 • Description model structures and interaction patterns
 – Set up phase and iterator delivering the next instance

• Software implementation
 • Actual programming of the simulator
 – Portability + handling the intermediate large integers

• Software testing
 • Debugging
Lehmer generator

real(dp), parameter :: \(m = 2._dp^{31} - 1._dp \)

\(m_1 = 1._dp / m \)
\(a = 16807._dp \)

real(wp) function random()
seed = modulo(seed*a, m)
random = seed*m_1
return
end function random
Modelling randomness

• Model validation
 • Qualitative/quantitative analysis of the model (comparisons to observation, intuitive expectations, simplified test cases, dependency of uncertain parameters)
 • Counter example (mid square)

• Model experimentation
 • Does the sequence appear as random?
 • In what sense we can prove that the sequence is valid (for our purposes)?
 • What kind of experiments are needed?
Mid square method

integer, parameter :: m0=100, m1=10000
integer :: seed

real function random()
seed=seed*seed
seed=seed/m0
seed=modulo(seed, m1)
random=real(seed)/real(m1)
return
end function random

3456
0.9439 9.47000E-02 0.8968 0.425 6.25000E-02 0.3906 0.2568 0.5946
0.3549 0.5954 0.4501 0.259 0.7081 0.1405 0.974 0.8676 0.2729
0.4474 1.66000E-02 2.75000E-02 7.56000E-02 0.5715 0.6612 0.7185
0.6242 0.9625 0.6406 3.68000E-02 0.1354 0.8333 0.4388 0.2545
0.477 0.7529 0.6858 3.21000E-02 0.103 6.09000E-02 0.3708 0.7492
0.13 0.69 0.61 0.21 0.41 0.81 0.61 0.21 0.41 0.81 0.61 0.21
Model validation

• ”All models are wrong but some may still be useful”
 – We can not prove models to be ”right”
 – Goal is to find models that resist our attempts to prove them wrong (in given regime at least)
 – For stochastic models the basic technique is hypothesis testing
Testing of randomness

– Easy tests
 • Test distribution of x_i under condition $x_{(i-1)}$ from $[a,b]$
 • Test distribution of k successive values within the unit cube of \mathbb{R}^k or distribution of $\max(x_i,\ldots,x_{(i+k-1)})$ in \mathbb{R}.
 • Try these to original Lehmer generator
Testing of randomness

– More elaborated tests
 • DIEHARD (classical test pattern from 1995, see Wikipedia)
 • See Knuth vol II for history
Lehmer generator

- Popular basic generators in practice
- Conceptually simple arithmetics
- $2^{31}-1$ (maxint) is prime
- Portable implementation simple (for a small enough using double precision arithmetics if 64 bit integers are not supported)
- Well studied and known
Combined generators

- Needed in the era of 16-bit processors, (Wichman-Hill)
- Uses several generators with short cycles
 - Take cycles m_1, m_2 ja m_3
 - Produce streams X_i and $U_i = X_i/m_i$
 - Set $U = U_1 + U_2 + U_3 \mod 1$
- With appropriate choices the cycle is $m_1 \cdot m_2 \cdot m_3$
 - Fully standard (32-bit) arithmetics (if $m_i < 2^{14}$)
Shuffled generators

– Used both for longer cycles and reduced serial correlation
 • Generate random numbers with method A to a table
 • Using generator B to select value from the table (for output) and replace it with new value from A
 • Requires an initialization, some memory and two random number for each output value
 • Cycle can be longer (but how much)
Shuffled generator
State of the Art

– Current de facto standard is Mersenne Twister
 • Developed at late 1990s
 • Very long cycle \((2^{19937} - 1)\)
 • Needs a working memory (and initialization) of 624-words
 • Available for several languages
 • Some serial correlation problems
 – Slow escape of ”zero state”
Mersenne twister

• The main ideas
 – $X_{(N+1)} = F(X_N, \ldots, X_{(N-623)})$
 • ”State vector” has $624 \times 32 = 19968$ bits
 • Theoretical maximal cycle would go through all states
 • Ruling out some bits of $X_{(N-623)}$ and the zero state from possible states we get the wanted length of theoretical maximal cycle (Mersenne prime which gives the name)
Mersenne twister

– We need an F, that
 • Is computationally light
 • Leads to reaching the maximal cycle
– Can be found in the family of
 • \(X_{(N+1)} = X_N \cdot A_0 + \ldots X_{(N-k)} \cdot A_k \)
 • \(A_i \):s are coefficient matrices
 • The family has theory for maximum cycles
 • Found F with only three A:s with non zero values
 – I.e. only three distinct old X values are used on each round.
Mersenne Twister

– Method produces a very long cycle
– Is computationally relatively light
– Serial correlation has to be addressed
 • This can be affected shuffling bits in the output
 • Use $Y=BX$ as output (B permutates the least correlated bits to be the most significant)
– More recent versions with improved serial correlation available
Summary

– Generation of random numbers has over 60-years of history
 • Tested and known generators well available
 • Don’t try to do it yourself
 • Do not use unknown and undocumented generator (details, references missing) without testing (vs the ”secret” generator of IBM PC:s Basic language)
 • You have to understand the generator to make controlled replications
Random numbers and probability distributions

• How to generate random numbers with given probability distribution function (pdf).
• Method of inverse probability
 – Let f be a given pdf. It has a cumulative probability function $F: x \rightarrow (0,1)$.
Inverse probability method

• Pick \(u \) from Unif \((0,1)\)
• Set \(x = F^{-1}(u) \).
• Pdf of \(x \) is \(f \).
• We have to know \(F^{-1} \) in closed form
Inverse probability method

- Consider exponential distribution
 - Pdf f. is \(f(x) = ae^{-ax} \)
 - Cumulative pf is \(F(x) = 1 - e^{-ax} \)
 - So \(F^{-1}(U) = -\frac{\ln(1-U)}{a} \)
 - Numbers obeying exponential pdf are obtained generating \(U \sim \text{Unif}(0,1) \) and reporting
 - Either \(-\ln(1-U)/a\)
 - Or \(-\ln(U)/a\) if \(U>0 \) always
Elimination method

– General method that requires only pdf values
 • Let f be a pdf supported on (a,b) with values $0<f<c$.
 • Pick x in $\text{Unif}(a,b)$, y in $\text{Unif}(0,c)$.
 • If $y < f(x)$, accept x.
 • Else reject x and pick new values for x,y
Elimination method

– Method is most efficient when there is least amount of rejections
 • One can divide (a,b) to subintervals and/or change the pdf of y to approximate f better.
 • If f< cg (on some subinterval), g is a known pdf, pick x from g-distribution and y from Unif(0, cg(x))
Elimination method

– When using subintervals
 • First one has to draw which subinterval to select for x (probabilities computed beforehand)
 • Then draw x from g corresponding to subinterval and y Unif(0, cg(x)) and test for y<f(x).
 • Subdivision of interval can be an art (Marsaglia, cf Knuth vol II)