Simulation

Random numbers

Random numbers

- "Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin", John v. Neumann
- Only seemingly random (pseudo random numbers) are used in simulation
- Random numbers should be
 - Reproducable and efficiently generated
 - Reflect the desired properties of the intended truely random sequence (apparent independency, statistics)
- Intended use dictates which features are important

History

- Need to generate random numbers boomed after invention of computers
 - Simulation of nuclear reactions, Los Alamos
- Simplicity and computational efficiency were emphasized in the beginning
 - Simple arithmetics, simple parameters
- Later portability and quality issues
 - Efficient implementation with high level languages
 - Statistical properties

Generation of random numbers

- Divided in two stages
 - Generation of Uniform (0,1) random numbers
 - Generate uniformly (0,m-1) distributed integers and divide with m
 - Generation of random numbers with given probability density function
 - Is done using Unif(0,1) random streams

Mid square method

- One of first ad hoc ideas (von Neumann)
 - Let x be k-digit number.
 - Take k=5, x=12345
 - Compute x*2 (2k-digits)
 - 0016604025
 - Take k digits from the middle
 - 16604 ->x, U=0,16604
 - Etc

Mid square method

```
integer, parameter :: m0=100, m1=10000
integer :: seed
real function random()
seed=seed*seed
seed=seed/m0
seed=modulo(seed, m1)
random=real(seed)/real(m1)
return
end function random
3456
0.9439 9.47000E-02 0.8968 0.425 6.25000E-02 0.3906 0.2568 0.5946
  0.3549 0.5954 0.4501 0.259 0.7081 0.1405 0.974 0.8676 0.2729
  0.4474 1.66000E-02 2.75000E-02 7.56000E-02 0.5715 0.6612 0.7185
  0.6242 0.9625 0.6406 3.68000E-02 0.1354 0.8333 0.4388 0.2545
  0.477 0.7529 0.6858 3.21000E-02 0.103 6.09000E-02 0.3708 0.7492
  0.13 0.69 0.61 0.21 0.41 0.81 0.61 0.21 0.41 0.81 0.61 0.21
```

Mid square - analysis

- Produces an endless stream of k-digit numbers.
- First numbers often apparently independent
- Method ends up to repeating a finite cycle
 - Cycle is too short for simulation purposes
 - Length and statistical properties are not easy to analyze/control

"Good" random numbers

- Generated stream should
 - Be "random"
 - Same sequence must not occur systematically during the simulation
 - In practice the cycle length must be bigger than number of needed numbers in the experiment series
 - Have right distribution
 - Generally OK, if all possible values can be reached (maximal cycle).

"Good" random numbers

- Consequtive values should be independent
 - Never true literally, must be tested carefully
 - For example distribution of k successfull values within the unit cube of R^k or distribution of max(x_i,...,x_(i+k-1)).
 - Spectral test(sequence must be orthogonal with all sinusoidal forms)
 - Way of using defines the criteria numbers used as single values, pairs, -tuplets etc.
 - See Knuth vol II

- Developed in 40s (D Lehmer) for first computers (Eniac)
- Basic operations: addition, multiplication and taking reminder
 - X= (a X+ c) mod m
 - Parameters a, c and m influence the properties of the sequence
 - Original generator was implemented as a separate physical unit. Random stream was read when needed (-> additional randomness)

- Original Eniac generator
 - $m = 10^8 + 1$
 - A= 23
 - C = 0
 - Simple and efficient to implement
 - Modest statistical quality (small multiplier, sequential correlation)

- Next X is uniquely defined from the previous value.
 - Sequence starts to repeat at first reoccurence of X
 - Domain of X:n defines the theoretical maximum for the length of sequence (=m)
- Conditions for reaching the maximum cycle are known
 - If q divides m (being prime or 4), a-1 = 0 mod q
 - C and m have no common divisors (and c is nonzero)

- (Counter)examples for maximum cycle conditions
 - Let m=8, c=3
 - If a-1 =0 mod 2 and a-1=0 mod 4=> a=5
 - 0->3->18=2->13=5->28=4->23=7->38=6->33=1->0
 - If a=3 (a-1=0 mod 2)
 - 0->3->12=4->15=7->24=0
 - If c=0, 0->0 for all m, a

- If c=0, maximal cycle is not possible X=0 maps to 0 always)
- Theoretical maximal cycle (when c=0) is m-1.
- Can be reached if and only if
 - m is prime
 - a is so called primitive element mod m
- In practice a can be defined only experimentally
 - Prime modulus multiplicative congruental generator

- Popular basic generators in practice
- Conceptually simple arithmetics
- 2^31-1 (maxint) is prime
- Portable implementation simple (for a small enough using double precision arithmetics if 64 bit integers are not supported)
- Well studied and known

```
real(dp), parameter :: m=2. dp**31-1. dp
m 1=1. dp/m
a=16807. dp
real(wp) function random()
seed=modulo(seed*a,m)
random=seed*m 1
return
end function random
```

Combined generators

- Needed in the era of 16-bit processors,
 (Wichman-Hill)
- Uses several generators with short cycles
 - Take cycles m_1, m_2 ja m_3
 - Produce streams X_i and U_i= X_i/m_i
 - Set U= U_1+U_2+U_3 mod 1
- With appropriate choices the cycle is m_1*m_2*m_3
 - Fully standard (32-bit) arithmetics (if m_i<2^14)

Shuffled generators

- Used both for longer cycles and reduced serial correlation
 - Generate random numbers with method A to a table
 - Using generator B to select value from the table (for output) and replace it with new value from A
 - Requires an initialization, some memory and two random number for each output value
 - Cycle can be longer (but how much)

Shuffled generator

State of the Art

- Current de facto standard is Mersenne Twister
 - Developed at late1990s
 - Very long cycle (2^ 19937 -1)
 - Best known serial correlation properties
 - Needs a working memory (and initialization) of 624-words
 - Available for several languages

Mersenne twister

The main ideas

$$-X_{N+1} = F(X_{N,..., X_{N-623}})$$

- "State vector" has 624*32 = 19968 bits
- Theoretical maximal cycle would go through all states
- Ruling out some bits of X_(N-623) and the zero state from possible states we get the wanted length of theoretical maximal cycle (Mersenne prime which gives the name)

Mersenne twister

- We need an F, that
 - Is computationally light
 - Leads to reaching the maximal cycle
- Can be found in the family of
 - $X_{N+1} = X_N^*A_0 + ... X_{N-k}^*$
 - A_i:s are coefficient matrices
 - The family has theory for maximum cycles
 - Found F with only three A:s with non zero values
 - I.e. only three distinct old X values are used on each round.

Mersenne Twister

- Method produces a very long cycle
- Is computationally relatively light
- Serial correlation has to be addresed
 - K-test: take k significant bits from successive random numbers
 - For how many successive numbers the above sequence is uniformy distributed (for given k)
 - This can be affected shuffling bits in the output
 - Cycle (and X values) are not touched, only output

Random numbers and probability distributions

- How to generate random numbers with given probability distribution function (pdf).
- Method of inverse probability
 - Let f be a given pdf. It has a cumulative probability function F: x-> (0,1).

Inverse probability method

- Pick u from Unif (0,1)
- Set $x = F^{(-1)}(u)$.
- Pdf of x is f.
- We have to know F^(-1) in closed form

Inverse probability method

- Consider exponential distribution
 - Pdf f. is $f(x) = a e^{-(-ax)}$
 - Cumulative pf is $F(x) = 1 e^{-(-ax)}$
 - So F^(-1) (U) = $\ln(1-U)/a$
 - Numbers obeying exponential pdf are obtained generating U ~ Unif(0,1) and reporting
 - Either –In(1-U)/a
 - Or –In (U)/a if U>0 always

Elimination method

- General method that requires only pdf values
 - Let f be a pdf supported on (a,b) with values 0<f<c.
 - Pick x in Unif(a,b), y in Unif(0,c).
 - If y< f(x), accept x.
 - Else reject x and pick new values for x,y

Elimination method

- Method is most efficient when there is least amount of rejections
 - One can divide (a,b) to subintervals and/or change the pdf of y to approximate f better.
 - If f< cg (on some subinterval), g is a known pdf, pick x from g-distribution and y from Unif(0, cg(x))

Elimination method

- When using subintervals
 - First one has to draw which subinterval to select for x (probabilites computed beforehand)
 - Then draw x from g corresponding to subinterval and y Unif(0,cg(x)) and test for y<f(x).

 Subdivision of interval can be an art (Marsaglia, ks Knuth vol II)

Summary

- Deneration of random numbers has over 60years of history
 - Tested and known generators well available
 - Dont try to do it yourself
 - Do not use unknown and undocumented generator (details, references missing) without testing (vs the "secret" generator of IBM PC:s Basic language)
 - You have to understand the generator to make controlled replications