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Tero Kilpeläinen and Peter Lindqvist

Abstract. In this note we show that the Wiener criterion characterizes the bound-
ary points for which the nonlinear ground state attains its limit value 0.

1. Introduction

The objective of our note is to complement the nonlinear potential theory with
a result about the nature of irregular boundary points for the Dirichlet problem.
The interesting phenomenon in this connection for equations like the one arising
from torisional creep problems,

(1.1) div(|∇u|p−2∇u) + 1 = 0 ,

where 1 < p < ∞, is that all irregular boundary points are detected even by the
solution with the value zero prescribed on the whole boundary. (Such a phenomenon
is out of the question for the related equation div(|∇u|p−2∇u) = 0!) The boundary
point is classified as irregular if the requirement

(1.2) lim
x→ξ

u(x) = 0

is violated for the solution u belonging to the Sobolev space W 1,p
0 (Ω), where Ω

denotes the underlying domain in the Euclidean n-space. The solution is interpreted
in the weak sense. A similar property is exhibited by the ground state of the
nonlinear eigenvalue problem

(1.3) div(|∇u|p−2∇u) + λ|u|p−2u = 0

with zero Dirichlet boundary values.
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Before proceeding, let us recall some facts in the classical potential theory. The
ground state of

∆u + λu = 0

attains its prescribed boundary value 0 at a given point ξ ∈ ∂Ω if the celebrated
Wiener integral diverges,

(1.4)
∫ 1

0

cap2(E ∩B(ξ, r), B(ξ, 2r))
rn−2

dr

r
= ∞ .

The electrostatic capacity cap2 of the part of the complement of Ω that lies in the
ball {x : |ξ − x| < r} is involved. Thus (1.4) implies (1.2) for the ground state. It
is the converse implication that is crucial from our point of view: it follows from
Bouligand’s theorem (see [H]) that (1.2) implies (1.4) for the ground state. However,
this latter implication can be false for the excited states (the higher eigenfunctions
with prescribed boundary value 0). The decisive feature is that the ground state
does not change its sign in the domain Ω and it can itself act as a weak barrier.

Let us return to the nonlinear eigenvalue problem (1.3). There is a corresponding
version of the Wiener integral, due to Maz’ya [M]. It will follow from our main
result (Theorem 3.1) that the convergence of this Wiener integral characterizes the
boundary points where the nonlinear ground state does not attain its boundary
value zero in the classical sense (1.2).

1.5. Theorem. Suppose that ξ ∈ ∂Ω and let u be the p-ground state in Ω. Then

lim
x→ξ

u(x) = 0

if and only if

(1.6)
∫ 1

0

(
capp({Ω ∩B(ξ, r), B(ξ, 2r))

rn−p

)1/(p−1)
dr

r
= ∞ .

The p-capacity involved is explained in Section 2. The sufficiency of the diver-
gence of the integral above follows from [GZ], which extends the nonlinear Wiener
criterion of [M] to a wider class of nonlinear equations. As a matter of fact, for
many equations of the type

divA(x,∇u) = 0

(1.6) is sufficient to guarantee that any prescribed continuous boundary values are
attained in the classical sense. Among them is the p-Laplace equation

div(|∇u|p−2∇u) = 0 .

The necessity is a consequence of Theorem 3.1 below. Our proof is not longer
than the linear one, but it relies upon the knowledge that (1.6) is equivalent to the
existence of a strong barrier in Ω. The advanced proof of this fundamental fact is
given in [KM]. The situation is geometrically less complicated when n− 1 < p ≤ n;
see [LM] for a simpler proof in that case. When p > n there are no irregular
boundary points, since then any function in W 1,p

0 (Ω) can be regarded as continuous
in Ω and zero on the boundary. Let us finally mention that the last pages of
[M] contain sharp examples of inward cusps, spines, and wedges. The celebrated
Lebesgue spine corresponds to the case p = 2, n = 3.
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2. Preliminaries

In this section we give some definitions and state the auxiliary results for the
reader’s convenience. We let Ω denote a bounded domain in Rn. The Sobolev
space W 1,p

0 (Ω) is the completion of C∞0 (Ω) with respect to the usual Sobolev norm
(∫

Ω

|ϕ|p dx +
∫

Ω

|∇ϕ|p dx

)1/p

.

For a subset E of Ω, we define the p-capacity of E with respect to Ω as the number

capp(E, Ω) = inf
u

∫

Ω

|∇u|p dx ,

where the infimum is taken over all u ∈ W 1,p
0 (Ω) such that u ≥ 1 on an open

neighborhood of E. This concept of capacity is naturally connected with equations
involving operators akin to the p-Laplacian div(|∇u|p−2∇u) (cf. [HKM]), and for
p = 2 we have the familiar electrostatic capacity.

A set E ⊂ Rn is called p-thin at the point ξ if
∫ 1

0

(
capp(E ∩B(ξ, r), B(ξ, 2r))

rn−p

)1/(p−1)
dr

r
< ∞ .

If E is not p-thin at ξ, it is p-thick at ξ. In the present context E will usually be
the complement {Ω of the domain Ω and ξ ∈ ∂Ω.

The solutions to the nonlinear eigenvalue problem are interpreted in the weak
sense: u is a solution of (1.3) if u ∈ W 1,p

0 (Ω) and
∫

Ω

|∇u|p−2∇u · ∇ϕdx− λ

∫

Ω

|u|p−2uϕdx = 0

for all ϕ ∈ C∞0 (Ω). The p-ground state is a positive solution to (1.3).
It is easily seen that if u is a solution, then ϕ = u can be used as a test function,

whence

(2.1) λ =

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

provided u 6= 0. The existence and many properties of a ground state come from
the fact that it minimizes the Rayleigh quotient (2.1) above among all functions in
W 1,p

0 (Ω). The p-ground state is unique in an arbitrary domain, up to a multiplica-
tion by a constant. See [L] for a proof.

3. Irregular boundary points

The main result in this paper is the following.

3.1. Theorem. Suppose that ξ ∈ ∂Ω. Then the following conditions are equiva-
lent:

i) The complement {Ω is p-thick at ξ.
ii) There is a positive supersolution u of the equation div(|∇u|p−2∇u) = 0 in

Ω such that
lim
x→ξ

u(x) = 0 .
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Recall that u is a supersolution of div(|∇u|p−2∇u) = 0 in Ω if u ∈ W 1,p
loc (Ω) and

∫

Ω

|∇u|p−2∇u · ∇ϕ dx ≥ 0

for all nonnegative ϕ ∈ C∞0 (Ω).
The following lemma is the heart of the proof for Theorem 3.1.

3.2. Lemma. Suppose that ξ ∈ ∂Ω is such that {Ω is p-thin at ξ. Then there is
an open set D ⊂ Ω such that

∂D ∩ ∂Ω = {ξ}
and also {D is p-thin at ξ.

Proof. Since {Ω is p-thin at ξ, there is an open set G that is p-thin at ξ and contains
{Ω \ {ξ} [HKM, 12.11]. Let

E = {y : |y − x| ≤ 1
2

dist(x, {G) for some x ∈ {Ω} .

Then E is a closed set, p-thin at ξ, since E ⊂ G ∪ {ξ}. Moreover, since each point
x ∈ {Ω, x 6= ξ, belongs to the interior of E we have that D = {E is the desired
open set.

Proof of Theorem 3.1. The implication i) ⇒ ii) follows from Maz’ya’s funda-
mental work [M]. Thus the Theorem is established once we show that ii) implies i).
To this end, let u be a positive supersolution in Ω with

lim
x→ξ

u(x) = 0

and assume, on the contrary that {Ω is p-thin at ξ. Let D ⊂ Ω be the open set
provided by Lemma 3.2. Now for y ∈ ∂D, y 6= ξ, we have that

lim inf
x→y

u(x) ≥ u(y) > 0 ,

since y ∈ Ω. Therefore u is a (strong) barrier in D at ξ, and thus by [HKM, 9.8] ξ is
a regular point in the sense described by the Perron process. Now appeal to [KM,
Thm 5.4] to conclude that the complement of D is p-thick at ξ. This contradiction
completes the proof.

Now, theorem 1.5 follows immediately since the p-ground state is a positive
supersolution. We also have a similar result for the torsional creep problem.

3.3. Corollary. Suppose that ξ ∈ ∂Ω. Then the following statements are equiva-
lent:

i) The complement {Ω is p-thick at ξ.
ii) If u ∈ W 1,p

0 (Ω) satisfies div(|∇u|p−2∇u) + 1 = 0, then

lim
x→ξ

u(x) = 0 .
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It is worth our while mentioning that the two conditions above are equivalent to
the following one:

iii) The solution of the equation div(|∇u|p−2∇u) = 0 with any prescribed con-
tinuous boundary values will attain the right value at the point ξ.

Here the solutions are obtained via Perron’s procedure, which works also for nonlin-
ear equations like this one. If the boundary values ϕ happen to have a smooth ex-
tension to Ω, then the Perron solution is the unique solution u with u−ϕ ∈ W 1,p

0 (Ω).

3.4. Remark. For the sake of the simple exposition we have chosen to consider
the p-Laplacian operator only. However, similar results with same proofs as given
above can be written for a wider class of equations, even for those involving weights,
considered in [HKM]. In particular, the irregular boundary points for the equation

divA(x,∇u) = 0

can be detected by the solution of the equation

divA(x,∇u) + 1 = 0

with zero boundary values.
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