ON THE POROSITY OF FREE BOUNDARIES IN DEGENERATE VARIATIONAL INEQUALITIES

L. Karp, T. Kilpeläinen, A. Petrosyan, and H. Shahgholian

Abstract. In this note we consider a certain degenerate variational problem with zero constraint. The exact growth of the solution near the free boundary is established. A consequence of this is that the free boundary is porous and therefore its Hausdorff dimension is less than N and hence it is of Lebesgue measure zero.

1. Preliminaries and the main result

In this paper we consider the obstacle problem for the nonhomogeneous p-Laplace equation ($1 < p < \infty$)

$$
\text{div}(|\nabla u(x)|^{p-2}\nabla u(x)) = f(x),
$$

with zero obstacle. Given a bounded open subset Ω of \mathbb{R}^N, $N \geq 2$, and θ in $W^{1,p}(\Omega) \cap L^\infty(\Omega)$, we define

$$
K_\theta = \{ v \in W^{1,p}(\Omega) : v - \theta \in W^{1,p}_0(\Omega), v \geq 0 \text{ a.e in } \Omega \}.
$$

A function u in K_θ is a solution to the obstacle problem if

$$
(1.1) \quad \int_\Omega (|\nabla u|^{p-2}\nabla u \cdot (\nabla v - \nabla u) + f(x)(v - u))dx \geq 0
$$

whenever $v \in K_\theta$. According to a result of Choe and Lewis [CL] (see also [MZ]), the solution u to (1.1) lies in $W^{1,p}(\Omega) \cap C^{1,\alpha}(\Omega)$ for some $\alpha \in (0,1)$, provided $f \in L^q(\Omega)$ for some $q > N$. We will assume that $f \in L^\infty(\Omega)$.

The solution u to the obstacle problem satisfies

$$
(1.2) \quad \text{div}(|\nabla u|^{p-2}\nabla u) = f\chi_{\Omega^+} - \mu,
$$

weakly in Ω, where

$$
\Omega^+ = \{ x \in \Omega : u(x) > 0 \}
$$

1991 Mathematics Subject Classification. 35J70, 35J60, 35J85.

Key words and phrases. Obstacle problem, nonhomogeneous p-Laplace equation, free boundary, porosity.

The second author was supported by the Academy of Finland (Project #8597).

The third author was supported by the Swedish Institute.

The fourth author was supported by the Swedish Natural Science Research Council.

Typeset by \LaTeX}
and \(\mu \) is a nonnegative Radon measure with \(\text{supp}\mu \subset \partial\Omega_+ \).

Plugging in (1.1) a test function \(v = u + \eta \) with \(\eta \in C_0^\infty(\Omega) \), \(\eta \geq 0 \), we see that \(f - \text{div}(|\nabla u|^{p-2}\nabla u) \) is a nonnegative distribution, hence a Radon measure. Since \(u \) vanishes outside \(\Omega_+ \), this measure coincides with \(f \) there. To complete the proof of (1.2) we observe that if \(\eta \in C_0^\infty(\Omega_+) \), then \(u \geq \delta > 0 \) in the support of \(\eta \). Thus
\[
v = u \pm \varphi \text{ with } \varphi = \delta \frac{\eta}{||\eta||_\infty},
\]
are competing functions in \(K_\theta \). We conclude that \(f - \text{div}(|\nabla u|^{p-2}\nabla u) = 0 \) in \(\Omega_+ \), and (1.2) is established.

As an opposite to (1.2) we have the following lemma.

Lemma 1.1. Suppose that \(u \in W^{1,p}(\Omega) \) is a nonnegative continuous function with
\[
\text{div}(|\nabla u|^{p-2}\nabla u) = g \text{ in } \Omega_+ = \{ u > 0 \},
\]
where \(g \) is a signed Radon measure, living in \(\Omega_+ \). Then there is a nonnegative Radon measure \(\nu \), supported on \(\partial\Omega_+ \) such that
\[
\text{div}(|\nabla u|^{p-2}\nabla u) = g + \nu \text{ in } \Omega.
\]

Proof. Let \(\eta \in C_0^\infty(\Omega) \), \(\eta \geq 0 \). For \(\varepsilon > 0 \) define
\[
\eta_\varepsilon = \eta \chi_\varepsilon,
\]
where
\[
\chi_\varepsilon = \begin{cases}
1 & \text{if } u(x) \geq 2\varepsilon \\
\frac{u(x)}{\varepsilon} - 1 & \text{if } \varepsilon < u(x) < 2\varepsilon \\
0 & \text{if } u(x) \leq \varepsilon
\end{cases}
\]
Then
\[
-\langle \eta_\varepsilon, g \rangle = \int_{\Omega_+} |\nabla u|^{p-2}\nabla u \cdot \nabla \eta_\varepsilon \, dx
\]
\[
= \int_{\Omega} (|\nabla u|^{p-2}\nabla u \cdot \nabla \eta) \chi_\varepsilon \, dx + \frac{1}{\varepsilon} \int_{\varepsilon < u < 2\varepsilon} |\nabla u|^{p-1} \eta \, dx
\]
\[
\geq \int_{\Omega} (|\nabla u|^{p-2}\nabla u \cdot \nabla \eta) \chi_\varepsilon \, dx.
\]
Passing to the limit as \(\varepsilon \to 0 \), which is legitimate since \(0 \leq \eta_\varepsilon \leq \eta \) and
\[
\int_{\Omega} |\nabla u|^{p-1} |\nabla \eta| \, dx < \infty,
\]
we obtain
\[
-\langle \eta, g \rangle \geq \int_{\Omega_+} |\nabla u|^{p-2}\nabla u \cdot \nabla \eta \, dx = \int_{\Omega} |\nabla u|^{p-2}\nabla u \cdot \nabla \eta \, dx.
\]
We have used that \(\nabla u = 0 \) a.e. on \(\Omega \setminus \Omega_+ \). The last inequality is equivalent to the statement of the lemma and the proof is completed. \(\square \)
Lemma 1.2. Suppose that u is a solution to the obstacle problem (1.1) in K_θ with $f \in L^q(\Omega)$ for some $q > N$. Then u is continuous and

$$\text{(1.3)} \quad \text{div}(|\nabla u|^{p-2}\nabla u) = h$$

weakly in Ω with $h \in L^q(\Omega)$ satisfying

$$\text{(1.4)} \quad f \chi_{\Omega_+} \leq h \leq f \chi_{\Omega_+} \quad \text{a.e. in } \Omega.$$

If, in addition, $f \geq 0$ a.e. in Ω then

$$\text{(1.5)} \quad 0 \leq u \leq \|\theta\|_{\infty, \Omega} \quad \text{in } \Omega.$$

Proof. As noted before u is even $C^{1,\alpha}$ regular; see [CL], [MZ]. Let h be a distribution defined by (1.3). From (1.2) and Lemma 1.1 with $g = f \chi_{\Omega_+}$ it follows that

$$\text{(1.6)} \quad h = f \chi_{\Omega_+} - \mu = f \chi_{\Omega_+} + \nu$$

where both μ and ν are nonnegative Radon measures, supported on $\partial \Omega_+$. Further, (1.6) implies

$$\mu + \nu = f \chi_{\partial \Omega_+}.$$

In particular, since $f \in L^q(\Omega)$, it follows that $\mu, \nu \in L^q(\Omega)$ and therefore also $h \in L^q(\Omega)$. Inequality (1.4) follows now from (1.6).

To prove (1.5), we set $v = \min\{u, \|\theta\|_{\infty, \Omega}\} \in K_\theta$ in (1.1), and use the assumption $f \geq 0$ to obtain $v = u$. Hence (1.5) follows.

The lemma is proved. □

To formulate the main result of this paper, we recall that a set E in \mathbb{R}^N is called porous with porosity constant δ if there is an $r_0 > 0$ such that for each $x \in E$ and $0 < r < r_0$ there is a point y such that $B_{\delta r}(y) \subset B_r(x) \setminus E$. A porous set has Hausdorff dimension not exceeding $N - C\delta^N$, where $C = C(N) > 0$ is some constant (see e.g. Martio and Vuorinen [MV]). Consequently a porous set has Lebesgue measure zero.

Theorem 1.3. Let u be a solution to the obstacle problem (1.1) in K_θ with f satisfying

$$\text{(1.7)} \quad 0 < \lambda_0 \leq f \leq \Lambda_0 \quad \text{a.e. in } \Omega.$$

Then for every compact set $K \subset \Omega$ the intersection $\partial \Omega_+ \cap K$ is porous with porosity constant $\delta = \delta(\|\theta\|_{\infty, \Omega}, \lambda_0, \Lambda_0, \text{dist}(K, \partial \Omega), p, N) > 0$.

We prove this theorem in section 3.

2. On a class of functions in the unit ball

The proof of Theorem 1.3 is based on the study of the following class of functions. We say that a function u in $W^{1,p}(B_1)$, where $B_1 = B_1(0)$ is the unit ball in \mathbb{R}^N, belongs to the class $G = G(p)$ ($1 < p < \infty$) if

$$\text{(2.1)} \quad \|\text{div}(|\nabla u|^{p-2}\nabla u)\|_{\infty} \leq 1;$$

$$\text{(2.2)} \quad 0 \leq u \leq 1 \quad \text{a.e. in } B_1;$$

$$\text{(2.3)} \quad u(0) = 0.$$

Condition (2.1) is understood in the weak sense, i.e. $\text{div}(|\nabla u|^{p-2}\nabla u) = h$ weakly for $h \in L^\infty(B_1)$ with $\|h\|_{\infty} \leq 1$. Condition (2.3) makes sense since (2.1) and (2.2) provide that $u \in C^{1,\alpha}(B_1)$ for some $\alpha \in (0, 1)$; (see e.g. [CL], [MZ]).
Theorem 2.1. There is a positive constant $K = K(p, N)$ such that for every $u \in G$, there holds
\[|u(x)| \leq K |x|^{p/(p-1)} \quad \forall x \in B_1. \]

For a given nonnegative bounded function u, set
\[S(r, u, z) = \sup_{x \in B_r(z)} u(x), \quad S(r, u) = S(r, u, 0) \]
and for u in G define $M(u)$ to be the set of all nonnegative integers j such that the following doubling condition holds
\[2^{p/(p-1)} S(2^{-j-1}, u) \geq S(2^{-j}, u). \]

Lemma 2.2. There exists a constant $K = K(p, N)$ such that
\[S(2^{-j-1}, u) \leq K (2^{-j})^{p/(p-1)}, \]
for all $u \in G$, and $j \in M(u)$.

Proof. We argue by contradiction. Thus we assume that for every $k \in \mathbb{N}$, there are $u_k \in G$ and $j_k \in M(u_k)$ such that
\[S(2^{-j_k-1}, u_k) \geq k (2^{-j_k})^{p/(p-1)}. \]

Define now
\[\tilde{u}_k(x) := \frac{u_k(2^{-j_k}x)}{S(2^{-j_k-1}, u_k)} \quad \text{in} \ B_1. \]

Then it follows from the definition of $M(u)$ and G that
\[0 \leq \tilde{u}_k \leq 2^{p/(p-1)} \quad \text{(by (2.1))}, \]
\[\sup_{B_{1/2}} |\tilde{u}_k| = 1 \quad \text{(by (2.6))}, \]
\[\tilde{u}_k(0) = 0 \quad \text{(by (2.3))}. \]

Now we have by (2.1) and (2.5) that
\[||\text{div}(|\nabla \tilde{u}_k|^{p-2} \nabla \tilde{u}_k)||_{\infty} \leq k^{1-p}. \]

Invoking Harnack inequalities and Hölder estimates of solutions (see e.g. [Se]) we infer that a subsequence of \tilde{u}_k converges locally uniformly in B_1 to a function u. Moreover, the limit function $u \neq 0$, by (2.8), and it satisfies by (2.9) and (2.10)
\[\text{div}(|\nabla u|^{p-2} \nabla u) = 0, \quad u(0) = 0, \quad u \geq 0, \]
in B_1. This, however, contradicts the strict minimum principle (see [HKM, 7.12]) and the lemma follows. \Box

Proof of Theorem 2.1. We first claim that
\[S(2^{-j}, u) \leq K (2^{-j+1})^{p/(p-1)} \]
for all $j \in \mathbb{N}$, where K is the constant in Lemma 2.2. Without loss of generality we may assume that $K \geq 1$. Thus (2.11) holds for $j = 0$. Next, let (2.11) hold for some $j \in \mathbb{N}$. Then it holds also for $j + 1$. Indeed, if $j \in M(u)$ then this follows from Lemma 2.2. Otherwise, (2.4) fails and we obtain
\[S(2^{-j-1}, u) \leq 2^{-p/(p-1)} S(2^{-j}, u) \leq 2^{-p/(p-1)} K (2^{-j+1})^{p/(p-1)} = K (2^{-j})^{p/(p-1)}. \]

Thus (2.11) is established.

To complete the proof, let $2^{-j-1} \leq r \leq 2^{-j}$. Then by (2.11)
\[S(r, u) \leq S(2^{-j}, u) \leq K (2^{-j-1})^{p/(p-1)} \leq K r^{p/(p-1)}, \]
and the theorem is proved. \Box
The next lemma shows that Theorem 2.1 gives, in a sense, the exact growth of the solution to the obstacle problem (1.1) near the free boundary \(\partial \Omega_+ \). The lemma originates from the paper of Caffarelli [Ca].

Lemma 3.1. Suppose that \(u \in W^{1,p}(\Omega) \) is a nonnegative continuous function satisfying
\[
\text{div}(|\nabla u|^{p-2} \nabla u) = f
\]
weakly in \(\Omega_+ = \{ u > 0 \} \) with \(f \) as in (1.7). Then for every \(z \in \overline{\Omega}_+ \) and \(r > 0 \) with \(B_r(z) \subset \Omega \)
\[
S(r, u, z) \geq C_0 r^{p/(p-1)} + u(z),
\]
where \(C_0 = (1 - 1/p) (\lambda_0/N)^{1/(p-1)} \).

Proof. First suppose that \(z \in \Omega_+ \), and for small \(\varepsilon > 0 \) set
\[
w_\varepsilon(x) = u(x) - u(z)(1 - \varepsilon), \quad v(x) = C_0 |x - z|^{p/(p-1)}.
\]
Then \(\text{div}(|\nabla w_\varepsilon|^{p-2} \nabla w_\varepsilon) = \lambda_0 \) and therefore
\[
\text{div}(|\nabla w_\varepsilon|^{p-2} \nabla w_\varepsilon) = \text{div}(|\nabla u|^{p-2} \nabla u) \geq \text{div}(|\nabla v|^{p-2} \nabla v)
\]
in \(\Omega_+ \cap B_r(z) \), and \(w_\varepsilon \leq v \) on \(\partial \Omega_+ \cap B_r(z) \). If also \(w_\varepsilon \leq v \) on \(\partial B_r(z) \cap \Omega_+ \), then we may apply the comparison principle to obtain \(w_\varepsilon \leq v \) in \(B_r(z) \cap \Omega_+ \), which contradicts to the fact that \(w_\varepsilon(z) = \varepsilon u(z) > 0 = v(z) \). Hence
\[
\sup_{\partial B_r(z)} w_\varepsilon \geq \sup_{\partial B_r(z)} v = C_0 r^{p/(p-1)}.
\]
Letting \(\varepsilon \to 0 \), we obtain the desired result, for all \(z \in \Omega_+ \), and by continuity for all \(z \in \overline{\Omega}_+ \). The proof is completed. \(\square \)

Proof of Theorem 1.3. Without loss of generality we may assume that the compact \(K \) in Theorem 1.3 is the closed unit ball \(B_1 \), and moreover that \(B_2 \subset \Omega \).

For \(x \in \Omega_+ \cap \overline{B_1} \) define
\[
d(x) = \text{dist}(x, \overline{B}_1 \setminus \Omega_+)
\]
and take \(z_x \in \partial \Omega_+ \cap \overline{B}_1 \) with \(|x - z_x| = d(x) \). Let
\[
\tilde{u}(y) = u(z_x + y) \quad \text{for } y \in B_1.
\]
Then, using Lemma 1.2 and condition (1.7), we see that
\[
\|\text{div}(|\nabla \tilde{u}|^{p-2} \nabla \tilde{u})\|_{\infty} \leq \Lambda_0, \quad 0 \leq \tilde{u} \leq \|\theta\|_{\infty, \Omega}, \quad \tilde{u}(0) = 0.
\]
Therefore if \(M = \max\{\Lambda_0^{1/(p-1)} \|\theta\|_{\infty, \Omega}\} \), then \(\tilde{u}/M \) is in \(G \) and we infer by Theorem 2.1 that
\[
u(x) = \tilde{u}(x - z_x) \leq M K |x - z_x|^{p/(p-1)} = M K d(x)^{p/(p-1)}.
\]
Next, let $z \in \partial \Omega_+ \cap \overline{B}_1$. Then for $0 < r < 1$, according to Lemma 3.1, there exists $x_z \in \partial B_r(z)$, such that

$$u(x_z) \geq C_0 r^{p/(p-1)}.$$

Then by (3.1)

$$C_0 r^{p/(p-1)} \leq u(x_z) \leq M K d(x_z)^{p/(p-1)},$$

which implies that

$$d(x_z) \geq \delta r, \quad \delta = \left(\frac{C_0 M}{K} \right)^{(p-1)/p},$$

or equivalently,

$$B_{\delta r}(x_z) \cap B_r(z) \subset \Omega_+.$$

Note that $\delta \leq 1$. Since $x_z \in \partial B_r(z)$, there is a ball

$$B_{(\delta/2)r}(y) \subset B_{\delta r}(x) \cap B_r(z) \subset B_r(z) \setminus \partial \Omega_+.$$

This shows that $\partial \Omega_+ \cap B_1$ is porous with the porosity constant $\delta/2$. The theorem is proved. □

References

