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Abstract

In this thesis, multivariate statistical methods that deal with measuring association
between two random vectors are considered. At first, several new test statistics
based on the multivariate sign and rank concepts are proposed for testing whether
two random vectors are independent. In the second part of the thesis, the use of the
so called robust scatter and shape matrices in the canonical correlation analysis is
examined. The statistical properties (limiting distributions, efficiencies, robustness)
of new methods are studied, and the use of the methods is illustrated by several
examples.
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Chapter 1

Introduction

Classical tests of independence and canonical correlation analysis assume that the
observations come from a multivariate normal distribution. The tests and estimators
are then derived using the sample mean and sample covariance matrix, which are
the maximum likelihood estimators of unknown mean vector and covariance matrix.
Under the assumption of multivariate normality, the classical methods are optimal.
It is, however, well known that, if the data are spoiled with outlying observations,
that is, observations far away from the bulk of the data, or if the underlying distri-
bution has heavier tails than multivariate normal distribution, the techniques based
on the sample mean vector and sample covariance matrix perform poorly.

In this thesis, nonparametric and robust alternatives to normal theory methods
are considered and their statistical properties (limiting distributions, efficiencies,
robustness) are studied. The tests of independence are based on the multivariate sign
and rank concepts. When testing independence between two multivariate vectors,
standardized spatial signs and ranks are shown to be very useful. These affine
equivariant signs and ranks are based on the approach launched in Randles (2000)
and Hettmansperger and Randles (2002). The resulting tests are highly resistant to
outliers. They are also more efficient than the normal theory based tests when the
underlying distribution is heavy-tailed.

A natural way to robustify canonical correlation analysis, is to use robust scatter
or shape matrices when estimating the canonical correlations and vectors. This
approach is examined in the second part of this thesis. It turns out that the estimates
based on affine equivariant sign covariance matrix (Visuri et al., 2000) are highly
efficient but not very resistant to outliers. More robust estimates are obtained using
for example minimum covariance determinant (Rousseeuw, 1985) estimators. The
resulting estimates, however, suffer from poor efficiency properties.



The outline of this introductory part is as follows. In Chapter 2, the normal
theory based methods used in testing independence and canonical correlation analy-
sis are shortly reviewed. In Chapter 3, robust and nonparametric alternatives for
normal theory methods are considered. At first, different tools needed in deriving
robust procedures are presented. These include robust estimators of location and
scatter and concepts of sign and rank. Classical as well as recently proposed tests
of independence are then presented and discussed, and some of them are compared
through limiting and finite-sample efficiencies. Finally, the robust canonical analy-
sis is shortly reviewed, and it is shown how any scatter matrix may be used in
estimating canonical correlations and vectors.



Chapter 2

Tests of Independence and
Canonical Analysis in Normal
Population

2.1 Classical Tests of Independence

2.1.1 Independence and Second Moments

Assume that x is a random vector from a k-variate continuous distribution with
cumulative distribution function (cdf) F, and let « be partitioned into p- and g¢-
dimensional subvectors (") and x® respectively, that is,

2z
e (=)
In the following, we wish to test the hypothesis
Hy: ™ and ® are independent,
which means that the joint distribution F'(x) may be written as
F(x) = Fi (") F(z®),

where F is the marginal cdf of ") and F} is the marginal cdf of x(?).
Multivariate distributions are often described with first and second moments (if
they exists). Then the partitioned mean vector of @ is

1) 1)
AN AT
p==E <w<2)> = (,ﬁ))
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and the partitioned covariance matrix is

2@ — O\ (20 — g\ S Y

z®@ — 5@ ) \ 2@ — p@ “\Dy T/
with nonsingular (p + ¢) X (p + ¢), p X p and ¢ X ¢ matrices ¥, ¥1; and 3gy. It is
easy to see that the hypothesis of independence implies the hypothesis

H(,) s 212 = 0,

Y=F

that is, each variable in the first set is uncorrelated with each variable in the other
set. Note that in the bivariate case (p = ¢ = 1), the covariance matrix may be

written as )
Y 07 01020
- 2 )
01020 Oy

where o2 and o2 are the variances of () and 2(?, and p is the correlation between
M and £®. In this case, H,: p=0.

When the classical tests of independence are derived, one often assumes that x
comes from a k-variate normal distribution with density function

f(@) = 205 Pexp {—%w WS e u)} .

Under this model, the hypothesis Hj is equivalent to the hypothesis H|. In general
this is, however, not true.

2.2 Test Statistics

Assume now that x1, ..., x, is a random sample from a k-variate normal distribution

and that each x; is partitioned into p- and g-dimensional subvectors wgl) and .’1:52).

The classical test statistics for testing the null hypothesis of independence may be
derived using the maximum likelihood estimators of p and 3, that is, the sample

mean vector and sample covariance matrix
z = ave{z;} and S=ave{(z;—z)(z;— )"},

where “ave” denotes the average taken over + = 1,...,n. The partitioned & and S

are
_ (f:(l) Sll 512
T = (5:(2)) and S = <521 522) , (2.1)
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respectively.
In the bivariate case (p = ¢ = 1), a natural test statistic for testing H): p=0
is the Pearson product moment correlation coefficient (1896)
S (2 — z0)(2® — z)

= i=1\""g i
\/Z?ﬂ (xz('l) - f“))2\/2?:1 (xz(2) —z()?

that is, the maximum likelihood estimator of p. Under Hj, \/n7 —4 N(0,1).
Assume next that p > 2 and ¢ > 2. Wilks (1935) showed that the likelihood
ratio test statistic for testing H) : X0 =0 is

Y

S

Ww=_12
S11]]S22|

(2.2)

Under Hj, —nlogW —4 x?,q. Note that when W is used in testing independence in
nonnormal populations, one needs to assume that the fourth moments of underlying
distribution are finite. Other classical test of independence is the Pillai’s trace (1955)

P = T?”(Sl_llslng_QISm), (23)

which is asymptotically equivalent with Wilks’ test, that is, n(P + logW) —p 0.
Muirhead (1982) showed that Wilks’ test W is affine invariant, that is, its value
is not changed under the group of transformations

G ={x - Dz + d}, (2.4)

D, 0
D=
(% 5)
is an arbitrary matrix with nonsingular p X p and ¢ X ¢ matrices D; and D,. See
also Section 2.3.4. Invariance implies that the value of W does not depend on the
chosen marginal coordinate systems and the performance of W is consistent under

different covariance structures of (1) and £ . Also Pillai’s trace is affine invariant
under G.

where d is a p + ¢ vector and

12



2.3 Canonical Correlation Analysis

2.3.1 Introduction

The purpose of canonical correlation analysis is to describe the linear interrela-
tions between two random vectors (V) and x®. The method was proposed by
Hotelling (1935, 1936), who applied the technique to study the relationship between
a set of mental test variables and a set of physical variables.

In canonical analysis one forms new separate coordinate systems for &(!) and
2. In both systems, the variables are defined as linear combinations of original
vectors, so that, the marginal variables are uncorrelated and have unit variances.
In addition, the first variables are linear combinations with maximum correlation.
The second variables are such combinations that have maximum correlation and
are uncorrelated with the first ones, and so on. The linear combinations are then
called canonical variates and corresponding maximum correlations are canonical
correlations.

Canonical analysis reduces the correlation structure implicit in 3 to a form in-
volving only few canonical correlations and therefore provides an useful method to
reduce the dimensionality of a problem. If one wishes to study the interrelations
between two large sets of variates, by canonical analysis one can consider only those
linear combinations of each set that are most highly correlated.

2.3.2 Population Canonical Correlation Analysis

Let now k-dimensional random vector & be partitioned as in Section 2.1.1 and
assume without loss of generality that p < ¢. In canonical analysis one finds a p X p
matrix A = (ay,...,ap), a ¢ X ¢ matrix B = (b, ..., b;) and a p x p diagonal matrix
R = diag(p1, ..., pp) with p; > --- > p, so that

AT 0 Y X\ (A 0) I, (R,0) (2.5)

0 BT \Zyn Xn/\0 B) \(RO" I, ) '
The diagonal elements of R are then called canonical correlations, the columns
of A and B are canonical vectors and the linear combinations

u=ATz® and v=BTz®

are canonical variates.

13



By means of canonical variates, the entire relationship between ) and z(®
can be expressed using only p canonical correlations. From (2.5) one finds that for
1=1,...,pand j=1,...,¢q

Cov(u;, vj) :{ 0 it
and for7,7=1,...,pand k,l=1,...,q

1, 1=7 ], k=1
Cov(u;, uj) = { 0 i and Cov(vg,v) = { 0 k£l
In other words, the first canonical variates u; and v; are only correlated with each
other, the second variates us and v, with each other, and so on. Corresponding

correlations are pq,...,p,. Note that, if py > .-+ > p,, then the canonical vectors
ai,...,a,and by, ..., b, are uniquely defined up to a sign. Remaining ¢—p canonical
vectors bpy1,. .., b, are uniquely defined expect for multiplication on the right by

an orthogonal (¢ — p) X (¢ — p) matrix (see Anderson, 1984, pp. 493).
Finally note that from (2.5) one has that

21_1121222_2122114 = A(R, 0) (R, O)T

and
¥ 2212 'Y,B = B(R, 0) (R,0).

Thus the squared canonical correlations and canonical vectors can be found ex-
plicitely as eigenvalues and eigenvectors of

21_1121222_21221 and 22_21221 21_11212,

so that, the eigenvectors are chosen to satisfy A7¥;4 = I, and BTY5,B = 1.

2.3.3 Estimation of Canonical Correlations and Vectors

The sample canonical correlations and vectors can be found as in the previous sec-
tion by replacing 3 by its sample counterpart. If the data come from a multivariate
normal distribution, then the maximum likelihood estimators for canonical correla-
tions R = diag(7, . . ,Tp) and vectors A= (@,.. ,@,) and B=,..., bq) are
obtained as e1genvalues and eigenvectors of

51_1151252_21521 and 52_2152151_11512,
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with eigenvectors chosen to satisfy ATS;;A = I, and BT Sy,B = I,.

The limiting distribution of the canonical correlations in the multivariate normal
case was derived already in Hsu (1941). His result is valid under very general
assumptions on the population canonical correlations. The limiting distributions
of the canonical vectors have been considered in several papers. See Anderson
(1999) for a detailed discussion on these. Anderson also gave the complete limiting
distributions of the canonical correlations and vectors assuming that the nonzero
population correlations are distinct. He showed among other things that if p = g,
then for ¢+ = 1,...,p, the marginal distributions of /n(7; — p;), v/n(@a; — a;) and
ﬁ(& — b;) are asymptotically normal with zero mean and asymptotic variances

ASV(r) = (1 - Pi)Q,

R 1 P 2 1 9?2 —20202)(1 — p?
JFi

and

~ 1 p 24 02 — 920202 (1 — p?

= (0] = p)*

G
2.3.4 Tests for Canonical Correlations

In Section 2.2, we considered tests for the null hypothesis H| : ;2 = 0. Since
from (2.5) one has that ATY,B = (R, 0), the hypothesis is equivalent to

Hj: pp=---=p,=0,

and the test statistics given in (2.2) and (2.3) can be used for testing the canonical
correlations also. Note that Wilks’ test statistic can be expressed in terms of sample
canonical correlations as

S e on T
% = |1l — ST 81255 So1| = H(l - TiQ)

i=1

W =

and Pillai’s trace becomes

p
P = TT(SE_ISlQS;QlSQl) = Z?‘f

=1

15



Muirhead (1982) showed that under the group of transformations G given in (2.4),
any invariant test is a function of squared sample canonical correlations. The in-
variance of the test statistics thus follows.

If Hy : p1 = -+ = p, = 0 is rejected, it may be of interest to study how
many population canonical correlations differ from 0, that is, how many canonical
correlations are needed to describe the relationships between 2(® and £®. Fujikoshi

(1974) showed that the likelihood ratio test for testing H) : pgy1 =--- = pp, =0 is
based on »
w'= ] a-72).
i=k+1

Under H}, —nlogW' —4 xfp_k)(q_k).
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Chapter 3

Nonparametric and Robust
Methods

3.1 Estimation of Location and Scatter

3.1.1 Elliptical Distributions

In the multivariate normal case, the methods based on sample mean and sample
covariance matrix are optimal. It is, however, well known that the sample mean and
covariance matrix and methods based on them are highly sensitive to outlying ob-
servations. In this chapter we consider some nonparametric and robust alternatives
for tests of independence and canonical correlation analysis and start by defining
the tools needed in derivations.

Since the elliptical distributions are often used in the robustness studies, we first
recall the definition of corresponding distributions. A k-dimensional random vector
x has a continuos elliptically symmetric distribution if the density function is of the
form

f(@) =B fo(571 (@ — ), (3.1)

where Y is a positive definite symmetric £ x k£ matrix (PDS(k)) and fo(2) =
exp{—p(||z||)} with z = ¥7%/2(z — u). Note that if £ comes from an elliptical
distribution, then the standardized variable z has a spherical distribution, and z
can be decomposed as z = ru, where 7 = ||z|| and u = ||z|| 'z are indepen-
dent with u being uniformly distributed on the unit sphere. If p(r) = r?/2, the

17



multivariate normal distribution is obtained and
k+v r?
= log|( 1+ —
p(r) 5 10g ( + V)

gives the k-variate ¢ distribution with v degrees of freedom. Finally,

yields the k-variate contaminated normal distribution, that is, the distribution with
density function f(z) = (1 — €)¢(x) + ec *¢(x/c), where ¢ denotes the density of
standard normal distribution, € € [0,1] and ¢ > 1.

3.1.2 Location, Scatter and Shape Functionals

In this section we define the statistical functionals of multivariate location, scatter
and shape. Let T(F) and C(F) denote the location vector and scatter matrix
functionals. Alternatively one can write T'(x) and C(zx), if  is a random vector
with cumulative distribution function F'. We say that a k-variate vector functional
is a location vector if it is affine equivariant, that is, if

T(Ax +b) = AT (z)+ b

for any nonsingular £ x k matrix A and k-vector b. Further a k£ x k£ matrix valued
functional C'(F) is a scatter matrix if it is PDS(k) and affine equivariant in the
sense that

C(Az +b) = AC(z)AT.

In several applications, like in canonical correlation analysis, it is enough to
estimate the covariance matrix up to a constant. The so called shape matrix can be
seen as a “standardized” scatter matrix. The functional V(F') is a shape matrix
if it is PDS(k) with Det(V) = 1 and affine equivariant in the sense that

V(Az + b) = {Det[AV (x)AT]} Yk AV (x) AT

The condition Det(V) = 1 is sometimes replaced by the condition Tr(V) = k. See
Ollila et al. (2003b). Note that if C(F) is a scatter matrix, then

V(F) = {Det[C(F)]}*C(F).

18



The shape matrix can, however, be defined without any reference to a scatter matrix.
Note also that if  is a random vector from an elliptically symmetric distribution
with cdf F', then the affine equivariance properties of the functionals imply that
T(x) = p, O(x) = X and V(x) = [Det(X)]/¥X. Thus, in the elliptic case,
the location vectors and shape matrices estimate the same population quantities.
The scatter matrices are not directly comparable, and a correction factor (1/c)
depending both on C' and the spherical distribution corresponding to F' is needed
to quarantee the Fisher-consistency to 2.

3.1.3 Influence Functions and Limiting Distributions

Influence function measures the robustness of a functional against a single outlier,
that is, the effect of an infinitesimal contamination located at point z. For robust
estimators the influence functions are bounded and continuous. Consider now the
contaminated distribution

F.=(1-¢F +€A,,

where A, denotes the cdf of a distribution putting all its mass at z. The influence
function (Hampel et al., 1986) of a functional T" at F' is then defined as

T(F,)—-T(F
IF(2,T, F) = lim L) = T(F)
e—0 €
Let now F' be a spherical distribution and write z = ru where r = ||z]|| is
the length and u = ||z|| 'z is the direction of the contamination vector z. The

influence functions of location, scatter and shape functionals are derived in Hampel
et al. (1986), Croux and Haesbrock (2000) and Ollila et al. (2003b). The influence
function of location functional T is given by

IF(Z,T, F) = ’YT(T)’UH

where 7 (r) is a real valued function depending on 7" and F. Further, the influence
functions of scatter and shape matrix functionals are

IF(2;C, F) = ac(r)uu’ — Bo(r)I

and

IF(z;V,F) = ay(r) [uuT - %Ik]

19



for some real valued functions ac(r), Bc(r) and ay(r).
As an example, consider the population mean vector and covariance matrix func-
tionals

T(F)=Ep(z) and C(F)= Ep|[(x — Er(z))(x — Er(z))"].
At spherical F', the corresponding influence functions are

EF(TQ)

IF(z,T,F) =ru, and IF(z;C,F)=r*uu’ — p

Ik.
Since the functions are linear and quadratic in r, the estimates are not robust against
outliers.

Influence functions can also be used when computing the asymptotic variances
of the estimates. If x,...,x, is a random sample from a spherical distribution
and F), is the corresponding empirical cdf, then natural location, scatter and shape
estimates are p = T'(F,,), C = C(F,,) and V = V(F,). Under general assumptions,
the limiting distributions of \/nfi, v/nvec(C—1I;) and /nvec(V —1I,,) are multivariate
normal distributions with mean vectors zero and covariance matrices

ASV(fi; F) = Eg[IF(x, T, F)IF(2, T, F)"),

ASV(C; F) = Ep|vec{IF(z, C, F)}vec{IF (z, C, F)}"]

and
ASV(V; F) = Egp[vec{IF (z, V, F)}vec{IF (z, V, F)}"].

Here “vec” is a matrix operator that stacks the columns of the matrix on top of each
other. As shown in Ollila et al. (2003a,2003b), the limiting covariance of location
estimate may be written using the marginal variance of an element of \/np, and
the covariances of scatter and shape estimates are characterized by the asymptotic
variances of diagonal and off-diagonal elements of scatter and shape matrices as
follows.

ASV(fi; F) = ASV (jis; F) I,

ASV(@; F)= ASV(@H; F) [Ikz + Iy — 2vec(Ik)vec(Ik)T]
+ ASV(Cyy; F)vee(I,)vec ()T

20



and
> o 2
ASV(V; F) = ASV(Vig; F) | L2 + I — Evec(Ik)vec(Ik)T ,

where I, is the so called commutation matrix, that is, for any £ x k matrix A,
vec(AT) = Iy gvec(A), and

asviay F) = 2RO asv(@s ) = ZEO0,
A o Erlag(r)]
ASV(Cig; F) = = e s (3.2)
and
ASV(Ciy; F) = 8Erlog(r)]  2Er[oc(r)fe(r)] | Er[B2(r)]. (3.3)

k(k + 2) K

At elliptical distributions, the expressions for influence functions and limiting vari-
ances can be derived using the affine equivariance properties of functionals. See
Ollila et al. (2003a,2003b), for example.

3.1.4 Estimation of Multivariate Location and Scatter

Several robust techniques for estimating multivariate location and scatter have been
proposed in the literature. In the following we briefly review some of the techniques
in more detail.

Consider first the regular maximum likelihood (ML) estimators of location
and scatter at elliptical model given in (3.1). Write z; = C~/%(x; — u) for the
standardized observations. Then r; = ||z;|| and u; = ||2;||7'2;, and simultaneous
ML-estimates p and C solve

ave{w;(r;)u;} =0 and ave{wg(n)u,-uiT} = I,

with the weight functions wy(r) = ¥(r) and wy(r) = r¢(r), where ¢(r) = p'(r)
is the optimal location score function. Note that in the multivariate normal case,
¥ (r) = r, and the sample mean vector and covariance matrix are obtained.

M-estimators of location and scatter were first proposed by Maronna (1976).
Huber (1981) extended Maronna’s definition by defining M-estimates fi and C as
solutions of

ave{vi(r;)(x; — )} =0 and ave{vy(r;)(x; — p)(x; — )" — v3(r;)C} =0,
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where v1, vy and vz are some real-valued functions on [0, 00). Note that M-estimates
include ML-estimates as a particular case. For the existence and uniqueness, influ-
ence functions and asymptotic normality of M-estimators, see Maronna (1976), Hu-
ber (1981) and Kent and Tyler (1991), for example. As an example of M-estimators,
consider Huber’s M-estimator that use vs(r) = 1 and v;(r) = ¢;(r)/r, for i = 1,2,
where 11 (r) = ¥g(r,c) and ¥y (r) = ¥g(r, c¢?) and

Yy (r,c) = min{r, max{r, —c}}

is known as Huber’s psi-function. The tuning constant c¢ is chosen so that ¢ =
Pr(x: < ¢?). According to Tyler (1986), the asymptotic breakdown point of Huber’s
M-estimator is then €* = min{1/c?,1 — k/c®} for ¢® > k. Thus the breakdown
point decreases with the dimension. Note that the breakdown point is another tool
to measure the robustness of an estimator. Loosely speaking it is the maximum
fraction of outliers in the sample that an estimator can tolerate.

S-estimators were introduced by Rousseeuw and Leroy (1987) and Davies
(1987). They are defined as solutions g and C to the problem of minimizing det(C)
subject to

ave{p(ri)} = b,
where p : R — [0,00) is bounded, nondecreasing and sufficiently smooth, and 0 <
b < sup p. For the general theory and properties of S-estimators, see Davies (1987),
Lopuhad (1989) and Lopuhad and Rousseeuw (1991). An example of function p is
Tukey’s biweight function

(2 gt g6 2
p(r,c) = min <4 — + =0

2 22 B¢t 6
that yields to the biweight S-estimator. To attain €* asymptotic breakdown point,
the constant ¢ can be chosen so that b = €*p(c).

Other affine equivariant estimators of location and scatter include for example
the minimum volume ellipsoid (MVE) estimators and minimum covari-
ance determinant (MCD) estimators introduced by Rousseeuw (1985). MVE-
estimators are computed using the smallest regular ellipsoid containing at least half
of the observations. Location estimate is then the center of the ellipsoid and scatter
matrix is defined by the shape of the ellipsoid. MCD-estimators are defined us-
ing such subset h observations whose covariance matrix has smallest determinant.
The location and scatter estimates are then given by the average and covariance
matrix computed over this optimal subset. Typically, the size of the subset equals
h = [n(1—¢€*)]. The properties of MVE- and MCD-estimators are studied in Davies
(1992), Butler et al. (1993) and Croux and Haesbroeck (1999) among others.
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3.1.5 Estimators Based on Signs and Ranks

The methods based on signs and ranks are widely used in estimation and testing
problems. The reason for their popularity is that they are usually robust, efficient
and valid under very weak assumptions about the underlying population. In the
following, we will consider location and shape matrix estimators based on signs and
ranks.

Recall first the definition of univariate sign and rank. Let z{,...,z, be a uni-
variate data set. The univariate sign function is

-1, z <0
S(z) =< 0, z=0
+1, x> 0.

The centered rank function is defined as
R(z) = ave{S(z — z;)}

and the univariate median i of the x;’s satisfies ave{S(ii—z;)} = 0. The multivariate
extensions of the univariate sign and rank are now easily constructed. Let x,..., x,
be a k-variate data set. The spatial sign function is then defined as

z|| 'z, =x#0
s ={ leln 270

where ||z|| = (£”x)'/? is the (Euclidean) length of the vector «, that is, S(zx) is a
unit vector in the direction of x. The spatial rank function is defined as

R(x) = ave{S(x — x;)}

and the spatial median g (Brown, 1983) of the x;’s satisfies ave{S(u — x;)} = 0.
See also Mottonen and Oja (1995).

Hettmansperger and Randles (2002) proposed affine equivariant location and
shape matrix estimators based on the spatial sign concept. Write z; = V~1/%(x; — u)

for the standardized observations. Then the location and shape estimates gt and V'

solve
ave{S(z;)} =0 and kave{S(z;)8"(z;)} = I,.

The resulting shape matrix estimate is Tyler’s M-estimate (Tyler, 1987) and the
location estimate is the transformation retransformation spatial median. For the
transformation retransformation technique, see Chakraborty et al. (1998).
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The shape matrix estimates may also be based on the spatial rank concept.
Diimbgen (1998) considered the estimate similar to Tyler’s M-estimate only com-
puted on differences z; — z;. The shape matrix estimate V' is then chosen to satisy

kavez-<j{S(zi — Zj)ST(Zi — Zj)} = ]k
Moreover, v may also be chosen so that
kave{R(z;)R"(2z;)} = ave{R" (z;) R(2;)} ;.

Note that, since the above approaches are based on differences of standardized ob-
servations, they avoid estimation of location parameter.

If zi and V' are some location and shape matrix estimates and the standardized
observations are defined as z; = V~'/2(x; — i), then the vectors S(z;) are called
the standardized spatial sign vectors and corresponding rank vectors R(z;) =
ave;{S(z; — z;)} are the standardized spatial rank vectors. Unlike the spatial
sign and rank vectors of original observations, these standardized sign and rank
vectors are affine equivariant. See Randles (2000) and Article C, for example. Note
that, in the standardization, any y/n-consistent shape or scatter matrix estimate
may be used.

Besides spatial signs and ranks, several other multivariate extensions of the
univariate signs and ranks are also found in the literature. For the concepts of
marginal signs and ranks and affine equivariant (Oja) signs and ranks, see for ex-
ample Hettmansperger and McKean (1998) and references therein. In Visuri et
al. (2000), sign and rank covariance matrices based on marginal, spatial and affine
equivariant (Oja) signs and ranks are defined and their usefulness in scatter matrix
estimation is discussed. The statistical properties of spatial sign and rank covariance
matrices are studied in Marden (1999), Visuri et al. (2000) and Croux et al. (2002).
For the properties of affine equivariant sign and rank covariance matrices, see Ollila
et al. (2003a,2003c) and Visuri et al. (2003).

3.2 Nonparametric Tests of Independence

3.2.1 Bivariate Tests of Independence

Several nonparametric tests of bivariate independence have been proposed in the
literature. See for example Héjek and Siddk (1967), for a review of those. Classical
nonparametric competitors to Pearson product moment correlation coefficient are
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Blomgqvist’s quadrant test (1950), Kendall’s tau (1938) and Spearman’s rho (1904).
The tests are based on the univariate sign and rank concepts and are defined as
follows. Let i) be a univariate median of the z{"’s and write S\ = §(z{") — &),
SZ.(?) = S(:vgl) - x§1)) and Rgl) = avej{S(:vgl) - x§-1))} for the centered signs, signs
of pairwise differences and centered ranks. If 5'1.(2), SZ(J2 ) and Rz@) are corresponding

signs and ranks based on ac?), cen, :1:,(3), then the Blomqvist’s quadrant statistic is

Q = ave{gi(l)gi@)},

Kendall’s tau is

T = avei<j{5i(;)5i(;)}
and Spearman’s rho is

p= ave{Rgl)RZ@)}.

The test statistics are thus covariances between centered signs, signs of the pairwise
differences, and centered ranks, respectively. Also several rank scores tests of bivari-
ate independence are found in the literature. If 135” and 1352) are regular ranks of
\a:z(-l) — M| and |x§2) — 7|, and a(u) and b(u) are some score functions, then the
test statistics may be written as

~,

T = ave{a(D{")0(D*)5]"5}.

For asymptotically equivalent rank scores tests, see Hajek and Siddk (1967).

The properties of (), 7 and p have been widely studied in the literature. For
example, their asymptotic relative efficiencies have been considered in several papers.
To compute asymptotic efficiencies, a model of dependence have to be chosen to
serve as an alternative to the null hypothesis of independence. Loosely speaking,
the asymptotic relative efficiency of the test relative to the competing test is then
the ratio of sample sizes such that the tests achieve equal power against equal
alternatives. Note that if T,, is the test statistic such that under the alternative
hypothesis H,,, \/nT, —q4 N (i, 0?), then p?/o? is the so called efficacy of the test
and asymptotic relative efficiencies are obtained as ratios of efficacies.

In the normal distribution case, natural alternatives include bivariate normal
distributions with nonzero correlation. The efficiency of () relative to the Pearson
product moment correlation coefficient 7 is then (2/7)? and the efficiencies of T
and p relative to 7 are (3/7)?. Other classes of alternatives are considered in Konijn
(1954), Farlie (1960), Bhuchongkul (1964) and Hajek and Sidak (1967) among others.

Konijn (1954) defined his alternatives as xgl) = \¥y; + A22; and xl@ = A\3¥; + M\azi,
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where y; and z; are independent random variables and Ay, ..., Ay € R. He compared
the efficiencies of @), T and p using several choices of underlying distribution. Hé;ek
and Sid4k (1967) considered alternatives of type 2\ = y{") + Az and /¥ =y +

Az;, where A > 0, y(l), yZ@) and z; are mutually independent, ygl)

k ;. and yfz) are
distributed according to f and g and 0 < Var(z;) < co. They showed that when f
and g are of logistic type, the test based on p is the locally most powerful test and
when f and g are of double-exponential type, ) yields the locally most powerful
test.

In Article A, the applicability of different sign and rank covariances (Visuri et
al., 2000) in testing independence is studied. Note that when marginal sign and
rank covariances are used, the resulting statistics are (), 7 and p. The tests are
compared with the classical sample covariance through asymptotic efficiencies using
the dependence model similar to a model proposed by Gieser and Randles (1997).
Also the robustness properties of statistics are studied.

3.2.2 Componentwise Quadrant Statistics

Puri and Sen (1971) proposed nonparametric analogues to Wilks’ likelihood ratio
test based on componentwise rankings. Let 7" be a (p + ¢) X (p + ¢) matrix with

elements
1 Dy Dy
TS = — J J bl
! n; <n+1) <n+1)

where Dy = >, I(zs; < x5) and J(u) is an arbitrary score function. If T is
partitioned as the sample covariance matrix in (2.1), then the test statistic of Puri
and Sen is of the form

T
s =TI
111 || Tz

Note that with special choices of score functions, S” yields to multivariate extensions
of Blomqvist’s quadrant statistic and Spearman’s rho. Puri and Sen (1971) showed
that under Hy, —nlogS’ —, qua so their test is a natural competitor of Wilks’
likelihood ratio test W. The test, however, is not invariant under the group G given
in (2.4). Thus its performance depends on the variance-covariance structure of the
underlying data.
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3.2.3 Tests Based on Interdirections

Gieser and Randles (1997) introduced a nonparametric test of independence based
on interdirections (Randles, 1989). Their test statistic is defined as

Q1 = ave{cos(np" (i;7')) cos(np® (i3 ) },

where, for example, p{")(i; ') is the fraction of hyperplanes formed by the origin and
p — 1 vectors :1351) — W with i* # 4 and i* # ¢ such that wgl) — ™ and wg,l) — W
are on the opposite sides of the hyperplane. The observations are centered using
some affine equivariant location estimate ﬁ(l) based on :cgl), ey a:,(,l). Note that in
the bivariate case, Q? reduces to Blomqvist’s quadrant statistic. Gieser and Randles
showed that under Hy and for elliptically symmetric ") and ¥, npg Q? —4 X2,
They also showed that their test is affine invariant under the group G.

As shown in Article C, interdirections can be used in deriving multivariate ana-
logues to Kendall’s tau and Spearman’s rho, respectively. The statistics are then
based on

7 = ave{cos(mp™ (i, j; 7', ) cos(mp® (i, 5 7, §')) }
and

pi = ave{cos(mp (4, j;7', j)) cos(mp® (4, k; &', k) },
where, for example, p™) (i, 5;', ') represents the fraction of hyperplanes formed by
the origin and differences :1351) — azgl) such that :cz(-l) — wgl) and a:z(,l ) — mg,l) are on
the opposite sides of the hyperplane. (Here i* and j* are different from any of
{i,j,7 or j'}). Note that the Kendall and Spearman analogues do not require
centering on a location estimator. It is also remarkable that no scatter or shape
matrix estimate is needed in the interdirection approach.

3.2.4 Tests Based on Standardized Spatial Signs and Ranks

In Article B, more practical extension of Blomqvist’s quadrant test is introduced.
~(1
The statistic is created by forming p-dimensional standardized sign vectors .S’g ) _

~(2
S(z") based on ", ..., 2{) and ¢-dimensional sign vectors SE - S(2”) based
on a:§2), ceey 22, The test is then based on

A0 5@)7
Q5 = |lave{S;"S;" }%,
where ||A||? = Tr(AT A). In Article B, the data points are standardized with trans-

formation retransformation spatial medians and Tyler’s M-estimates defined in Sec-
tion 3.1.5. However, in the standardization, any affine equivariant /n-consistent
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estimates can be used. In the elliptic case, Q3 is asymptotically equivalent with the
interdirection test 2, but much easier to compute in practise.

As shown in Article C, the multivariate extensions of Kendall’s tau and Spear-
mans’s tho can be derived similarly. If p-dimensional standardized sign vectors

~(1 ~(1
,S'Ej) = S(zz(-l) - zgl)) and rank vectors RE) = a;fej{S(zgj - zg-l))} are formed
based on mgl), ey m,(ll) and g-dimensional vectors ng) and RE ) are formed based on
:ng), ey me), then the multivariate analogue to Kendall’s tau is
S a@7
722 = Havei<j{sij Sij }H2

and the multivariate analogue to Spearman’s rho is

(1)~ (2

2 @72
P2:||3V9{Ri R, HI®

Note that, since the signs are based on differences, only the shape estimate is needed
for standardizing the observations. In Article C, the standardization is done using
shape estimates similar to Tyler’s M-estimate only computed on differences of ob-
servations. See Section 3.1.5, for corresponding definitions. Again, in the elliptic
case, 72 and p3 are asymptotically equivalent with their interdirection counterparts
72 and p?, but much easier to compute in practise. For the asymptotic properties
of 77 and p2, see Article C.

In Article D, rank scores tests of multivariate independence are introduced. The

test statistics are of the form

Do DN 1) ~2)7
avel a U b ¢ 551)552)
n—+1 n+1

where a(u) and b(u) are continuous, monotone and square integrable score functions,
and 135” and ﬁ?) denote the regular ranks of Hzgl) || and Hzgz) ||. In Article D, three
different choices of the score functions, namely the sign scores, the Wilcoxon scores
and the van der Waerden scores, are discussed in more detail.

2

T? =

bl

3.2.5 Asymptotic Relative Efficiencies

In the multivariate case, only a few models of dependence are found in the literature.
Puri and Sen (1971) considered some interesting sequences of alternatives and com-
puted the efficiencies of S relative to the likelihood ratio test under multinormal
distribution using some special choices of score functions.
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Gieser and Randles (1997) used in their efficiency comparisons a generalization
of the model introduced by Konijn (1954). Their model of dependence is given by

v\ _ ((1 A, AM, ) 2\ _ 4, (%) (3.4)

.o AMy, (1= D)) \2? ONE
where A = 6/4/n, :cz(l) and a:z(?) are independent p- and g-variate random vectors, and
M, and M, are arbitrary p x ¢ and ¢ x p matrices chosen so that A" exists. Gieser
(1993) derived the sufficient conditions under which the sequence of alternatives
H, : A = §/\/n is contiguous to the null hypothesis Hy : A = 0. For the
motivation of using models of type (3.4), see Konijn (1954) and Gieser and Randles
(1997).

Hannan (1956) showed that when comparing test statistics that have under H,
limiting noncentral chi-squared distributions, the asymptotic relative efficiencies are
obtained as ratios of noncentrality parameters. Gieser and Randles (1997) com-
puted the asymptotic efficiencies of @Q? relative to Wilks’ test W assuming that
the distributions of (") and x® are elliptically symmetric. Using the exponential
power family, they showed that Q? is more efficient than W when the underlying
distributions are heavy-tailed. They also considered the efficiencies of Q% relative
to quadrant test analogue S’ and showed that Q? performs better when ™) and
x? are spherically symmetric. In Gieser (1993), the comparisons are also made in
t distribution case.

In Articles B and C, the efficiency comparisons of Q3, 77 and p2 relative to Wilks’
test are made using the model given in (3.4) and assuming that the underlying distri-
butions are elliptically symmetric. The efficiencies are computed in the multivariate
normal distribution, ¢ distribution and contaminated normal distribution cases. In
the multivariate normal case, the efficiency of Q2 relative to W is low but as the
underlying distribution becomes very heavy-tailed, Q3 outperforms W. Kendall and
Spearman analogues 72 and p3 appear to be equally efficient. Their asymptotic effi-
ciencies relative to W are very high even in the multinormal case. In Article D, the
asymptotic efficiencies of different rank scores tests are considered. The Wilcoxon
scores test seems to be highly efficient when (V) and «(® are low-dimensional vec-
tors. In the multinormal case, the van der Waerden scores test is as efficient as
W and in the considered heavy-tailed cases, more efficient than other rank scores
tests. The asymptotic efficiency of van der Waerden scores test relative to W is also
considered in Paindaveine (2003). He showed that under elliptical distributions, the
efficiency is always larger or equal to 1.

As an example, we consider in the following the efficiencies of Q3, p3 and van
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der Waerden scores test, denoted by T2, in different multivariate normal and con-
taminated normal distribution cases. In Table 3.1, the efficiencies of Q2 and p3
are listed in the case when the distributions of () and x® are p- and g-variate
normal. Note that ARE(7%, W) = 1 for all dimensions. In Table 3.2, the efficien-
cies of Q2 and p3 are listed in the case of contaminated normal distributions with
€ = 0.1 and ¢ = 3 and 6. Again, the efficiencies of van der Waerden test T2 do
not depend on the dimensions at all. For ¢ = 3, ARE(77,W) = 1.254 and for
c = 6, ARE(TZ,W) = 1.891. Thus, according to asymptotic efficiencies, the van
der Waerden scores test seems to be the best one for light-tailed distributions and
in heavy-tailed cases, Spearman analogue performs better than the other tests.

Table 3.1: ARE(Q2, W) and ARE(p3, W) (between parentheses) at different p- and
g-variate normal distributions.

p
q 2 3 5 8 10
2 | 0617 0.667 0.711  0.738  0.747
(0.934) (0.941) (0.948) (0.954) (0.956)
3 0.721  0.769  0.798  0.807
(0.948) (0.955) (0.961) (0.963)
5 0.820 0.851  0.861
(0.963) (0.969) (0.971)
8 0.883  0.894
(0.974)  (0.976)
10 0.905
(0.979)

3.2.6 Finite-sample Efficiencies

Besides comparing asymptotic relative efficiencies, it may be of interest to make
efficiency comparisons for small sample sizes. Gieser and Randles (1997) compared
the finite-sample powers of @, S’/ and W under exponential power family by a
simple simulation study. In Articles B, C and D, the finite-sample powers of tests
based on standardized signs and ranks are compared in the multivariate normal
distribution, ¢ distribution and contaminated normal distribution cases.
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Table 3.2: ARE(Q3, W) and ARE(p3, W) (between parentheses) at different p- and
g-variate contaminated normal distributions for ¢ = 0.1 and for selected values of c.

P
q 2 3 5 8 10

2 | 0773 0.836 0.892 0.926 0.937

(1.174) (1.188) (1.203) (1.213) (1.217)

3 0.904 0.964 1.000 1.013

(1.202) (1.217) (1.228) (1.232)

c=3 5 1.028  1.067  1.080

(1.233) (1.243) (1.247)

8 1107 1.121

(1.254)  (1.258)

10 1.135

(1.262)

2 | 1.166 1.260 1.344 1.395 1.413

(1.917) (1.949) (1.981) (2.002) (2.010)

3 1.362  1.453 1508  1.527

(1.982) (2.014) (2.035) (2.043)

c=6 5 1.550  1.608  1.628

(2.047) (2.069) (2.076)

8 1.669  1.690

(2.091)  (2.099)

10 1.711

(2.106)
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In the following, we compare the empirical powers of W, Q% p2 and T using
samples of sizes n = 30 and 60 from a multivariate normal distribution and from a
contaminated normal distribution with € = 0.1 and ¢ = 6. Independent ") and &®
samples were generated from the considered distributions and the transformation
in (3.4) with M; = M] = I, was used for chosen values of § to introduce depen-
dence into the model. The test statistics were then computed and corresponding
p-values were obtained using chi-square approximations to the null distributions.
The process was replicated 1500 times. Empirical powers using the multivariate
normal distribution are illustrated in Figure 3.1 and using the contaminated normal
distribution in Figure 3.2.

n=30 n=60

Figure 3.1: Empirical powers for p = ¢ = 3 (first row) and p = ¢ = 5 (second row)
using the multivariate normal distribution The thick solid line denotes W, the thin
solid line p2, the thick dotted line 77 and the thin dotted line Q3.
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n=30 n=60

n=30 n=60

Figure 3.2: Empirical powers for p = ¢ = 3 (first row) and p = ¢ = 5 (second row)
using the contaminated normal distribution with ¢ = 0.1 and ¢ = 6. The thick solid
line denotes W, the thin solid line p2, the thick dotted line 73 and the thin dotted
line Q3.

The simulation results show that the finite-sample performance of p2 is very
good. In the multinormal case, Wilks’ test is the most efficient one, but p3 is very
competitive with it. According to asymptotic results, Ts should be equally powerful
with Wilks’ test, but especially for n = 30, it performs poorly. The empirical powers
of % are low in all considered cases, as was expected. The sizes of tests are very
close to the designated size 0.05. In the contaminated normal distribution case, the
size of W varies widely above 0.05. It is therefore difficult to compare W with other
tests. For n = 30, p2 seems to be slightly more powerful than T2, but as n increases,
no significant differences can be seen between tests. The empirical powers of Q3 are
again lower than those of p3 and T3.
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3.3 Canonical Correlation Analysis

3.3.1 Robust Methods in Canonical Analysis

In Section 2.3.3, sample covariance matrix was used in estimating the canonical
correlations and vectors. A natural way to robustify canonical correlation analy-
sis is to use robust scatter or shape matrix in estimation. Campbell (1982) used
M-estimators in canonical analysis by estimating scatter matrices of each group
separately. Karnel (1991) estimated correlations and vectors using partitioned M-
estimator instead of sample covariance matrix. He also studied the robustness pro-
perties of his procedure using empirical influence function of canonical correlation.
Recently, Croux and Dehon (2002) used robust scatter matrices in canonical analysis.
They gave expressions for influence functions of canonical correlations and vectors
based on any affine equivariant scatter matrix and studied the MCD-based methods
in more detail. In Article E, robust canonical analysis based on any affine equi-
variant scatter or shape matrices is considered. Influence functions and the limiting
distributions of correlations and vectors are derived under elliptical distribution.
Several different scatter matrices are compared.

Alternative ways to robustify canonical analysis include projection pursuit ap-
proach and robust alternating regression. See Oliveira and Branco (2000) and Dehon
et al. (2000), for example.

3.3.2 Canonical Analysis Based on Robust Scatter Matrices

Assume now that xq,...,x, is a random sample from a k-variate elliptically sym-
metric distribution F' and that each x; is partitioned into p- and g-dimensional sub-
vectors mgl) and wZ@, respectively. If C' is any partitioned affine equivariant scatter
matrix estimator, then the canonical correlations R = diag(py, - .., pp) and vectors
A= (a,...,ap) and B = (by,...,b,) can be defined implicitely as in Section 2.3.2

as a solution of

AT 0 Cii Ci) (A 0\ _ I, (R,0)

0 BT)\Cy Cyn 0 B)  \(ROT I, '
Note that the canonical correlations based on different scatter matrices estimate the
same population quantities and are directly comparable, but for canonical vectors,
a correction factor is needed. As shown in Article E, in estimating canonical cor-

relations, a shape matrix estimator V' can be used instead of C. Again, the same
canonical correlations are obtained, but the vectors are unique up to a constant.
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Write next B = diag(7,...,7p), A= (ai,...,a,) and B = (31,...,bq) for
canonical correlation and vector estimates based on scatter matrix C. The limiting
distributions of canonical correlations based on sample covariance matrix at elliptical
F are derived in Muirhead and Waternaux (1980) and Eaton and Tyler (1994). The
first authors assumed that all population canonical correlations are distinct. The
latter authors derived the distribution in more gereral case and state that their
result is valid when any affine equivariant scatter matrix is used. In Croux and
Dehon (2002), the variances and covariances of canonical correlations and vectors
are estimated using influence functions.

In Article E, the limiting distributions of correlations and vectors are found
under elliptical distributions. If p; > --- > p, > 0 and the limiting distributions
of \/ﬁvec(a — () is multivariate normal with zero mean and covariance matrix
ASV(@; F'), then the marginal distributions of v/n(7; — p;), /n(a; —a;) and \/ﬁ(gz —
b;) are asymptotically normal with zero mean and asyptotic variances

ASV(?i; F) = (1 - P?)QASV(alz; FO))

1 ~
ASV(a; F) = ZASV(C’H; Fya;al

p ( 2 2 9,2,2\(1 _ 2
~ p; + 07 — 2p3p;) (1 — pj)
+ASV(012,F0)Z J ( ) _] 2)2 aja]T
j'jel' P — Pj

VE)

and

~

1 ~
ASV(b; F) = ZASV(CH; Fo)bibiT

(05 + 02 —20207) (1 — p})

+ASV(Cras Fo) Y ) b;b;,
VES)

where p; = 0 for j > p, and the asymptotic variances of diagonal and off-diagonal
elements of C at spherical distribution F corresponding to F' are given in (3.3)
and (3.2). Note that if C is the sample covariance matrix, then at normal distribution
ASV(@H; Fy) = 2 and ASV(@H; Fy) = 1. Thus the asymptotic variances given by
Anderson (1999) are obtained.
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3.3.3 Asymptotic Relative Efficiencies

Having general formulas for asymptotic variances and covariances of canonical corre-
lations and vectors allows us to compare the estimates based on different scatter and
shape matrices by means of asymptotic relative efficiencies. Note that, in the case
of estimators, asymptotic relative efficiency describes the accuracy of an estimator
as compared to the other estimator and is obtained as ratio of asymptotic variances.
Write now 7; ¢ and @; ¢ for the canonical correlation and vector estimates based on
C. As shown in Article E, at elliptical distribution F', the efficiencies of estimates
based on C relative to those based on C’ are given by the following ratios

ASV(Ci:
ARE(aii,C,aii,C/) = M
ASV(CYy; Fo)

and .
ASV(Cha; Fy)
ASV(Cly; Fo)’
where Fj denotes the spherical distribution corresponding to F'.

Table 3.3 lists the efficiencies of estimates based on some robust scatter ma-
trices C relative to those based on the sample covariance matrix C' at different
multivariate normal distributions. The scatter matrices considered are Huber’s M-
estimator with ¢ = 0.9, 25% breakdown biweight S-estimator and 25% breakdown
MCD-estimator. See Section 3.1.4, for corresponding definitions. Moreover, the
scatter matrix estimator (SCM) based on affine equivariant sign covariance matrix
was included in comparisons (Ollila et al., 2003a).

In the considered multivariate normal cases, the estimates based on sample co-
variance matrix are only slightly more efficient than those based on the sign covari-
ance matrix. The estimates based on Huber’s M-estimator and biweight S-estimator
are also highly efficient, but MCD-based estimates perform poorly especially in low
dimensions.

ARE(a;j ¢, Gijcr) = ARE(T ¢, Ti0r) =

3.3.4 Tests for Canonical Correlations

Muirhead and Waternaux (1980) considered the likelihood ratio test (2.2) for testing
the null hypothesis H} : pg+1 = -+ = p, = 0. They showed that at elliptical F’
with finite fourth moments, —nlogW —4 (1 + K)X{, gy, x> Where & denotes the
kurtosis of the underlying distribution. Thus a robust test for canonical correlations

is obtained by dividing —nlog W by a consistent estimate of (1 + k).
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Table 3.3: AREs of canonical correlation and vector estimates based on robust
scatter matrices relative to the estimates based on sample covariance matrix at
different (p + ¢)-variate normal distributions. The efficiencies ARE (@, @ii,cr) are
listed in left column and ARE(@;; ¢, @ij,cr) = ARE(7; ¢, 7icr) in right column.

p=gq | SCM S M  MCD | SCM S M  MCD
2 0.974 0.960 0.942 0.336 | 0.982 0.953 0.961 0.284
3 0.986 0.978 0.963 0.391 | 0.991 0.975 0.975 0.356
3 0.994 0.989 0.979 0.459 | 0.988 0.996 0.986 0.438
8 0.998 0.994 0.988 0.515 | 0.998 0.993 0.992 0.502
10 1 0.998 0.991 0.991 0.538 | 0.999 0.995 0.994 0.529

Since the canonical correlations based on different scatter or shape matrices
estimate the same population quantities, any scatter or shape matrix can be used
in testing the null hypothesis Hy : p; = -+ = p, = 0. In Article B, a test statistic
analogous to Pillai’s test statistic (2.3) is derived. If a shape matrix estimator is

partitioned as
Vit Vig
V= ,
(V21 Vi
then the test statistic is based on
P'=Tr(Vi;' VigVyy ' Vr).

The tests are naturally affine invariant under the group G in (2.4), and have under
Hj a limiting chi-squared distribution with pg degrees of freedom. Note also that in
the multinormal case, the tests based on shape (or scatter) matrices may be used in
testing independence.
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Chapter 4

Summary of Original Publications

In Article A, the applicability of marginal, spatial and affine equivariant sign and
rank concepts in constructing bivariate tests of independence is studied. The in-
fluence functions of the statistics are given for robustness considerations. Limiting
distributions are derived under the null hypothesis as well as under interesting se-
quences of alternatives. Asymptotic relative efficiencies with respect to the classical
correlation test are computed in bivariate normal and ¢ distribution cases. The
theory is illustrated by an example.

In Article B, a new affine invariant extension of Blomqvist’s quadrant test based
on standardized spatial signs is proposed. The limiting distributions are derived in
the elliptic case and the asymptotic relative efficiencies with respect to the classical
Wilks’ test are computed in the multivariate normal, ¢ distribution and contaminated
normal distribution cases. Simulations are used to compare finite-sample powers and
an example is used to illustrate the robustness of test.

In Article C, new affine invariant extensions of Kendall’s tau and Spearman’s rho
are introduced. In this article, we focus on tests based on standardized spatial signs
and ranks, but also their interdirection counterparts are considered. Asymptotic
theory is developed and the tests are compared using asymptotic and finite-sample
efficiencies. The theory is illustrated by an example.

In Article D, new rank scores tests for testing multivariate independence are
proposed. The tests are constructed by combining standardized spatial signs and
univariate ranks of the Mahalanobis-type distances of observations from the origin.
Three different choices of score functions are discussed in more detail. The limiting
distributions are derived and asymptotic and finite-sample efficiencies are compared.
Also the robustness properties of tests are studied.

In Article E, robust canonical correlation analysis is considered. The influence
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functions as well as limiting variances and covariances of canonical correlations and
vectors based on affine equivariant scatter matrices are derived in the elliptic case.
Also the shape matrix based canonical analysis is considered. Limiting and finite-
sample efficiencies of estimators based on different scatter matrices are compared
through theoretical and simulation studies. The theory is illustrated by an example.
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