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Abstract

Classical multivariate statistical inference methods are often based
on the sample mean vector and covariance matrix. They are then op-
timal under the assumption of multivariate normality but loose in
efficiency in the case of heavy tailed distribution. In this paper non-
parametric and robust competitors based on the spatial signs and
ranks are discussed and the R statistical software package to imple-
ment the procedures is documented. The location tests and estimates
corresponding to the different score functions (sign, rank, signed rank)
are reviewed in the one sample, several samples and multivariate re-
gression cases. Also the tests for sphericity and independence of the
random vectors are discussed. The inner standardization of the test
statistics is then needed for the affine invariance/equivariance of the
methods and it produces the corresponding scatter (or shape) matrix
estimate. The main features of the R package SpatialNP is described
and its use illustrated with several examples.



1 Introduction

Classical multivariate statistical inference methods (Hotelling’s 72, multi-
variate analysis of variance, multivariate regression, inference on the correla-
tion structure) are based on the regular sample mean vector and covariance
matrix. The standard multivariate techniques are optimal under the assump-
tion of multivariate normality but unfortunately poor in efficiency for heavy
tailed distributions and highly sensitive to outlying observations. In the
paper nonparametric and robust competitors to the standard multivariate
inference methods for high dimensional based on the spatial signs and ranks
are discussed and the R statistical software package which implements the
procedures is described.

The univariate concepts of sign and rank are based on the ordering
of the data. In the multivariate case there are no natural orderings of
the data points. An approach utilizing objective or criterion functions is
therefore often used to extend these concepts to the multivariate case. Let
Y = (y1,¥2,---,¥x) be an n x p data matrix with n observations and p vari-
ables. The multivariate spatial sign u;, multivariate spatial (centered) rank
r;, and multivariate spatial signed-rank q;, ¢ = 1,...,n, may be implicitly
defined using the three L; criterion functions with Euclidean norm

ave{[ly:||} = ave{uyi},
1
gave{llyi —yill} = ave{ry;}, and
1
—ave{|ly; —yjll + lly: +y;ll} = ave{aqiy:}.

4

See Hettmansperger and Aubuchon (1988). Note also that the sign, cen-
tered rank, and signed-rank may be seen as scores T(y) corresponding to
the three objective functions. The T(y;) = y;, ¢ = 1,...,n, are the scores
corresponding to the regular Lo criterion ave{||y;||*} = ave{y’y:}.

Consider next these objective functions if applied to the residuals in the
linear regression model. The first objective function, the mean deviation of
the residuals, is the basis for the so called least absolute deviation (LAD)
methods; it yields different median-type estimates and sign tests in the one-
sample, two-sample, c-sample and finally general linear model settings. The
second objective function is the mean difference of the residuals. The sec-
ond and third objective functions generate Hodges-Lehmann type estimates
and rank tests for different location problems. It is well known that in the



univariate normal case the asymptotic efficiency of the sign (rank) based
method with respect to the optimal Ly method is 0.637 (0.955). For heavy
tailed univariate distributions, t3 and ¢;o, the efficiencies are 1.621 (1.900)
and 0.757 (1.054), respectively.

Méttonen and Oja (1995), Choi and Marden (1997), Marden (1999a) and
Oja and Randles (2004) reviewed the theory of multivariate spatial sign and
rank tests and the related estimates based on the above L; objective func-
tions. Mottonen et al. (1997) calculated the asymptotic efficiencies e (p, v)
and ey(p, v) of the multivariate spatial sign and rank methods, respectively,
in the p-variate t, distribution case. In the 3-variate case, for example, the
asymptotic efficiencies are

e1(3,3) = 2.162, €1(3,10) = 1.009, e;(3,00) = 0.849,
3,3) = 1.994, e5(3,10) = 1.081, es(3,00) = 0.973

and in the 10-variate case one has even higher efficiencies

e1(10,3) = 2.422, €1(10,10) = 1.131, €1(10,00) = 0.951,
e2(10,3) = 2.093, €5(10,10) = 1.103, e5(10, 00) = 0.989.

This is, however, only one possible approach to multivariate analogues
to common univariate nonparametric tests (sign test, rank test) and esti-
mates (median, Hodges-Lehmann estimate). Randles (1989) developed an
affine invariant sign test based on interdirections. Interdirections measure
the angular distance between two observation vectors relative to the rest
of the data. Randles (1989) was followed by a series of papers introducing
nonparametric sign and rank interdirection tests. These tests are typically
asymptotically equivalent with spatial sign and rank tests. The tests and
estimates are, unfortunately, computationally heavy.

The inference methods based on marginal signs and ranks are described
in Puri and Sen (1971) but they are not affine invariant/equivariant. In a
series of papers, Hallin and Paindaveine constructed optimal signed-rank tests
for the location and scatter problems in the elliptical model; see the seminal
papers by Hallin and Paindaveine (2002, 2006) and Hallin et al. (2006). The
location tests were based on the spatial signs and ranks of the FEuclidean
lengths of the standardized observations. For yet another different approach,
see Oja (1999) and the references therein.

The paper is organized as follows. In the Section 2 the theory is recalled:
First the score functions (sign, rank, signed rank) corresponding to the three
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objective functions are introduced. Their covariance matrices play a special
role. Then the tests corresponding to the different choices of the score func-
tions are listed in the one sample, several samples and multivariate regression
cases. Also the tests for sphericity and independence of the random vectors
are discussed. The inner standardization of the test statistics needed for the
affine invariance/equivariance of the methods is described. The related loca-
tion and scatter estimates are discussed as well. The main features of the R
package SpatialNP are then briefly described in Section 3. In Section 4 the
use of the package is illustrated with several practical examples.

2 Multivariate spatial signs and ranks

2.1 Spatial signs and ranks

Let
Y = (Y17y27 T ;Yn>/

be an n x p data matrix with n observations and p variables. The data based
spatial sign, spatial rank and spatial signed-rank functions U(y), R(y) =
R(y;Y) and Q(y) = Q(y;Y) are defined as

—1
iy, y#0
o) = {7 120

R(y;Y) = ave{U(y —yi)}} and
Q¥ Y) = 5 [R(y:Y)+Riy;~Y)].

Clearly the spatial sign function U(y) and signed-rank function Q(y;Y)
are odd, that is, U(—y) = —U(y) and Q(-y;Y) = —-Q(y;Y).

Definition 1 The observed spatial signs are w; = U(y;), 1 =1,...,n. We
write also w;; = U(y; —y;), ¢, =1,...,n. As in the univariate case, the
observed central spatial ranks are averages of signs of pairwise differences

ri=R(ysY) = awe,{Ulyi—y;)}, i=1....n.

Finally, the observed spatial signed-ranks are given as

1 )
a9 =QysY)= §av€j{U(yi -y;)+Ulyi+y;)}, i=1,...,n.



The spatial sign u; is just a direction vector of length one (lying on the
unit p-sphere S,) whenever y; # 0. The centered ranks r; and signed-ranks
q; lie in the unit p-ball B,. The direction of r; (q;) roughly tells the direction
of y; from the center of the data cloud (from the origin), and its length tells
how far away this point is from the center (from the origin). The spatial
signs, ranks and signed-ranks are only orthogonally equivariant, not affine
equivariant. The covariation of the marginals of sign and rank vectors will
be described by their covariance matrices as follows.

Definition 2 Let'Y be a data matriz. Then the spatial sign covariance ma-
triz SCov(Y), and the symmetrized spatial sign covariance matriz SSCov(Y)
are

SCov(Y) = ave{wu.} and
SSCov(Y) = ave{uiju;j}.

We also define

Definition 3 Let Y be a data matriz. Then the spatial rank covariance
matrizc RCov(Y), and the spatial signed-rank covariance matriz SRCov(Y)
are

RCov(Y) = ave{r;ri} and
SRCov(Y) = ave{qq;}.

The matrices SCov(Y), SSCov(Y), RCov(Y) and SRCov(Y) are not
genuine scatter matrices as they are not affine equivariant. They are equiv-
ariant under orthogonal transformations only. See also that the SSCov and
RCov are shift or location invariant. Finally note that the sign covariance
matrix and the symmetrized sign covariance matrix are standardized in the
sense that tr(SCov(Y)) = tr(SSCov(Y)) = 1. For the use of spatial sign
and rank covariance matrices, see Marden (1999b) and Visuri et al. (2000).

2.2 One sample location and scatter

Let Y = (y1,¥o2, .-, y») be arandom sample from a symmetrical distribution
satisfying —(y; — 1) ~ (y; — ) for unknown symmetry center p. For the



scatter problem we often need a stronger assumption that the y; has an
elliptically symmetric distribution with density function

F(y) = det(S7V)g (|57 (y — )]

with symmetry center p, scatter matrix 3, and unspecified g. We wish to
test the null hypothesis Hy : p = 0 and to estimate the unknown pu. A
general idea to construct tests and estimates is to use an odd vector valued
score function T(y) yielding individual scores t; = T(y;), i = 1,...,n. The
test statistic is simply
ave {T(y;)}

Then, under the null hypothesis, v/n ave {T(y;)} —a4 N,(0,B) where B =
E{T(y:)T(y:)'}. (The assumption on the existence of B is needed.) A
natural estimate of B is

~

B = ave {T(y;)T(y:)'} -
There are two ways to standardize the test statistic.

e One can use an outer standardization: Under general assumptions and
under the null hypothesis,

Q* =n ||Bave {T(y)} | —a X2

e Sometimes it is possible to use an inner standardization: Then one
first finds a p x p transformation matrix H such that, for z; = Hy;,
1=1,...,n,

p-ave{T(z)T(z)'} = ave {T(z;,)'T(z:)} L,
The test statistic using inner standardization is then

lave {T(z;)} ||

= e (T () 2}

also with the limiting x? null distribution.

The approximate p-value may thus be based on the limiting chi squared
distribution. For small sample sizes, an alternative way to construct the p-
value is to use the sign-change argument. Let J be a n x n diagonal matrix
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with diagonal elements +1. Then the p-value of a conditionally distribution-
free sign-change test statistic is

E; [1(Q*(IY) > QX(Y))]

where J has a uniform distribution over its all 2" possible values.
The matrix

C=(HH)™

is an affine equivariant scatter (or shape) matrix corresponding to score func-
tion T(y). The companion location estimate £ is determined by estimating

equations
n

ZT(}%’ —f) =0.

i=1

1. Hotelling’s T? and the sample mean: Classical Hotelling’s T? test
is obtained with score function T(y) = y corresponding to the Lo
criterion. Now B = C = Cou(Y) is the regular sample covariance
matriz and both the outer and inner standardizations yield the same
well-known Hotelling’s one sample test statistic

Q* =ny'B7'y.
The test statistic is affine invariant in the sense that
Q*(YH') = Q*(Y), for all H.
The companion estimate is the sample mean vector.

2. Spatial sign test and the spatial median: The spatial sign test
is obtained with score function T(y) = U(y). Then B = SCou(Y)
is the spatial sign covariance matrix, and C is the celebrated Tyler’s
shape matriz (Tyler, 1987). @Q* with outer standardization is invari-
ant under orthogonal transformations only, but inner standardization
gives affine invariance. It is remarkable that ? with inner standard-
ization is strictly distribution-free in the elliptic model. The invariant
test was first proposed by Randles (2000). The companion location
estimate is the spatial median (Gower, 1974; Brown, 1983). An inner
standardization with respect to location and shape simultaneously is



given by a p X p matrix H and p-vector h such that, for z; = H(y; —h),
1=1,...,n,

ave {U(z;)} =0 and ave{U(z;)U(z;)'} = ;Ip.

This procudes the Hettmansperger-Randles estimate (Hettmansperger
and Randles, 2002), simultaneous estimate of location h and shape C =
(H'H)~!. The location estimate is the transformation-retransformation
(TR) spatial median using Tyler’s scatter matrix. The Diimbgen shape
estimate (Diimbgen, 1998), a symmetrized version of Tyler’s shape ma-
trix, is given by transformation matrix H satisfying

1
ave {U(z; — 2;)U(z; — z;)'} = EIp.

Note that no location estimate is needed here.

3. Spatial signed-rank test and the spatial Hodges-Lehmann esti-
mate: The spatial signed-rank test is obtained with the score function
T(y) = Q(y). Now B = SRCou(Y) is the spatial signed-rank co-
variance matrix, and C is the corresponding affine equivariant shape
matrix. See Sirkié et al. (2007). The inner standardization gives affine

invariance. The companion estimate is the spatial Hodges-Lehmann
(HL) estimate.

Note that in the inner standardization we find a transformation matrix
H such that

SCov(YH'), SSCouv(YH'), RCouv(YH') or SRCov(YH'),

is proportional to the identity matrix, respectively. In the elliptic model,
the scatter (or shape) matrix C = (H'H)™! (properly standardized) then
estimates the population quantity which is proportional to the regular co-
variance matrix. See Sirkid et al. (2007) for a discussion of these matrices
and their use in testing for the sphericity of the distribution.

2.3 Several samples location

Let now data matrix
Y =(Y},YS, ... ,Yé)'
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consist of ¢ independent random samples

Yi = (yi1, ya2, ---aYini)la 1=1,...,¢
from p-variate distributions with cdf’s Fi, Fs, ..., F.. Write also n = n; +
...+ n.. We wish to test the null hypothesis Hy : F; = Fy, = ... = F, saying
that all observations come from the same population. The location tests are
constructed assuming that F;(y) = F(y — i), ¢ = 1,...,c. Again, we wish
to use a general location score function T(y) in test construction.
In the approach based on the inner standardization, first a p x p matrix
H and p-vector h are found such that, for z;; = H(y;; —h),i=1,...,¢; j =
1, ey Ny
ave {T(z;;)} = 0 and
p-ave {T(z)T(z;)} = ave{||T(zy)|*} 1,
The several-samples location test statistic is then
Q= p- > nil|ave; T (z;) |
ave| T (z;)|?
Under general assumptions, the limiting distribution of the test statistic @Q?
is a chi squared distribution with p(c — 1) degrees of freedom.
The p-value can also be calculated for the conditionally distribution-free
permutation test version. Let P be a n x n permutation matrix (obtained

from an identity matrix by permuting rows or columns). The p-value of the
permutation test statistic is then

Ep |1 (Q*(PY) = Q*(Y))]
where P has a uniform distribution over all possible n! permutations.

Possible choices are again

1. Hotelling’s 7% and MANOVA: Classical MANOVA test is obtained
with score function T(y) =y corresponding to the Ly criterion.

2. MANOVA based on spatial signs: MANOVA based on the spatial
signs is obtained with score function T(y) = U(y). This is an extension
of Mood’s test to the multivariate case.

3. MANOVA based on spatial ranks: This approach uses the spatial
rank function R(y) as a score function. Note that the spatial ranks are

automatically centered and no shift estimate is needed. This extends
Wilcozon-Mann- Whitney and Kruskal-Wallis tests.



2.4 Multivariate regression

Let now data matrix

/
X, Xo ... xn>

Y1 Y2 oo Yn

xv) -

consist of n independent observations from a (¢ + p)-dimensional distribution
(x; is a g-vector and y; is a p-vector, i = 1, ...,n). In the multivariate multiple
regression model it is commonly assumed that, for fixed X, the response
matrix Y is generated by

Y = (1.X)8 + Z

where (3 is a (¢4 1) x p matrix of regression coefficients and Z = (21, ..., z,)" is

an n X p matrix consisting of independent symmetric residual vectors. Again,

we wish to use a general location score function T(y) in test construction.
Let

Z(5) = Y - (1., X) 3

be the residual matrix corresponding to a choice 3. Then the test statistic
for testing Hy : 3 = [y can be based on

1/
(%) ez,
where the ith row of T(Z) is T(z;). The corresponding estimate (3 solves

(%) e o

2.5 Testing for independence

As in the previous subsection, let again data matrix

/
X1 Xo ... Xn)

Yi Y2 ... Yn

xv) - (

consist of n independent observations from a (¢ + p)-dimensional distribution
(x; is a g-vector and y; is a p-vector, i = 1,...,n). We now wish to test the
hypothesis

Hy: x; and y; are independent
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and use a general location score functions T(y) in test construction.
In the approach based on the inner standardization, we first find (as
before) affine transformations

X —- X*"and Y — Y*

such that

ave {T(x)} = 0 and
g-ave {T(x))T(x})'} = ave{|T(x})|*}1,

and

ave{T(y;)} = 0 and
p-ave {T(y)T(y;)} = ave{||T(y})?} 1,

The affine invariant test statistic is then

o npg - [lave {T(x)T(y;)'} |”
ave {[|'T(x})|[*} - ave {||T(x})[]}
The limiting null distribution is a chi squared distribution with pg degrees of

freedom. A p-value can also be calculated for the conditionally distribution-
free permutation test version:

Ep |1 (Q*(X,PY) > Q*(X,Y))]

where P has a uniform distribution over all possible n! permutations
Our scores functions yield

1. Classical Wilks (Wilks, 1935) test for independence: This is
obtained with score function T(y) = y and is ”"optimal” in the multi-
variate normal case.

2. Extension of quadrant test by Blomqvist (1950): Test of inde-
pendence using the marginal (standardized) spatial sign vectors; T(y) =

U(y).

3. Extension of Spearman’s rho (Spearman, 1904): This approach
uses the marginal standardized spatial ranks; T(y) = R(y).
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3 R-package SpatialNP

The R-package SpatialNP contains implementations of most of the meth-
ods described above. It depends, directly or indirectly, on R version 2.5.0
and packages ICSNP, ICS, mvtnorm and survey. Some of the methods
described in this paper are in fact implemented in package ICSNP but for
a part of these a wrapper function is provided in SpatialNP. The examples
given in the next section use the wrappers when available. The classical
methods are mostly implemented in R base packages except for Hotelling’s
T? which is implemented in ICSNP. A short introduction of the functions
follows.

Functions spatial.symmsign, spatial.rank and spatial.signrank com-
pute the spatial symmetrized signs, ranks and signed ranks, respectively.
Spatial signs are implemented in package ICSNP as function spatial.sign.
It is possible to compute the scores without any standardization or with in-
ner standardization as explained above, or even with respect to a predefined
shape. In cases of the functions spatial.sign and spatial.signrank also
a location vector is involved. The default location used when no other vector
is given is the vector of column means.

The covariance matrices defined in Definitions 2 and 3 can be computed
using functions SCov, SSCov, RCov and SRCov. Of these, SCov and SRCov
again require a location vector and as with the score functions the vector of
column means serves as default.

Spatial median and its affine equivariant counterpart, Hettmansperger-
Randles estimate, are implemented in package ICSNP as spatial.median
and HR.Mest. The corresponding affine equivariant location estimate us-
ing signed-rank scores is implemented in package SpatialNP as function
ae.hl.estimate. Optionally, it is also possible to compute the non affine
equivariant version, similar to the spatial median, using this function. The
wrapper spatial.location covers all four cases with a score argument to
choose between the estimates.

As mentioned above, the classical Hotelling’s 72 test is implemented
in package ICSNP; the name of the function is HotellingsT2. Function
sr.loc.test in SpatialNP covers both sign and (signed) rank based ver-
sions of the location test. The choice of the score is made via argument
score. Both functions handle one as well as several sample cases (note that
in the one sample case when ranks are chosen as scores the test is in fact
based on signed ranks). At the moment the conditionally distribution free
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version of the test is only provided for the sign based test.

Multivariate regression estimates based on signs and ranks can be found
using function sr.regression. The choice of score to be used is again made
via argument score. Testing for hypothesis concerning the regression coeffi-
cients is so far unimplemented.

Function sr.indep.test performs the independence test. As before,
the argument score is used to choose between different scores. Both the
asymptotic and conditionally distribution free p-values are provided.

Of the sphericity tests the ones based on signs and symmetrized signs are
implemented as function sr.sphere.test. Also here the argument score
controls the choice of score.

Further, there are functions for computing the inner standardization ma-
trices. The ones corresponding to signs and symmetrised signs, Tyler’s and
Diimbgen’s matrices, respectively, are implemented in package ICSNP. The
names of these functions are tyler.shape and duembgen.shape. The ones
based on ranks and signed ranks are called rank.shape and signrank.shape
and are in package SpatialNP. A wrapper function spatial.shape is pro-
vided for a unified access to all four shape matrixces. Naturally, tyler.shape
and signrankmat require a location vector for the computation, with vector
of column means again as default. The algorithms are iterative and all four
functions allow for providing the starting point of the iteration, as well as
computing the so-called k-step versions of the matrices.

Alternatively, one can compute the simultaneous estimates of the location
and shape, HR.Mest and ae.hl.estimate (or spatial.location for both)
mentioned earlier; the resulting estimates of shape are returned as attributes
to the location estimate.

A utility function to.shape is also provided for scaling a matrix to a
shape matrix.

4 Examples

These examples involve three data sets that are provided in R packages.
The pulmonary data set in ICSNP consist of changes in three pulmonary
measurements of twelve workers after six hours of exposure to cotton dust.
The famous iris data of sepal and petal width and length measurements of
three iris subspecies is in package datasets. The frets data set in package
boot consists of two measurements of the heads of the oldest and second
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adult brothers from 25 families. The datasets are loadable by a command
like

data(pulmonary)

once the corresponding packages are loaded.

4.1 Spatial signs and ranks

First consider the bivariate data formed by the first two variables of the
frets data, the width and length of the head of the older brother. Top left
panel of Figure 1 shows the original data. One of the observations is marked
with a black dot to show how it is transformed. The signs, with respect to
the mean vector and regular covariance matrix, of this data are computed
by the calls

frets.2<-frets[,c(1,2)]
spatial.sign(frets.2,center=colMeans(frets.2),shape=cov(frets.2))

and are shown in the top right panel, together with the unit circle. The
bottom left panel shows the unstandardized and the bottom right panel the
standardized spatial ranks which are computed as

spatial.rank(frets.2,shape=FALSE)
spatial.rank(frets.2,shape=TRUE)

respectively. Note how the inner standardization makes the ranks appear

uniformly distributed inside the unit circle.

4.2 One sample location and shape

For the one sample location problem consider the pulmonary data. Test
based on spatial signs for the null hypothesis that the exposure to cotton
dust has no effect on pulmonary functions, i.e. that the observations are
centered on the origin is done as

> sr.loc.test(pulmonary)

One sample location test using spatial signs
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Figure 1: Example plot of spatial signs and ranks
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data: pulmonary
Q.2 =7.3771, df = 3, p-value = 0.0608
alternative hypothesis: true location is not equal to c(0,0,0)

because the sign based test for one sample location being equal to the origin
is the default one. The signed rank based estimate of the location is

> spatial.location(pulmonary,score="signrank")
[1] -0.1392316 -0.1576346 2.8323453
attr(,"shape")

[,1] [,2] [,3]
[1,] 0.1884525 0.2473997 -4.455964
[2,] 0.2473997 0.3749895 -2.783621
[3,] -4.4559639 -2.7836213 398.318583

which also gives the affine equivariant signed rank shape matrix as an at-
tribute. For example the non affine equivariant (scaled to a shape matrix for
easier comparison) and affine equivariant rank based matrices are found by

> to.shape(RCov(pulmonary))
[,1] [,2] [,3]
[1,] 0.2137115 0.3492100 -0.3751607
[2,] 0.3492100 0.6614510 0.1739982
[3,] -0.3751607 0.1739982 58.9920789
> spatial.shape(pulmonary,score="rank")
[,1] [,2] [,3]
[1,] 0.1855779 0.2453626 -4.179161
[2,] 0.2453626 0.3736209 -2.545533
[3,] -4.1791606 -2.5455330 384.048080

respectively.

4.3 Several samples location

To test whether the head measurements of brothers differ by their location
it is possible to use the call (disregarding the pairwise nature of the data)

> sr.loc.test(frets[,c(1,2)],frets[,c(3,4)])
Several samples location test using spatial signs
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data: frets[, c(1, 2)] and frets[, c(3, 4)]
Q.2 = 0.5448, df = 2, p-value = 0.7615
alternative hypothesis: true common location is not equal to c(0,0)

The pairwise version of the test can be performed by taking first the differ-
ences of the data, as in

> sr.loc.test(frets[,c(1,2)]-frets[,c(3,4)],score="rank")
One sample location test using spatial signed ranks

data: frets[, 1:2] - frets[, 3:4]
Q.2 = 2.8236, df = 2, p-value = 0.2437
alternative hypothesis: true location is not equal to c(0,0)

In case of several samples (also alternatively in the two sample case) the
subsamples are given by a factor. For example for the iris data,

> sr.loc.test(iris[,1:4],g=iris[,5])
Several samples location test using spatial ranks

data: iris[, 1:4] by iris[, 5]
Q.2 = 171.4739, df = 8, p-value < 2.2e-16
alternative hypothesis: true common location is not equal to ¢(0,0,0,0)

4.4 Multivariate regression

The sign based affine equivariant regression coefficients for the frets data,
predicting the younger brother’s head measures by those of the older brother
are computed by (note that a data frame is not usable with formula)

> frets.y<-as.matrix(frets[,c(3,4)])
> frets.o<-as.matrix(frets[,c(1,2)])
> sr.regression(frets.y frets.o)
[,1] [,2]
(Intercept) 36.4708397 53.7866582
frets.oll 0.3576193 0.2522857
frets.obl 0.5421662 0.3215173
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or, the non affine equivariant rank based coefficients without the intercept
term

> sr.regression(frets.y frets.o-1,score="rank",ae=FALSE)
[,1] [,2]

(Intercept) NA NA

frets.oll 0.4097044 0.2718346

frets.obl 0.5513059 0.3465670

Note that based on ranks it is not possible to estimate coefficients of a model
without an intercept term, because of the inherent centering of the ranks.
The intercept, if it is required, is always estimated separately and if it is not
required the result include a row of NA as the intercept term, as above.

4.5 Testing for independence

The test for the independence of the head measurements between brothers
based on signs is performed by

> sr.indep.test(frets[,c(1,2)],frets[,c(3,4)])
Multivariate independence test using spatial signs

data: frets[, c(1, 2)] and frets[, c(3, 4)]
Q.2 = 13.7155, df = 4, p-value = 0.00826
alternative hypothesis: true measure of dependence is not equal to O

which produces also two warning messages because observations too close to
center of symmetry could not be used in internal shape estimation. Here the
use of a factor is reasonable:

> sr.indep.test(frets,g=gl(2,2),score="symmsign")
Multivariate independence test using spatial symmetrized signs

data: frets by gl(2, 2)
Q.2 = 17.5997, df = 4, p-value = 0.001477
alternative hypothesis: true measure of dependence is not equal to O

which tests for the independence using symmetrised signs. For the same
reason as above there is also a warning message.
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4.6 Testing for sphericity

Finally, testing for sphericity of the head measurements of brothers based on
signs is done simply as

> sr.sphere.test(frets)
Test of sphericity using spatial signs

data: frets
Q.2 = 224.7055, df = 9, p-value < 2.2e-16
alternative hypothesis: true shape is not equal to diag(4)

Testing based on symmetrised signs yields a similar result:

> sr.sphere.test(frets,score="symmsign")
Test of sphericity using spatial symmetrized signs

data: frets
Q.2 = 114.4421, df = 9, p-value < 2.2e-16
alternative hypothesis: true shape is not equal to diag(4)
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