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Abstract. New rank scores test statistics are proposed for testing whether two
random vectors are independent. The tests are asymptotically distribution-
free for elliptically symmetric marginal distributions. Recently, Gieser and
Randles (1997), Taskinen, Kankainen and Oja (2003) and Taskinen, Oja and
Randles (2005) introduced and discussed different multivariate extensions of
the quadrant test, Kendall’s tau and Spearman’s rho statistics. In this pa-
per, standardized multivariate spatial signs and the (univariate) ranks of the
Mahalanobis-type distances of the observations from the origin are combined
to construct rank scores tests of independence. The limiting distributions
of the test statistics are derived under the null hypothesis as well as under
contiguous sequences of alternatives. Three different choices of the score func-
tions, namely the sign scores, the Wilcoxon scores and the van der Waerden
scores, are discussed in greater detail. The small sample and limiting efficien-
cies of the test procedures are compared and the robustness properties are
illustrated by an example. It is remarkable that, in the multinormal case, the
limiting Pitman efficiency of the van der Waerden scores test equals to that
of the classical parametric Wilks’ test.

1. Introduction

Let xT
i = (x

(1)T

i ,x
(2)T

i ) for i = 1, . . . , n be a random sample of vector pairs, where

x
(1)
i and x

(2)
i are p- and q-dimensional continuous random vectors. We wish to test

the null hypothesis

H0: x
(1)
i and x

(2)
i are independent.

The classical parametric test due to Wilks (1935) is based on the partitioned
sample covariance matrix S and is defined as

Wn =
|S|

|S11||S22|
.
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Puri and Sen (1971) introduced a nonparametric analogue to Wilks’ test where
the data vectors are replaced by the vectors of their componentwise ranks. Gieser
and Randles (1997) and Taskinen et al. (2003) proposed invariant extensions of
the univariate quadrant test of Blomqvist (1950). The former test procedure is
based on interdirection counts and the latter on standardized spatial signs. If the

marginal distributions of x
(1)
i and x

(2)
i are elliptic, these two tests are asympto-

tically equivalent. Later Taskinen et al. (2005) proposed multivariate invariant
extensions of Kendall’s tau and Spearman’s rho.

Our plan is as follows. In Section 2, we explain the test constructions starting
with standardized spatial signs and ranks of the lengths of the standardized vec-
tors. The test statistics for multivariate dependence are then introduced. Special
choices of the score functions then yield the sign test, the Wilcoxon scores test
and the van der Waerden scores test. In Section 3, the limiting distribution of the
test statistic is derived under the null hypothesis and under interesting sequences
of contiguous alternatives. The finite-sample and limiting efficiencies of the new
procedures are then compared to that of the classical Wilks’ test in Section 4, and
the robustness properties are illustrated by an example in the final Section 5. The
proofs are postponed to Appendix I.

2. The rank scores test statistics

2.1. Spatial signs and ranks of the distances from the origin

Consider a random sample x1, . . .xn from a k-variate distribution. The spatial
sign of vector x is defined as

S(x) =

{
‖x‖−1x, x 6= 0

0, x = 0,

where ‖x‖ = (xT x)1/2 is the (Euclidean) length of the vector x. The spatial signs
S(xi) and ranks rank(||xi||) of the distances from the origin are not invariant
under affine transformations to the data vectors, however. In order to construct
invariant test statistics, the data points have to be standardized before spatial
signs and ranks are formed. For the standardization we need affine equivariant

√
n-

consistent location vector and scatter matrix estimates, µ̂ and Ĉ. The transformed

data points are then given as zi = Ĉ−1/2(xi − µ̂), i = 1, . . . , n.
The vectors ûi = S(zi), i = 1, . . . , n, are called standardized spatial sign

vectors. Standardized sign vectors are affine invariant in the sense that if û
∗
i are

calculated from x∗
i = Axi + b, i = 1, . . . , n, with a nonsingular k × k matrix A

and k-vector b, then û
∗
i = P ûi, i = 1, . . . , n, for some orthogonal P . See e.g.

Taskinen et al. (2005). The ranks R̂i = rank(||zi||) are naturally affine invariant
(in the usual sense). Note that, in the standardization, the scatter matrix estimate

Ĉ may be replaced by a
√
n-consistent affine equivariant shape matrix estimate

V̂ as only the directions and ranks of distances are used in the analysis. For the
shape matrices, see Ollila et al. (2003). Note also that, if the standardization is
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done using such location vector and scatter (or shape) matrix estimates that do not
require any moment assumptions of the underlying data (e.g. Tyler’s shape matrix
and the transformation retransformation spatial median in Hettmansperger and
Randles, 2002), then the resulting test procedures are valid without any moment
assumptions.

2.2. New test statistics

Our test statistic for testing the null hypothesis of independence is obtained as

follows. For i = 1, . . . , n, write û
(1)
i = ||z(1)

i ||−1z
(1)
i for p-dimensional standardized

sign vectors based on the first components x
(1)
i and let R̂

(1)
i denote the rank of

r̂
(1)
i = ||z(1)

i || among r̂
(1)
1 , . . . , r̂

(1)
n . For the second random vector, write similarly

û
(2)
i for q-dimensional standardized sign vectors based on x

(2)
i and let r̂

(2)
i and

R̂
(2)
i be constructed as before. The test statistic is then as follows.

Definition 2.1. Let a : (0, 1) → �
and b : (0, 1) → �

be continuous, monotone and
square integrable score functions and write

Ĥ = avei

{
a

(
R̂

(1)
i

n+ 1

)
b

(
R̂

(2)
i

n+ 1

)
û

(1)
i û

(2)T

i

}
.

The rank test statistic for testing H0 is then

Tn =
npq

σ2
aσ

2
b

||Ĥ ||2,

where ||Ĥ ||2 = Tr(ĤT Ĥ), σ2
a = E[a2(U)] and σ2

b = E[b2(U)] with U uniformly
distributed on (0, 1).

Note that since standardized sign vectors and ranks are invariant with respect
to the group of affine transformations, the invariance of Tn easily follows. As
score functions, one may use optimal location score functions. See Hallin and
Paindaveine (2002), for that. In the following, some choices of the score functions
and resulting test statistics are given.

Definition 2.2. For a(u) = 1 and b(u) = 1, the sign test of independence (Taskinen
et al., 2003) with test statistic

T0n = npq ||avei{û(1)
i û

(2)T

i }||2

is obtained. For a(u) = u and b(u) = u, one gets the Wilcoxon (scores) test of
independence with test statistic

T1n =
9npq

(n+ 1)4
||avei{R̂(1)

i R̂
(2)
i û

(1)
i û

(2)T

i }||2.

Finally the choices a(u) = [Ψ−1
p (u)]1/2 and b(u) = [Ψ−1

q (u)]1/2, where Ψk is a cdf
of chi-square distribution with k degrees of freedom, yield the van der Waerden
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(scores) test of independence with test statistic

T2n = n

∣∣∣∣
∣∣∣∣avei

{[
Ψ−1

p

(
R̂

(1)
i

n+ 1

)]1/2[
Ψ−1

q

(
R̂

(2)
i

n+ 1

)]1/2

û
(1)
i û

(2)T

i

}∣∣∣∣
∣∣∣∣
2

.

3. Limiting distributions

In order to derive the limiting distribution of Tn, we assume that the marginal
distributions of x(1) and x(2) are elliptically symmetric. The marginal density
functions are then of the form

f(x) = |Σ|−1/2f0(Σ
−1/2(x − µ)),

where Σ is a positive definite symmetric matrix and f0(z) = exp{−ρ(||z||)} with
z = Σ−1/2(x−µ). Note that if r = ||z|| and u = z/r, then r and u are independent.
In the following we denote the cdf of r(1) as G1 and the cdf of r(2) as G2.

To establish a limiting distribution of our test statistic under the null hy-
pothesis, we need the following lemma.

Lemma 3.1. Let

H = avei{a(G1(r
(1)
i ))b(G2(r

(2)
i ))u

(1)
i u

(2)T

i },
then

√
n(Ĥ −H) →p 0.

Now the limiting distribution can be found easily.

Theorem 3.2. Under H0 and for elliptically distributed x(1) and x(2), the limiting
distribution of Tn is a chi-square distribution with pq degrees of freedom.

Next we derive the limiting distribution of Tn under alternative sequences
similar to those used in Gieser and Randles (1997). As Tn is affine invariant, we
restrict to the spherical case only. See Appendix II, for a discussion on the alter-

native sequences. Let thus x
(1)
i and x

(2)
i be independent with spherical marginal

densities exp{−ρ1(||x(1)||)} and exp{−ρ2(||x(2)||)}, respectively, and write

(3.1)

(
y

(1)
i

y
(2)
i

)
=

(
(1 − ∆)Ip ∆M1

∆M2 (1 − ∆)Iq

)(
x

(1)
i

x
(2)
i

)
,

where ∆ = δ/
√
n. If T ∗

n is calculated from transformed observations in (3.1), we
get

Theorem 3.3. Under general assumptions (stated in the Appendix), the limiting
distribution of T ∗

n is a noncentral chi-square distribution with pq degrees of freedom
and noncentrality parameter

δ2

pqσ2
aσ

2
b

||c1M1 + c2M
T
2 ||2,

where
c1 = E[a(G1(r

(1)
i ))ψ1(r

(1)
i )]E[b(G2(r

(2)
i ))r

(2)
i ]
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and

c2 = E[b(G2(r
(2)
i ))ψ2(r

(2)
i )]E[a(G1(r

(1)
i ))r

(1)
i ],

with optimal location score functions ψ1(r
(1)
i ) = ρ′1(r

(1)
i ) and ψ2(r

(2)
i ) = ρ′2(r

(2)
i ).

4. Limiting and finite-sample efficiencies

4.1. Limiting Pitman efficiencies

In this section we consider the sign, Wilcoxon and van der Waerden tests of inde-
pendence: We compare the limiting and finite-sample efficiencies of the new tests
to those of the Wilks’ likelihood ratio test Wn. The comparisons are made in the
multivariate normal distribution, t distribution and contaminated normal distri-
bution cases. Since −n logWn has, under the alternative sequences, a limiting
noncentral chi-squared distribution with pq degrees of freedom and noncentrality
parameter δ2||M1 +MT

2 ||2, the asymptotic efficiencies are simply

ARE(Tn,Wn) =
||c1M1 + c2M

T
2 ||2

pqσ2
aσ

2
b ||M1 +MT

2 ||2 ,

where c1 and c2 are given in Theorem 3.3. Note that for multivariate normal
distribution, ψ(r) = r, for k-variate t distribution with ν degrees of freedom,
ψ(r) = (k+ ν)r/(ν + r2) and for k-variate contaminated normal distribution with
cdf F (x) = (1 − ε)Φ(x) + εΦ(c−1x), where c > 0 and Φ is the cdf of Nk(0, Ik),

ψ(r) =
(1 − ε) exp(−r2/2) + εc−k−2 exp(−r2/2c2)
(1 − ε) exp(−r2/2) + εc−k exp(−r2/2c2) r.

Assume now for simplicity that M1 = MT
2 . For the limiting efficiency of the

sign test of independence, we refer to Taskinen et al. (2003). The limiting efficiency
of the Wilcoxon test T1n with respect to the Wilks’ test Wn is

ARE(T1n,Wn) =
9(c1 + c2)

2

4pq
,

where

c1 = E[G1(r
(1)
i )ψ1(r

(1)
i )]E[G2(r

(2)
i )r

(2)
i ]

and

c2 = E[G2(r
(2)
i )ψ2(r

(2)
i )]E[G1(r

(1)
i )r

(1)
i ].

The resulting efficiencies for t distributions with selected degrees of freedom and
dimensions are listed in Table 1 and for contaminated normal distributions with
ε = 0.1 and for selected values of c in Table 2. The efficiencies were derived using
numerical integration.

Further, the limiting efficiency of the van der Waerden test T2n as compared
to the Wn is

ARE(T2n,Wn) =
(c1 + c2)

2

4p2q2
,
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Table 1. ARE(T1n,Wn) at different p- and q-variate t distribu-
tions for selected ν = ν1 = ν2.

p
q 2 3 5 8 10
2 1.089 1.064 1.023 0.986 0.970
3 1.039 0.998 0.961 0.946

ν = 5 5 0.958 0.922 0.907
8 0.886 0.871
10 0.857
2 0.970 0.960 0.934 0.907 0.893
3 0.950 0.925 0.898 0.884

ν = ∞ 5 0.901 0.874 0.861
8 0.848 0.835
10 0.823

Table 2. ARE(T1n,Wn) at different p- and q-variate contami-
nated normal distributions for ε = 0.1 and for selected values of
c.

p
q 2 3 5 8 10
2 1.216 1.204 1.172 1.137 1.121
3 1.192 1.161 1.126 1.109

c = 3 5 1.130 1.096 1.080
8 1.063 1.048
10 1.034
2 1.833 1.815 1.767 1.714 1.689
3 1.797 1.749 1.697 1.672

c = 6 5 1.703 1.652 1.628
8 1.603 1.579
10 1.556

where

c1 = E
{
[Ψ−1

p (G1(r
(1)
i ))]1/2ψ1(r

(1)
i )
}
E
{
[Ψ−1

q (G2(r
(2)
i ))]1/2r

(2)
i

}

and

c2 = E
{
[Ψ−1

q (G2(r
(2)
i ))]1/2ψ2(r

(2)
i )
}
E
{
[Ψ−1

p (G1(r
(1)
i ))]1/2r

(1)
i

}
.

Now for the multivariate normal distribution, ARE(T2n,Wn) = 1, and for the
contaminated normal distribution, ARE(T2n,Wn) = (1 − ε + ε/c)2(1 − ε + εc)2.
These efficiencies do not depend on the dimensions at all. For the efficiencies
at certain contaminated normal distributions, see Figure 1. The efficiencies for t
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distribution with 5 degrees of freedom were derived using numerical integration
and are listed in Table 3.

1 2 3 4 5 6

1.
0

1.
5

2.
0

2.
5

3.
0

c

A
R

E

ε=0

ε=0.05

ε=0.1

ε=0.2

Figure 1. ARE(T2n,Wn) as a function of c at the contaminated
normal model with ε = 0, 0.05, 0.10, 0.20.

Table 3. ARE(T2n,Wn) at different p- and q-variate t distribu-
tions with ν1 = ν2 = 5.

p
q 2 3 5 8 10
2 1.125 1.132 1.144 1.155 1.160
3 1.140 1.151 1.162 1.168
5 1.162 1.174 1.179
8 1.185 1.190
10 1.195

Now some comments follow. First of all, the limiting efficiencies of the Wil-
coxon test T1n decrease with increasing dimension while the efficiencies of sign
test T0n and van der Waerden test T2n increase or stay constant. Due to this
property, for low dimensions, the efficiencies of T1n are higher than those of T0n,
but for high dimensions, T0n outperforms T1n. The van der Waerden scores test
is the most efficient one in all considered cases. When the underlying distribution
is multivariate normal, it is as efficient as the Wilks’ test. When the distribution
becomes heavy-tailed, the efficiencies are higher than those of T0n and T1n (for
the contaminated normal distribution with ε = 0.1 and c = 3 and c = 6, the
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efficiencies of T2n are 1.254 and 1.891). For comparisons of limiting efficiencies, see
also Figures 2 and 3.

4.2. A simulation study

A simple simulation study was used to compare the finite sample efficiencies of
Wn, T0n, T1n and T2n. 1500 independent x(1)- and x(2)-samples of sizes n = 50
and 200 were generated from a multivariate standard normal distribution, from a
t distribution with 5 degrees of freedom and from a contaminated normal distribu-
tion with ε = 0.1 and c = 6. The transformation in (3.1) with M1 = MT

2 = I was
applied for chosen values of ∆ = δ/

√
n to introduce dependence into the model.

The tests were applied using the location and shape estimates chosen to satisfy

ave{Ŝ(1)

i } = 0 and p ave{Ŝ(1)

i Ŝ
(1)T

i } = Ip

and

ave{Ŝ(2)

i } = 0 and q ave{Ŝ(2)

i Ŝ
(2)T

i } = Iq ,

that is, the transformation retransformation spatial median and the Tyler’s M-
estimate (Tyler, 1987; Hettmansperger and Randles, 2002). For the transformation
retransformation technique, see also Chakraborty et al. (1998). The critical values
used in test constructions were based on the chi-square approximations to the null
distributions.

In Figure 2, the empirical powers as well as exact limiting powers (n =
∞) computed using Theorem 3.3 are given for p = q = 3. In the multivariate
normal case Wn is slightly better than T1n and T2n and much better than T0n.
In the t distribution case no big differences can be seen between tests and in the
contaminated normal case T1n and T2n outperform Wn and T0n. In Figure 3, the
empirical powers are illustrated for p = q = 8. In the multivariate normal case T0n

and T2n are slightly more powerful than T1n. In the considered t distribution case
T1n performs poorly, but as the underlying distribution is contaminated normal,
T1n performs very well. As p = q = 8, the sizes of T0n and T2n are often slightly
below 0.05. The size of T1n is very close to 0.05 in all cases and for heavy-tailed
distributions, the size of Wn often exceeds 0.05.

5. A robustness study and final comments

Finally, a simple simulation study was used to illustrate the robustness of test
statistics proposed above. Independent x(1)- and x(2)-samples of size n = 30 were
generated from a bivariate standard normal distribution and the transformation
in (3.1) with M1 = MT

2 = I2 was applied for chosen values of ∆ to introduce
”positive” dependence into the model. By positive dependence we mean that each
x(1)-coordinate is positively dependent on each x(2)-coordinate. Finally, the first

observation vectors in each sample were replaced by contaminated vectors x
(1)
1 =

(c, c)T and x
(2)
1 = (−c,−c)T with ”negative” dependence. The procedure was

repeated 1000 times and mean p-values were computed.
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Figure 2. Empirical powers for p = q = 3 using the multivariate
normal distribution (first row), multivariate t distribution with
ν = 5 (second row) and contaminated normal distribution with
ε = 0.1 and c = 6 (third row). The thick solid line denotes Wn, the
thin solid line T1n, the thick dotted line T2n and the thin dotted
line T0n.



10 S. Taskinen, A. Kankainen, and H. Oja

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=50

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=200

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=∞

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=50

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=200

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=∞

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=50

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=200

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=∞

δ

Figure 3. Empirical powers for p = q = 8 using the multivariate
normal distribution (first row), multivariate t distribution with
ν = 5 (second row) and contaminated normal distribution with
ε = 0.1 and c = 6 (third row). The thick solid line denotes Wn, the
thin solid line T1n, the thick dotted line T2n and the thin dotted
line T0n.
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In Figure 4, the mean p-values are illustrated as a function of contamination
value c for ∆ = 0 and for ∆ = 0.2. In the null hypothesis case (∆ = 0), all tests give
p-values close to 0.5, as the contamination value is near zero. Note also that T0n

and T1n give practically the same p-values as Wilks’ test. When the contamination
value is high, p-values given by Wilks’ test decrease considerably and some decrease
is also seen in the p-values of T1n and T2n. In the considered case, the sign test
T0n seems to be the most robust one, since the mean p-value is constant as a
function of c. As ∆ = 0.2, the contamination slightly increases the mean values
of rank scores tests. In the case of Wilks’ test the p-values first increase and then
decrease to zero with the contamination value. The careful analysis shows that
the small p-values for large contamination values erroneously indicate ”negative”
dependence, however.
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Figure 4. Mean p-values for the true null hypothesisH0 : ∆ = 0
(left figure) and for the alternative hypothesisH1 : ∆ = 0.2 (right
figure) as a function of contamination value as described in the
text. The thick solid line refers to Wn, the thin solid line to T1n,
the thick dotted line to T2n and the thin dotted line to T0n.

In the paper, new affine invariant rank scores procedures were proposed for
testing whether two random vectors are independent. The test statistics were con-
structed using standardized spatial signs and ranks of the lengths of the stan-
dardized vectors. It is remarkable that, the proposed tests are valid without any
moment assumptions on the underlying data as far as the standardization is done
using such location vector and scatter (or shape) matrix estimates that do not
require any moment assumptions. In the paper, three different score functions,
namely the sign scores, the Wilcoxon scores and the van der Waerden scores were
considered in more detail. The tests have good limiting and finite-sample efficien-
cies and as illustrated by an example, the tests are resistant to outliers.
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Appendix I: Proofs of the results

Proof of Lemma 3.1 As Tn is affine invariant, we can without loss of generality
restrict to the spherical case with µ = 0 and C = I . Assume now that the

location and scatter estimates µ̂ and Ĉ are
√
n-consistent and write µ∗ =

√
nµ̂

and C∗ =
√
n(Ĉ − I).

The proof proceeds step by step as follows.

1. Assume that ||µ∗|| + ||C∗|| ≤ ∆.
2. Then

r̂i = ri +
1√
n
si,

where |si| ≤Ms, if ri ≤Mr, and

ûi = ui +
1√
n

vi,

where ||vi|| ≤Mv, if ri ≥ mr.

3. Write Ĝn(r) = (n + 1)−1
∑

j I(r̂j ≤ r) for the estimated cdf of the stan-

dardized radius. Then Ĝn(r̂i) = R̂i/(n+1) and Ĝn(r) →p G(r) uniformly
in r. Moreover,

Ĝn(r̂i) −G(ri) →p 0 and also Ĝn(r̂i) −G(ri)
L2−−→ 0.

4. As a(u) is continuous, monotone and square integrable, also

a(Ĝn(r̂i)) − a(G(ri))
L2−−→ 0.

This is seen as

[a(Ĝn(r̂i)) − a(G(ri))]I(ri ≤Mr)
L2−−→ 0 ∀Mr

and by Minkowski’s inequality

{
E
[
[a(Ĝn(r̂i)) − a(G(ri))]I(ri > Mr)

]2}1/2

≤
{
E
[
a(Ĝn(r̂i))I(ri > Mr)

]2}1/2
+
{
E
[
a(G(ri))I(ri > Mr)

]2}1/2

→ 2

[∫ 1

G(Mr)

a2(u)du

]1/2
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can be made as small as one wishes. For the latter convergence note that

E[a2(Ĝn(r̂i))I(ri > Mr)]

≤ 1

n

∑

i

E[a2(Ĝn(r̂i))I(Ĝn(r̂i) ≥ Ĝn(Mr −Ms/
√
n))]

≤ E

[∫ 1

bGn(Mr−Ms/
√

n)

a2(u)du

]
→
∫ 1

G(Mr)

a2(u)du.

5. Next decompose Ĥ −H into two parts as follows.

√
n(Ĥ −H)

=
√
n avei

{(
a

(
R̂

(1)
i

n+ 1

)
b

(
R̂

(2)
i

n+ 1

)
− a(G1(r

(1)
i ))b(G2(r

(2)
i ))

)
û

(1)
i û

(2)T

i

}

+
√
n avei{a(G1(r

(1)
i ))b(G2(r

(2)
i ))(û

(1)
i û

(2)T

i − u
(1)
i u

(2)T

i )} =: H1 +H2.

So it is enough to show that H1 →p 0 and H2 →p 0. We proceed by
proving E[vec(Hi)] → 0 and V ar[vec(Hi)] → 0 for i = 1, 2.

6. As the standardized sign vectors are equivariant and ranks (of distances)
are invariant under sign changes of the original data vectors, E[vec(H1)] =
0 and E[vec(H2)] = 0.

7. As

E

[
a

(
R̂

(1)
i

n+ 1

)
− a(G1(r

(1)
i ))

]2

→ 0, E

[
b

(
R̂

(2)
i

n+ 1

)
− b(G2(r

(2)
i ))

]2

→ 0

and

û
(1)
i û

(2)T

i = u
(1)
i u

(2)T

i +
1√
n

v
(1)
i u

(2)T

i +
1√
n

u
(1)
i v

(2)T

i + o(1/
√
n),

it follows that, when E[1/r
(1)
i ] <∞ and E[1/r

(2)
i ] <∞,

E[vec(H1)vecT (H1)]

=
1

n

∑

i

∑

j

E

{[
a

(
R̂

(1)
i

n+ 1

)
b

(
R̂

(2)
i

n+ 1

)
− a(G1(r

(1)
i ))b(G2(r

(2)
i ))

]

·
[
a

(
R̂

(1)
j

n+ 1

)
b

(
R̂

(2)
j

n+ 1

)
− a(G1(r

(1)
j ))b(G2(r

(2)
j ))

]

· [vec(û
(1)
i û

(2)T

i )vecT (û
(1)
j û

(2)T

j )]

}
→ 0.
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8. Consider next the variance of vec(H2). To shorten notations, write ai =

a(G1(r
(1)
i )) and bi = b(G2(r

(2)
i )). The variance can then be written as

E[vec(H2)vecT (H2)]

=
1

n2

∑

i

∑

j

E[aibiajbjvec(u
(1)
i v

(2)T

i + v
(1)
i u

(2)T

i )

· vecT (u
(1)
j v

(2)T

j + v
(1)
j u

(2)T

j )] + o(1/
√
n)

=
1

n2

∑

i

E[a2
i b

2
i vec(u

(1)
i v

(2)T

i + v
(1)
i u

(2)T

i )

· vecT (u
(1)
i v

(2)T

i + v
(1)
i u

(2)T

i )] + o(1/
√
n),

which converges (use again the sign change property) to zero whenE[1/r
(1)
i ] <

∞ and E[1/r
(2)
i ] <∞.

9. The result follows as µ∗ and C∗ are bounded in probability.

Proof of Theorem 3.2 By Lemma 3.1, the limiting distribution of Tn can be
found using the limiting distribution of

√
nvec(H). Since for i = 1, . . . , n,

E[a(G1(r
(1)
i ))b(G2(r

(2)
i ))vec(u

(1)
i u

(2)T

i )] = 0

and

E[a2(G1(r
(1)
i ))b2(G2(r

(2)
i ))vec(u

(1)
i u

(2)T

i )vecT (u
(1)
i u

(2)T

i )] =
σ2

aσ
2
b

pq
Ipq ,

where σ2
a = E[a2(U)] and σ2

b = E[b2(U)] with U uniformly distributed on (0, 1),
the central limit theorem implies that

√
nvec(H) →d Npq(0, σ

2
aσ

2
b/pq Ipq). Conse-

quently,

Tn =
npq

σ2
aσ

2
b

||H ||2 =
npq

σ2
aσ

2
b

vec(H)T vec(H)
d−→ χ2

pq .

Proof of Theorem 3.3 In the proof, we apply LeCam’s third lemma. See for
example Hájek et al. (1999, Section 7.1). For testing H0 against H∆, the optimal
likelihood ratio test statistic is

L =

n∑

i=1

{log f∆(y
(1)
i ,y

(2)
i ) − log f0(y

(1)
i ,y

(2)
i )}.

Gieser (1993) considered the asymptotic representationL =
√
nδK− 1

2δ
2σ2+oP (1),

where

K =
1

n

∑

i

ki =
1

n

∑

i

[
p− ψ1(r

(1)
i )r

(1)
i + ψ1(r

(1)
i )r

(2)
i u

(1)T

i M1u
(2)
i

+ q − ψ2(r
(2)
i )r

(2)
i + ψ2(r

(2)
i )r

(1)
i u

(2)T

i M2u
(1)
i

]
,
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If in the above representation E(ki) = 0 and E(k2
i ) = σ2, the sequence of alterna-

tives is contiguous to the null hypothesis (LeCam’s first lemma). See Gieser (1993)
for mild conditions.
Write then vec(H) = 1

n

∑n
i=1 hi, where H is given in Lemma 3.1. We assume that,

under H0,

√
n

(
vec(H)
K

)
d−→ Npq+1

((
0

0

)
,

(
σ2

aσ
2
b/pq Ipq E0(hiki)

ET
0 (hiki) E0(k

2
i )

))
,

where E0 denotes the expectations taken under the null hypothesis. Then by
LeCam’s third lemma,

√
nvec(H) →d Npq(E0(hiki), σ

2
aσ

2
b/pq Ipq) under the al-

ternative sequences.

Using the independence of r
(1)
i , u

(1)
i , r

(2)
i and u

(2)
i , it is easy to see that

E0(hiki) =
δ

pq

{
E0[a(G1(r

(1)
i ))ψ1(r

(1)
i )]E0[b(G2(r

(2)
i ))r

(2)
i ]vec(M1)

+E0[b(G2(r
(2)
i ))ψ2(r

(2)
i )]E0[a(G1(r

(1)
i ))r

(1)
i ]vec(MT

2 )

}

=:
δ

pq

{
vec(c1M1 + c2M

T
2 )

}
.

Hence under the alternative sequences,

√
nvec(H)

d−→ Npq

(
δ

pq
vec(c1M1 + c2M

T
2 ),

σ2
aσ

2
b

pq
Ipq

)

and

T ∗
n =

npq

σ2
aσ

2
b

||H ||2 d−→ χ2
pq

(
δ2

pqσ2
aσ

2
b

||c1M1 + c2M
T
2 ||2

)
.

Appendix II: Some notions on alternative sequences

For all elliptic cases, it is enough to consider the alternative sequences
(

y
(1)
i

y
(2)
i

)
=

(
(1 − ∆)Ip ∆M1

∆M2 (1 − ∆)Iq

)(
x

(1)
i

x
(2)
i

)
,

where ∆ = δ/
√
n and x

(1)
i and x

(2)
i are independent with spherical marginal

distributions. This is because, for the weighted sum of elliptical marginals,
(

y
(1)
i

y
(2)
i

)
=

(
(1 − ∆)Ip ∆M1

∆M2 (1 − ∆)Iq

)(
Ax

(1)
i

Bx
(2)
i

)

=

(
A 0
0 B

)(
(1 − ∆)Ip ∆A−1M1B
∆B−1M2A (1 − ∆)Iq

)(
x

(1)
i

x
(2)
i

)

=

(
A 0
0 B

)(
(1 − ∆)Ip ∆M ′

1

∆M ′
2 (1 − ∆)Iq

)(
x

(1)
i

x
(2)
i

)
.
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Hence (due to affine invariance) one can as well consider the sequence

(
(1 − ∆)Ip ∆M ′

1

∆M ′
2 (1 − ∆)Iq

)(
x

(1)
i

x
(2)
i

)
,

for different choices of M ′
1 and M ′

2. In all cases, the efficiencies are then of the
same type ||c1M1 + c2M

T
2 ||, where c1 and c2 depend on the marginal spherical

distributions and the test used. If the marginal distributions are of the same type
(that is c1 = c2 for all tests to be compared), then the efficiencies do not depend on
M1 and M2. Note also that the tests are not ”unbiased” (noncentrality parameter
> 0) for all alternative sequences. They are all unbiased for normal marginals.
If the marginals are nonnormal but of the same type, then they all fail under
M1 = −MT

2 .
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