
Statistical Methods and Applications manuscript No.
(will be inserted by the editor)

Tests of multinormality based on location

vectors and scatter matrices

Annaliisa Kankainen1, Sara Taskinen1, Hannu Oja2

1 Department of Mathematics and Statistics, FIN-40014 University of Jyväskylä,
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Abstract Classical univariate measures of asymmetry such as Pearson’s
(mean-median)/σ or (mean-mode)/σ often measure the standardized dis-
tance between two separate location parameters and have been widely used
in assessing univariate normality. Similarly, measures of univariate kurto-
sis are often just ratios of two scale measures. The classical standardized
fourth moment and the ratio of the mean deviation to the standard devi-
ation serve as examples. In this paper we consider tests of multinormality
which are based on the Mahalanobis distance between two multivariate lo-
cation vector estimates or on the (matrix) distance between two scatter
matrix estimates, respectively. Asymptotic theory is developed to provide
approximate null distributions as well as to consider asymptotic effiencies.
Limiting Pitman efficiencies for contiguous sequences of contaminated nor-
mal distributions are calculated and the efficiencies are compared to those of
the classical tests by Mardia. Simulations are used to compare finite sample
efficiencies. The theory is also illustrated by an example.
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1 Introduction

Classical multivariate analysis is mostly based on the assumption that the
data come from a multivariate normal distribution. The tests of multinor-
mality have therefore received much attention and several tests for assessing
multinormality have been proposed in the literature. See e.g. Gnanadesikan
(1977), Cox and Small (1978), Mardia (1980) and Romeu and Ozturk (1993),
for reviews. If the hypothesis of multinormality is then rejected, alternative
robust and nonparametric multivariate procedures can be used.
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In the univariate case, standardized third and fourth moments are of-
ten used to indicate the skewness and kurtosis. The standardization is
then made using the sample mean and sample variance. In this spirit, if
X = (x1, . . . , xn) is a random sample from a k-variate normal distribution
N(µ, Σ), the first step in assessing multivariate normality is to standard-
ize the data vectors using the sample mean vector and sample covariance
matrix

x̄ =
1

n

∑

xi and S =
1

n − 1

∑

(xi − x̄)(xi − x̄)T ,

the regular estimates of µ and Σ, respectively. Let then zi = S−1/2(xi−x̄),
be the scaled residual, and let

ri = ||zi|| and ui = ||zi||−1zi

be its radius and the direction vector, i = 1, . . . , n. Note that r2
i is the

squared Mahalanobis distance between xi and x̄. Moreover, rij = zT
i zj is

known as the cosine of the Mahalanobis angle between the vectors xi − x̄

and xj − x̄. Mardia (1970) then defined multivariate measures of skewness
and kurtosis by

b1 = avei,j{r3
ij} and b2 = avei{r4

i }.

Under the hypothesis of multinormality, the limiting distribution of nb1/6
is a chi-square distribution with k(k + 1)(k + 2)/6 degrees of freedom and
the limiting distribution of (b2 − k(k + 2))/(8k(k + 2)/n)1/2 is N(0, 1). For
different definitions of multivariate skewness and kurtosis, see Malkovich
and Afifi (1973) and Koziol (1986,1987).

Bera and John (1983) used certain third and forth moments of the scaled
residuals,

Tr = avei{z3
ri} and Trs = avei{z2

riz
2
si}, r, s = 1, . . . , k,

to construct four different test statistics for multinormality and compared
them with Mardia’s skewness and kurtosis tests under multivariate Pearson
family of distributions. Also Koziol (1982,1983,1986,1987,1993) used third
and fourth moments to construct tests for multinormality. He noted that
the smooth tests may be decomposed into individual components, which
are distributed as independent χ2 random variables and compared those
components under different kinds of alternatives.

Classical univariate measures of asymmetry, like Pearson’s β1, are of the
form (mean-median)/σ or (mean-mode)/σ and measure the distance be-
tween two location parameters (Pearson, 1895). These measures have been
widely used in assessing univariate normality, see MacGillivray (1986) for
survey of work on skewness. On the other hand, measures of univariate
kurtosis are often just ratios of two scale measures. Examples include clas-
sical kurtosis measure, standardized fourth moment and the ratio of the
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mean deviation to the standard deviation (Geary, 1935), among others. For
measures of univariate skewness and kurtosis, see also Oja (1981).

In the paper we construct new test statistics for multinormality which
are based on multivariate location vectors and scatter matrices. Our plan is
as follows. In Section 2, location vectors and scatter matrices are introduced.
We also give the general form of their influence functions and asymptotic
variances and present some affine equivariant location and scatter matrix
estimators. In Section 3, new statistics for testing multinormality are pre-
sented and their large sample properties are studied. Asymptotic efficiencies
are given in Section 4 and in Section 5, simulations are used to compare the
finite sample powers of tests. In Section 6, the theory is illustrated by an
example and the paper is concluded with some comments in Section 7.

2 Location vectors and scatter matrices

Let X = (x1, . . . , xn) be a random sample from a k-variate distribution with
cdf F . As usually, write Fn for the empirical cdf. Our tests of multinormality
are based on two separate location vector or scatter matrix estimates. A k-
vector valued statistic T = T (X) is a location vector if it is affine equivariant,
that is, if

T (Ax1 + b, . . . , Axn + b) = A T (x1, . . . , xn) + b.

We assume that it is possible to define (in a ’large’ family of distribu-
tions) a corresponding statistical functional T (F ) so that T (Fn) = T (X).
A k × k-matrix valued statistic C = C(X) is a scatter matrix if it is affine
equivariant, which now means, that

C(Ax1 + b, . . . , Axn + b) = A C(x1, . . . , xn) AT .

Assume again that a corresponding statistical functional C(F ) can be de-
fined so that C(Fn) = C(X).

It is easy to see that, if F is elliptic with mean vector µ and covariance
matrix Σ (and they exist), then

T (F ) = µ and C(F ) = cF Σ,

where cF depends on distribution F and scatter functional C. If multinor-
mality is assumed, then cF is known for each C and correction factor can
be used to guarantee the consistency to the regular covariance matrix. To
conclude, under the multinormality, all location vectors estimate the same
quantity µ and all scatter matrices equipped with the correction factor es-
timate the covariance matrix Σ.

Under multinormality, the influence functions of the location and scatter
functionals have simple expressions: If z = Σ−1/2(x − µ), r = ||z|| and
u = ||z||−1z, then

IF (x; T, F ) = γT (r)Σ1/2u (1)
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and

IF (x; C, F ) = αC(r)Σ1/2uuT Σ1/2 − βC(r)Σ. (2)

For robust functionals T and C, functions γT (r) and αC(r) and βC(r) are
continuous and bounded. In the paper we assume that, under multinormal-
ity, the estimates T (X) and C(X) are consistent to µ and Σ, respectively,
and that the limiting distributions of

√
n(T (X)− µ) and

√
nvec(C(X) − Σ)

are multinormal. Then the asymptotic covariance matrices of T (X) and
vec(C(X)) are given by

τ1Σ and τ2(Ik2 + Ik.k)(Σ ⊗ Σ) + τ3vec(Σ)vec(Σ)T

where

τ1 =
E[γ2

T (r)]

k
, τ2 =

E[α2
C(r)]

k(k + 2)

and

τ3 =
E[α2

C(r)]

k(k + 2)
− 2

k
E[αC(r)βC(r)] + E[β2

C(r)].

See e.g. Tyler (1982).
Besides sample mean and sample covariance matrix, several affine equiv-

ariant location vector and scatter matrix estimators are introduced in the lit-
erature. Location and scatter M-functionals (Maronna, 1976; Huber, 1981)
are defined as functionals T (F ) and C(F ) which satisfy implicit equations

T (F ) = [E[v1(r)]]
−1

E[v1(r)x]

and
C(F ) = E[v2(r)(x − T (F ))(x − T (F ))T ],

where

r2 = ||x − T (F )||2C(F ) = (x − T (F ))T [C(F )]−1(x − T (F ))

and v1 and v2 are real-valued functions on [0,∞). As an example of M-
functionals, consider Huber’s M-functionals M(q) that use

v1(r) =

{

1, r ≤ c

c/r, r > c
and σv2(r) =

{

1, r2 ≤ c2

c2/r2, r2 > c2,

where c is a tuning constant defined so that q = Pr(χ2
k ≤ c2). The scaling

factor σ is chosen so that E[v2(r)r
2] = k, where r2 is a random variable

from a χ2
k distribution. Then C(F ) = Σ at multivariate normal population.

The influence functions of location and scatter M-functionals are derived in
Huber (1981; Section 8.7). Note also that choosing v1(r) = 1/r and v2(r) =
k/r2 in M-estimation equations yield the transformation-retransformation
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spatial median (Hettmansperger and Randles, 2002). The influence function
of this median is given in Ollila et al. (2003).

If now T1(F ) and C1(F ) are any location and scatter functionals then
one-step M-functionals of location and scatter, starting from T1(F ) and
C1(F ), are given by

T2(F ) = [E[v1(r)]]
−1 E[v1(r)x]

and

C2(F ) = E[v2(r)(x − T1(F ))(x − T1(F ))T ],

where r2 = ||x−T1(F )||2C1(F ). Again, to quarantee the consistency of C2(F )
to Σ at multivariate normal distribution, the weight function v2 should
be scaled so that E[v2(r)r

2 ] = k, where r2 is a random variable from a
χ2

k distribution. The influence functions of one-step M-functionals may be
written using the influence functions of initial estimators. The influence
functions are given by (1) and (2) with

γT2
(r) = E[v1(r)]

−1
[

v1(r)r − k−1E[v′1(r)r]γT1
(r)

]

,

αC2
(r) = v2(r)r

2 − E[v′2(r)r
3]

k(k + 2)
αC1

(r)

and

βC2
(r) =

E[v′2(r)r
3]

2k(k + 2)
[αC1

(r) − (k + 2)βC1
(r)] + 1.

Location and scatter S-functionals (Rousseeuw and Leroy, 1987; Davies,
1987) are defined as the solutions T (F ) and C(F ) to the problem of mini-
mizing det(C(F )) subject to

E[ρ(r)] = b,

where r2 = ||x − T (F )||2C(F ) and ρ(r) is bounded, increasing and non-

negative function. The constant b is generally chosen to be b = E[ρ(r)]
where r2 is a random variable from a χ2

k. Then C(F ) = Σ at multinormal
population. An example of function ρ is Tukey’s biweight ρ-function

ρ(r) =

{

r2

2 − r4

2c2 + r6

6c4 , |r| ≤ c
c2

6 , |r| > c.

To attain ε% breakdown point, the tuning constant c is chosen so that
b = ερ(c). For the influence functions of S-functionals, see e.g Lopuhaä
(1989).
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3 New test statistics

As before let X = (x1, . . . , xn) be a random sample from a k-variate distri-
bution with cdf F . We wish to test the null hypothesis of multinormality,
that is, F is the cdf of N(µ, Σ) for some (unknown) µ and Σ.

As in the univariate case, the Mahalanobis difference between two loca-
tion vectors may be used to indicate skewness. Also, two scatter matrices
may be used to construct a multivariate measure of kurtosis. Therefore we
define our test statistics as follows.

Definition 1 (i) Let T1 and T2 be two separate location vectors and let
C be a scatter matrix. Then a test statistic for multinormality (to detect
skewness) is given by

U = (T1 − T2)
T C−1(T1 − T2).

(ii) Let C1 and C2 be two separate scatter matrices equipped with the cor-
rection factor. Then a test statistic for multinormality (to detect kurtosis)
is given by

W = ||C−1
1 C2 − Ik ||2

=
[

Tr((C−1
1 C2)

2) − 1

k
Tr2(C−1

1 C2)
]

+
1

k

[

Tr(C−1
1 C2) − k

]2
,

where || · ||2 = Tr(·T ·).

Note that as U is based on the distance between two location parameters,
it measures the skewness in the direction of C−1/2(T1 − T2). The first part
of W , Tr((C−1

1 C2)
2) − k−1Tr2(C−1

1 C2), is the variance of the eigenvalues
of C−1

1 C2 and therefore measures the difference on the shapes of scatter
matrix estimates. The second part clearly measures the difference in their
scales. Note also that using the eigenvalues and eigenvectors of C−1

1 C2 or

equivalently C
−1/2
1 C2C

−1/2
1 , it is also possible to find the direction that

maximizes the kurtosis. Since

uT C2u

uT C1u

is a descriptive statistic for the kurtosis of linear combination uT x, the vec-
tor u that maximizes this quantity gives the direction of maximal kurtosis.

Now writing u = C
−1/2
1 v the problem reduces to maximizing

vT C
−1/2
1 C2C

−1/2
1 v

vT v
,

that is, the so called Rayleigh quotient of C
−1/2
1 C2C

−1/2
1 . It is well known

that the direction v that maximizes this quotient is the eigenvector corre-

sponding to the largest eigenvalue of C
−1/2
1 C2C

−1/2
1 .



Tests of multinormality based on location vectors and scatter matrices 7

Since our measures of skewness and kurtosis are based on affine equiv-
ariant location vectors and scatter matrices, the invariance of test statistics
easily follows.

Lemma 1 The statistics U and W are affine invariant.

As the test statistics are affine invariant, their critical values for different
dimensions and different sample sizes may in principle be tabulated. The
limiting null distributions may also be used to find approximate p-values,
see the following theorem.

Theorem 1 (i) Under the null hypothesis, the limiting distribution of nU
is that of η1U1, where U1 ∼ χ2

k and η1 = k−1EF [(γT1
(r) − γT2

(r))2] with
r2 ∼ χ2

k.

(ii) Under the null hypothesis, the limiting distribution of nW is that of

η2 W1 + η3 W2,

where W1 ∼ χ2
k(k+1)/2−1 and W2 ∼ χ2

1 are independent,

η2 = 2 [k(k + 2)]−1EF [(αC2
(r) − αC1

(r))2]

and

η3 = k−1EF [(αC2
(r) − αC1

(r))2] − 2EF [(αC2
(r) − αC1

(r))(βC2
(r) − βC1

(r))]

+ kEF [(βC2
(r) − βC1

(r))2].

The expected values are again calculated for r2 ∼ χ2
k.

Finally note that, using special choices of location and scatter estimators,
it is possible to obtain generalizations of classical Mardia’s measures of
skewness and kurtosis. If the multivariate measure of skewness is constructed
so that T1 and C are the sample mean vector and sample covariance matrix
and T2 is the one-step M-estimator that uses T1 and C as initial estimators
and weight function v1(r) = r2, then the resulting skewness measure is
easily seen to be

b1,new = avei{r2
i }−2avei,j{r2

i r2
j rij}.

Note that this measure is equivalent to that introduced in Mori et al. (1993).
The limiting distribution of nb1,new may be computed using Theorem 1 and
it simplifies to that of η1U1, where U1 ∼ χ2

k and η1 = 2(k + 2)/k2. See also
Henze (1997).

If the new kurtosis measure is such that it uses the sample covariance
matrix as C1 and one-step M-estimator based on the sample mean vector
and sample covariance matrix with weight function v2(r) = (k + 2)−1r2 as
C2, then we obtain the generalization of the classical Mardia’s measure of
kurtosis, that is,

b2,new = (k + 2)−2avei,j{r2
i r2

j r2
ij} − 2(k + 2)−1avei{r4

i } + k.
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Using Theorem 1, the limiting distribution of nb2,new is that of η2W1+η3W2,
where W1 ∼ χ2

k(k+1)/2−1 and W2 ∼ χ2
1 and

η2 =
4(k + 4)

(k + 2)2
and η3 =

8

k + 2
.

4 Limiting efficiencies

In this section, the contaminated normal model CN(µ, Σ) is used for ef-
ficiency comparisons. Due to the affine invariance property, it is not a re-
striction to assume that the observation comes from standard multinor-
mal distribution N(0, Ik) with probability (1 − ε) and from N(µ, Σ) with
probability ε. In the following we write G for the cdf of the contamination
N(µ, Σ) and let ε = δ/

√
n depend on n. The null hypotheses case is then

given by H0 : δ = 0, and we consider a contiguous sequence of alternatives
Hn : ε = δ/

√
n for a fixed δ > 0. For the contiguity of this sequence, see the

proof of Theorem 2.

Theorem 2 (i) Under the sequence of alternatives Hn, the limiting dis-
tribution of nU is that of η1U

∗
1 where U∗

1 has a noncentral χ2
k distribution

with noncentrality parameter

CU (δ) =
δ2

η1

∣

∣

∣

∣EG

[

(γT1
(r) − γT2

(r))u
]∣

∣

∣

∣

2
,

where r = ||x||, u = ||x||−1x with x having a N(µ, Σ) distribution.

(ii) Under the sequence of alternatives Hn, the limiting distribution of nW
is that of

η2 W ∗
1 + η3 W ∗

2 ,

where W ∗
1 and W ∗

2 are independent noncentral chi-squared variables with
k(k + 1)/2 − 1 and 1 degrees of freedom and noncentrality parameters

CW1
(δ) =

δ2

η2

(

Tr(E2) − 1

k
Tr2(E)

)

and CW2
(δ) =

δ2

η3k
Tr2(E),

where

E = EG[IF (x; C−1
1 C2, F )]

= EG

[

(αC2
(r) − αC1

(r))uuT − (βC2
(r) − βC1

(r))Ik

]

and r = ||x||, u = ||x||−1x with x having a N(µ, Σ) distribution.

The contaminated normal model is a natural alternative to normal model.
It is flexible containing alternatives of different types (skewness and kurto-
sis) depending on the choices of µ and Σ. Contiguous alternative sequences
for skewness and kurtosis are obtained by choices

H1n : µ = (µ1, µ2, . . . , µk)T and Σ = Ik
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and
H2n : µ = 0 and Σ = diag(σ2

1 , . . . , σ
2
k).

In the next we compare our new skewness measures to Mardia’s skewness
b1 using the alternative sequences H1n. Further, new kurtosis measures are
compared to Mardia’s b2 using the alternative sequences H2n, therefore we
need the following results, see e.g Mardia (1974).

Theorem 3 (i) Under the sequence of alternatives H1n, the limiting distri-
bution of nb1/6 is a noncentral chi-squared distribution with k(k+1)(k+2)/6
degrees of freedom and noncentrality parameter

Cb1(δ) =
δ2

6
||µ||3.

(ii) Under the sequence of alternatives H2n, the limiting distribution of
n(b2 − k(k + 2))2/(8k(k + 2)) is a noncentral chi-squared distribution with
1 degrees of freedom and noncentrality parameter

Cb2(δ) =
δ2

[

2 Tr((Ik − Σ)2) − (Tr(Ik − Σ))2
]2

8k(k + 2)
.

Nyblom and Mäkeläinen (1983) extented the definition of Pitman efficiency
in cases where the limiting distributions of test statistics are of different
types. In our case, the asymptotic relative efficiency of U with respect to b1

is then easily seen to be

ARE(U, b1) =

(

δ1

δ2

)2

, (3)

where δ1 and δ2 are such that for chosen limiting size α and power β

P (χ2
k(k+1)(k+2)/6(Cb1 (δ1)) > χ2

k(k+1)(k+2)/6,1−α)

= P (χ2
k(CU (δ2)) > χ2

k,1−α) = β.

Note that the limiting efficiency may now depend on the chosen size and
power.

In the next the efficiencies of four new skewness measures are com-
pared to Mardia’s skewness b1 using the alternative sequence H1n : µ =
(µ1, 0, . . . , 0)T and Σ = Ik. In all three cases, location vector T1 and scat-
ter matrix C were chosen to be the sample mean vector and sample co-
variance matrix. As T2 we use Huber’s M-estimator M(0.9) in β1,M , 25 %
breakdown S-estimator with biweight ρ-function in β1,S and transformation-
retransformation spatial median in β1,T . Finally, as pointed out in previous
section, the one-step M-estimator with sample mean vector and sample co-
variance matrix as initial estimators and weight function v1(r) = r2 is used
as T2 in b1,new. The asymptotic relative efficiencies were computed using (3)
with α = 0.05 and β = 0.5. Simulations with 10000 replications were used
to compute the noncentrality parameters given in Theorem 2. Since the
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µT=(µ1,0)

µ1
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E

0.5 1.0 2.0 3.0 4.0 5.0

0.
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1.
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5

2.
0
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0

µT=(µ1,0,0)

µ1
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E

0.5 1.0 2.0 3.0 4.0 5.0

0.
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0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fig. 1 The asymptotic relative efficiencies of b1,new (3), β1,M (◦), β1,S (4) and
β1,T (×) relative to Mardia’s skewness b1 for different values of µ1 in the bivariate
(left panel) and 3-variate (right panel) cases.

resulting simulated noncentrality parameters appeared to be very unstable
for very small µ1, we only considered the values µ1 = 0.5, 1, 2, 3, 4 and 5.

In Figure 1, the asymptotic relative efficiencies are illustrated for differ-
ent values of µ1 and for dimensions k = 2 and k = 3. In both cases, the
b1,new test, that is, the generalization of the Mardia’s skewness measure is
the most efficient one. For small µ1 the efficiencies of β1,M and β1,S are
tolerable, but as µ1 increases the efficiencies decrease. The efficiency of β1,T

is very low for all µ1. All efficiencies seem to increase with dimension k.
Since the test based one-step M-estimator with v1(r) = r2 appeared

to be the most efficient one, the effect of using one-step M-estimator with
weigth function v1(r) = r4 on efficiencies was studied. The resulting test ap-
peared to be the most efficient one and the efficiencies increased drastically
with µ1. Note, however, that the one-step M-estimator with weigth function
v1(r) = r4 is highly sensitive to outliers, therefore this choice yields to very
non-robust test of skewness.

Let us now compare our new kurtosis measures to Mardia’s kurtosis b2

using the alternative seguences H2n : µ = 0 and Σ = diag(σ2
1 , . . . , σ2

k). The
asymptotic relative efficiency of W with respect to b2 is given by

ARE(W, b2) =

(

δ1

δ2

)2

, (4)

where δ1 and δ2 are chosen so that

P (η2 χ2
k(k+1)/2−1(CW1

(δ2)) + η3 χ2
1(CW2

(δ2)) > cα)

= P (χ2
1(Cb2(δ1)) > χ2

1,1−α) = β

and the critical value cα is given by

P (η2 χ2
k(k+1)/2−1(0) + η3 χ2

1(0) > cα) = α. (5)
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In our efficiency comparisons, we use three different W statistics. For
every statistic, C1 was chosen to be sample covariance matrix and as C2

we use Huber’s M-estimator M(0.9) in WM , 25 % breakdown S-estimator
with biweight ρ-function in WS and one-step M-estimator based on the
sample mean vector and sample covariance matrix with weight function
v2(r) = (k + 2)−1r2 in b2,new. The asymptotic relative efficiencies were
computed using (4) with α = 0.05 and β = 0.5. The tail probabilities of
linear combinations of chi-squared random variables were computed using
the algorithm developed in Field (1993) and the noncentrality parameters
given in Theorem 2 were obtained through simulations.

Σ=diag(σ2,σ2)

σ2

AR
E

1.5 2.0 3.0 4.0 5.0 6.0

0.
0

0.
2

0.
4

0.
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0.
8

1.
0

1.
2

Σ=diag(σ2,σ2,σ2)

σ2

AR
E

1.5 2.0 3.0 4.0 5.0 6.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Fig. 2 The asymptotic relative efficiencies of b2,new (3), WM (◦) and WS (4)
relative to Mardia’s kurtosis b2 for different values of σ2 in the bivariate (left
panel) and 3-variate (right panel) cases.

Σ=diag(1,σ2)
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Σ=diag(1,1,σ2)

σ2
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E

1.5 2.0 3.0 4.0 5.0 6.0
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2.
0
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Fig. 3 The asymptotic relative efficiencies of b2,new (3), WM (◦), WS (4) relative
to Mardia’s kurtosis b2 for different values of σ2 in the bivariate (left panel) and
3-variate (right panel) cases.
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Figure 2 illustrates the efficiencies in cases Σ = σ2I2 and Σ = σ2I3 for
different values of σ2. Now as k = 2, the b2,new test is equally powerful with
Mardia’s kurtosis, but in case k = 3 Mardia’s kurtosis performs better than
the other tests. These results were, however, expected since only the second
part of test statistic W detects this kind of unnormality. For small σ2, WM

is much more efficient than WS , but as σ2 increases, these tests become
equally efficient.

In Figure 3 the efficiencies are given in cases Σ = diag(1, σ2) and Σ =
diag(1, 1, σ2) for different values of σ2. In both cases the b2,new test performs
better than the other tests. As σ2 is small, also WM and WS tests are more
efficient than b2 but again as σ2 increases, their efficiencies decrease.

5 Simulation study

In this section, we compare the empirical powers of skewness and kurtosis
measures defined in the last section with the powers of b1 and b2 through
a simple simulation study. The skewness measures were compared using
3-variate samples of sizes n = 50 and 200 from a contaminated normal
distributions with ε = 0.1 and G = N((µ1, 0, 0)T , I3) with selected values of
µ1. For the kurtosis measures we used G = N(0, diag(1, 1, σ2)) with selected
values of σ2. The test statistics were then computed. Corresponding p-values
of skewness measures were obtained using the chi-square approximations to
the null distributions. Since the convergence of all kurtosis measures to the
null distributions appeared to be very slow even in the case n = 200, the
empirical critical values were simulated using 10000 multinormal samples.
Resulting critical values (as well as asymptotic ones obtained using (5)) are
given in Table 2 in Appendix B. The process was replicated 1500 times and
empirical powers of the level 0.10 tests are illustrated in Figures 4 and 5.

Consider first the simulation results in Figure 4. As n = 50 and µ1

is small, no big differences may be seen between different tests. As µ1 in-
creases, the b1 and β1,S tests become more powerful than the others, but
as n increases, the empirical power of b1,new is highest as suggested by the
limiting efficiencies. The β1,S test is equally powerful with Mardia’s test and
β1,M and β1,T perform also very well. The sizes of β1,M , β1,S and β1,T are
close to the designated size 0.10 in both cases. In the case n = 50, the size
of b1 was below 0.10, therefore a correction factor given in Mardia (1974)
was used to speed up the convergence to the null distribution.

The results in Figure 5 show that as n = 50, WM and WS tests are the
most powerful ones and perform much better than b2 and b2,new. This may
be due to the fact that b2 and b2,new converge very slowly to the normal
distribution. As n = 200, the powers of Mardia’s type tests increase, but
the tests based on robust scatter estimators are still slightly more powerful.
In both cases, the sizes of tests are close to the designated size 0.10.
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Fig. 4 Empirical powers of the level 0.10 tests to detect skewness for the con-
taminated normal distribution with ε = 0.1 and contamination N((µ1, 0, 0)T , I3).
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Fig. 5 Empirical powers of the level 0.10 tests to detect kurtosis using contami-
nated normal distribution with ε = 0.1 and contamination N(0, diag(1, 1, σ2)).

6 A real data example

In our example we consider the same data as in Kankainen et al. (2004),
that is, two bivariate data sets of n = 50 observations and the combined
data set of n = 100 observations. The data sets are explained and illustrated
in Figure 6. We use Mardia’s skewness b1 and kurtosis b2 to test the null
hypothesis of bivariate normality. The results are compared to those given
by new skewness and kurtosis measures β1,S and WS . These measures were
included in the comparisons, since in spite of their low limiting efficiencies,
the finite-sample powers appeared to be very competitive with those of
Mardia’s measures.

The values of the test statistics were calculated for the three data sets
(’Boys’, ’Girls’ and ’Combined’). The p-values for b1 and β1,S were obtained
using the chi-square approximations to the null distributions. For b2 and
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Fig. 6 The height of the mother and the birth weight of the child measured on
50 boys who have siblings (o) and 50 girls (x) who do not have siblings.

Table 1 Test statistics for the three data sets.

Boys Girls Combined

Test statistic Test statistic Test statistic

b1 3.034 3.376 9.242∗

β1,S 0.976 3.065 5.473†

b2 0.016 0.281 2.275

WS 1.530 1.889 3.769†

∗ p ≤ 0.10, † p ≤ 0.05

WS , empirical critical values were used to approximate p-values. See Table 1
for the results.

Since the boys in the study had siblings and girls did not, it was ex-
pected that observations concerning boys and girls separately came from
different bivariate normal distributions. This is seen by using all skewness
and kurtosis measures. Moreover, due to the difference between boys and
girls, the combined data set was assumed to be a mixture of two different
bivariate normal distributions. This is confirmed using our new skewness
and kurtosis measures. Mardia’s skewness rejects the normality hypothesis
on significance level 0.10 and the p-value for β1,S test is even less than 0.05.
When we use Mardia’s kurtosis the normality hypothesis is not rejected,
but the WS test gives p-value which is less than 0.05.

7 Final remarks

The paper develops affine invariant tests for multivariate skewness and kur-
tosis. The tests for skewness use the Mahalanobis distance between two
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location vectors and the tests for kurtosis are based on the comparison of
two scatter matrices. As in the univariate case, these skewness and kurtosis
measures are independent and may therefore be combined to obtain a test
for multinormality. The resulting test is just a sum of skewness and kurtosis
measures introduced here and follows a weighted chi-squared distribution.

In the paper, new tests with several choices of affine equivariant location
and scatter estimates are considered in more detail. It is shown that using
the so called one-step M-estimators with special choices of weight functions
and sample mean vector and covariance matrix as initial estimators in our
test constructions yield the generalizations of classical Mardia’s measures
of skewness and kurtosis. The limiting efficiencies of these measures appear
to be very good as compared to the classical Mardia’s tests. As illustrated
by a simulation study, the finite-sample behavior of tests based on robust
scatter estimators is also satisfactory.

Acknowledgements The research work was supported by research grant from the
Academy of Finland.

Appendix A: Proofs of the results

Proof (Lemma 1)

The affine invariance of U and W follows using T (AX + b) = AT (X) + b

and C(AX + b) = AC(X)AT . Then

U(AX + b)

= (AT1(X) + b − (AT2(X) + b))
T (

AC1(X)AT
)−1

(AT1(X) + b − (AT2(X) + b))

= (T1(X) − T2(X))
T

AT (AT )−1C−1
1 (X)A−1A (T1(X) − T2(X)) = U(X)

and

W (AX + b)

= ||C−1
1 (AX + b)C2(AX + b) − Ik||2Tr[(C−1

1 (AX + b)C2(AX + b))2]

− 2 Tr2[C−1
1 (AX + b)C2(AX + b)] + k

= Tr[((AC1(X)AT )−1AC2(X)AT )2] − 2Tr2[(AC1(X)AT )−1AC2(X)AT ] + k

= Tr[(AT )−1C−1
1 (X)A−1AC2(X)AT (AT )−1C−1

1 (X)A−1AC2(X)AT ]

− 2 Tr2[(AT )−1C−1
1 (X)A−1AC2(X)AT ] + k

= Tr[(C−1
1 (X)C2(X))2] − 2Tr2[C−1

1 (X)C2(X)] + k = W (X)

Proof (Theorem 1)
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(i) The test statistics are affine invariant, therefore we may assume that
µ = 0 and Σ = Ik. Write then x = ru, where r = ||x|| and u = ||x||−1x

and r and u are independent.
Let us denote V (F ) = C−1/2(F )(T1(F ) − T2(F )). Then the influence

function of V (F ) is

IF (x; V, F ) = (γT1
(r) − γT2

(r))u.

Write then V = V (Fn) for the estimate corresponding to the functional
V (F ). Now according to Huber (1981), as V (F ) is sufficiently regular,

√
n(V − V (F )) =

1√
n

∑

i

IF (xi; V, F ) + op(1). (6)

Thus under H0, V (F ) = 0, and by the central limit theorem, the limiting
distribution of

√
nV is multinormal with mean 0 and covariance matrix

EF [IF (x; V, F )IF (x; V, F )T ] =
EF [(γT1

(r) − γT2
(r))2]

k
Ik

If we now denote η1 = k−1EF [(γT1
(r) − γT2

(r))2], then the limiting distri-
bution of nU = nV T V is that of η1U1, where U1 ∼ χ2

k.

(ii) Write

W = ||C−1
1 C2 − Ik ||2 = ||H ||2.

Note first that the influence function of H is

IF (x; H, F ) = IF (x; C−1
1 C2, F ) = (αC2

(r)−αC1
(r))uuT−(βC2

(r)−βC1
(r))Ik .

As before, since H(F ) is sufficiently regular, we may write H = H(Fn)
as in (6). The elements of

√
nH are thus normally distributed and the

asymptotic variances and covariances are given by

ASV (hij ; F ) =
EF [(αC2

(r) − αC1
(r))2]

k(k + 2)
,

ASC(hii, hjj ; F ) =
EF [(αC2

(r) − αC1
(r))2]

k(k + 2)
+ EF [(βC2

(r) − βC1
(r))2]

− 2EF [(αC2
(r) − αC1

(r))(βC2
(r) − βC1

(r))]

k

and

ASV (hii; F ) = ASC(hii, hjj ; F ) + 2ASV (hij ; F ).

Note that the diagonal and off-diagonal elements of H are independent.
Consider now the test statistic,

nW1 = n
[

Tr((C−1
1 C2)

2) − k−1Tr2(C−1
1 C2)

]

,
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which may be rewritten as

nW1 = nTr(H2) − n

k
Tr2(H)

= 2n
∑ ∑

i<j

h2
ij + n

∑

i

h2
ii −

n

k
(
∑

i

hii)
2.

Write then b2 = 2ASV (hij ; F ) and d2 = ASC(hii, hjj ; F ). Since
√

nhij ∼
N(0, b2/2) and the elements hij , i 6= j, are independently distributed, the
limiting distribution of 2n

∑∑

i<jh
2
ij under H0 is that of η2 Wa, where

Wa ∼ χ2
k(k−1)/2.

The diagonal elements hii are not independent, but we may write h =
Az, where h = (h11, . . . , hkk)T , z = (z1, . . . , zk+1)

T ,
√

nz ∼ N(0, Ik+1) and
A is a k × (k + 1) matrix

A =
(

bIk d1k

)

,

where 1k is a unit vector of length k. Now ASC(h11, . . . , hkk; F ) = b2Ik +
d2Jk, where Jk is a k × k unit matrix, and using the above transformation
we have that

n
∑

i

h2
ii −

n

k
(
∑

i

hii)
2 = nb2

[

∑

i

z2
i − 1

k
(
∑

i

zi)
2
]

= nb2

(

zT AT
1 A1z

b2
− zT AT

2 A2z

b2

)

,

(7)

where A1 and A2 are k × (k + 1) matrices

A1 =
(

bIk 0
)

and A2 =
(

b
k Jk 0

)

.

Since b−2AT
1 A1 is idempotent with rank(b−2AT

1 A1) = k and b−2AT
2 A2 is

idempotent with rank(b−2AT
2 A2) = 1, the limiting distribution of (7) under

H0 is that of b2Wb, where Wb ∼ χ2
k−1 (Rao, 1965; Section 3b.4). Finally

note that, since Wa and Wb are independent, the limiting distribution of
nW1 is that of b2(Wa + Wb).

Using the similar technique we may write

nW2 =
n

k

[

Tr(C−1
1 C2) − k

]2
=

n

k
Tr2(H) =

n

k
(
∑

i

hii)
2

= nk
( b

k

∑

i

z2
i + dzk+1

)2
= n(b2 + kd2)

zT AT
3 A3z

b2 + kd2
,

where A3 is a k × (k + 1) matrix

A3 =
(

b
k Jk d1k

)

.

Since (b2 + kd2)−1AT
3 A3 is idempotent with rank((b2 + kd2)−1AT

3 A3) = 1,
the limiting distribution of nW2 under H0 is that of (b2 + kd2)Wc, where
Wc ∼ χ2

1. The result now follows, if we denote η2 = b2 and η3 = b2 + kd2.
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Proof (Theorem 2)

(i) In the proof, we apply LeCam’s third lemma. Write the density func-
tion of contaminated normal distribution as fε(xi) = (1− ε)f(xi) + εg(xi).
Let us first show that ε = δ/

√
n is contiguous to the null hypothesis: The

optimal likelihood ratio test statistic for testing H0 against Hn is

L =
∑

i

log
fε(xi)

f0(xi)
=

∑

i

log
(1 − ε)f(xi) + εg(xi)

f(xi)

=
∑

i

log

(

1 +

[

g(xi)

f(xi)
− 1

]

ε

)

=
δ√
n

∑

i

(

g(xi)

f(xi)
− 1

)

− δ2

2n

∑

i

(

g(xi)

f(xi)
− 1

)2

+ . . .

=
√

nδ
1

n

∑

i

ki −
1

2
δ2σ2 + op(1),

where E(ki) = 0 and V ar(ki) = σ2 is bounded. Thus, by LeCam’s first
lemma, the sequence of alternatives is contiguous to the null hypothesis.

As in the proof of Theorem 1, write then

√
nV =

1√
n

∑

i

IF (xi; V, F ) + op(1).

Now under H0,

(√
nV
L

)

d−→ N

((

0

0

)

,

(

η1Ik EF (
√

nV L)
EF (

√
nV L)T EF (L2)

))

,

where

EF (
√

nV L) = EF

[

1√
n

∑

i

IF (xi; V, F ) · δ√
n

∑

i

(

g(xi)

f(xi)
− 1

)]

= EF

[

δ

n

∑

i

IF (xi; V, F ) ·
(

g(xi)

f(xi)
− 1

)]

+ EF

[

δ

n

∑∑

i6=j

IF (xi; V, F ) ·
(

g(xj)

f(xj)
− 1

)]

=
δ

n

∑

i

EF

[

IF (xi; V, F ) ·
(

g(xi)

f(xi)
− 1

)]

= δEG[IF (x; V, F )].

Hence by LeCam’s third lemma we have that under the alternative sequence,√
nV

d−→ N(EG[IF (xi; V, F )], η1Ik) and the limiting distribution of nU is
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that of η1U
∗
1 where U∗

1 has a noncentral χ2
k distribution with noncentrality

parameter

δ2

η1
EG(IF (x; V, F ))T EG(IF (x; V, F )) =

δ2

η1
||EG(IF (x; V, F ))||2.

(ii) As in the Proof of Theorem 1, decompose nW as

nb2
∑ ∑

i<j

(

hij

b/
√

2

)2

+ nb2

(

zT AT
1 A1z

b2
− zT AT

2 A2z

b2

)

+ n(b2 + kd2)
zT AT

3 A3z

b2 + kd2
= b2Wa + b2Wb + (b2 + kd2)Wc.

If W ∗
a is now computed under Hn, then the noncentality parameter of W ∗

a

is
2

b2

∑ ∑

i<j

[

E(
√

nhij)
]2

.

Notice next that using the transformation h = Az defined in the previous
proof we have that, Ez = A−Eh, where (k + 1) × k matrix

A− =
(

1
b Ik 0

)T

is the generalized inverse of A. The noncentrality parameter of W ∗
b is then

n

(

E(zT )AT
1 A1E(z)

b2
− E(zT )AT

2 A2E(z)

b2

)

= n

(

(A−E(h))T AT
1 A1A

−E(h)

b2
− (A−E(h))T AT

2 A2A
−E(h)

b2

)

=
1

b2

[

∑

i

(

E(
√

nhii)
)2 − 1

k

(

∑

i

E(
√

nhii)
)2

]

,

and the noncentrality parameter of W ∗
1 = W ∗

a + W ∗
b simplifies to

1

η2

[

∑ ∑

i,j

(

E(
√

nhij)
)2 − 1

k

(

∑

i

E(
√

nhii)
)2

]

.

The above expectations may again be computed using LeCam’s third lemma.
The resulting noncentrality parameter for W ∗

1 is then

δ2

η2

[

∑ ∑

i,j

(

EG(IF (xi; [H ]ij , F ))
)2 − 1

k

(

∑

i

EG(IF (xi; [H ]ii, F ))
)2

]

=
δ2

η2

[

Tr[EG(IF (x; H, F ))2] − 1

k
Tr2[EG(IF (x; H, F ))]

]

.
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Similarly, for W ∗
c we have the noncentrality parameter

n
E(zT )AT

3 A3E(z)

b2 + kd2
= n

(A−E(h))T AT
3 A3A

−E(h)

b2 + kd2

=
1

b2 + kd2
· 1

k

(

∑

i

E(
√

nhii)
)2

=
1

η3k
Tr2[EG(IF (x; H, F ))].

The result now follows, since IF (x; H, F ) = IF (x; C−1
1 C2, F ).

Appendix B: The empirical critical values for kurtosis measures

Table 2 Empirical critical values of Mardia’s kurtosis b2 and new kurtosis mea-
sures WM , WS and b2,new for α = 0.05 and α = 0.10 based on 10000 samples.

α = 0.05 α = 0.10

k n b2 WM WS b2,new b2 WM WS b2,new

2 20 2.54 5.56 9.34 17.16 2.20 3.11 4.39 14.05
50 2.98 3.58 4.32 13.92 2.31 2.16 2.66 11.05
100 3.23 2.61 3.09 12.92 2.41 1.72 2.14 10.49
200 3.40 2.33 2.75 12.89 2.44 1.55 1.91 9.97
∞ 3.84 1.89 2.23 13.00 2.71 1.47 1.74 10.38

3 20 3.60 6.87 9.55 19.90 3.18 3.67 4.46 17.31
50 3.58 4.18 4.16 15.99 2.87 2.66 2.61 13.80
100 3.65 3.06 3.00 15.44 2.78 2.13 2.15 13.08
200 3.58 2.54 2.49 14.93 2.68 1.83 1.89 12.75
∞ 3.84 1.85 1.87 15.12 2.71 1.52 1.57 12.76

4 20 4.67 8.13 9.85 21.97 4.18 4.41 5.07 19.80
50 4.33 4.66 4.09 18.05 3.47 2.99 2.69 16.02
100 4.05 3.39 2.75 17.29 3.17 2.35 2.04 14.99
200 3.97 2.72 2.30 16.99 2.92 2.04 1.82 14.92
∞ 3.84 1.88 1.71 17.12 2.78 1.81 1.69 14.41

5 20 5.90 9.08 5.56 23.86 5.33 4.90 2.94 21.93
50 5.05 4.96 3.49 20.23 4.23 3.41 2.38 18.20
100 4.61 3.64 2.69 19.68 3.63 2.60 2.02 17.29
200 4.23 2.92 2.22 19.10 3.28 2.28 1.82 17.15
∞ 3.84 1.94 1.65 19.09 2.71 1.68 1.47 17.01

8 20 10.08 7.34 25.04 28.47 9.44 3.20 14.24 26.82
50 7.79 6.06 3.04 26.18 6.72 4.47 2.36 24.10
100 6.58 4.58 2.63 25.64 5.13 3.50 2.12 23.41
200 5.44 3.53 2.19 25.31 4.08 2.77 1.88 23.23
∞ 3.84 2.18 1.69 24.97 2.71 1.96 1.56 23.10
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