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Signals, recorded over time, are often observed as mixtures of multiple source signals. To
extract relevant information from such measurements one needs to determine the mixing
coefficients. In case of weakly stationary time series with uncorrelated source signals, this
separation can be achieved by jointly diagonalizing sample autocovariances at different
lags, and several algorithms address this task. Often the mixing estimates contain close-
to-zero entries and one wants to decide whether the corresponding source signals have a
relevant impact on the observations or not. To address this question of model selection we
consider the recently published second-order blind identification procedures SOBIdef

and SOBIsym which provide limiting distributions of the mixing estimates. For the first
time, such distributions enable informed decisions about the presence of second-order
stationary source signals in the data. We consider a family of linear hypothesis tests and
information criteria to perform model selection as second step after parameter estimation.
In simulations we consider different time series models. We validate the model selection
performance and demonstrate a good recovery of the true zero pattern of the mixing
matrix.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Time resolved signals appear in a large variety of con-
texts, and often one observes a multivariate mixture of
different signals rather than separated ones. In blind sou-
rce separation (BSS) we assume a linear and instantaneous
mixing model and aim to estimate the underlying source
signals together with the mixing weights. In case of
nal Biology, German
uherberg, Helmholtz

en.de (F.J. Theis).
weakly stationary time series with uncorrelated source
signals, a mixing matrix can be estimated based on the
second-order statistics of the observations. The problem
then reduces to jointly diagonalizing sample autocovar-
iances at different lags. Many existing BSS algorithms are
based on this idea [1–5]. A review on joint diagonalization
algorithms is given in [6]. Applications range from audio
recordings to biomedical signal or image data. For the
latter the assumption of uncorrelated source components
can be extended to the spatial dimension of the data [7,8].
In an application to high dimensional functional magnetic
resonance imaging (fMRI), for example, patients alter-
nately passed through periods of rest and photic stimulus.
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In comparison to other BSS methods, joint diagonalization
could identify a signal with high coherence to the stimulus
[8]. Another widely used measuring technique is electro-
encephalography (EEG). Here, the brain's electrical activity
is recorded and joint diagonalization could successfully
separate artifacts like eye movement or blinking from the
data [9]. If the EEG signals arise from correlated stimula-
tion of the left and right somatosensory cortices a large
number and wide range of time delays is preferable [10].

To draw further conclusions from source separation,
one often wants to know whether single source signals
are present in a specific observation. More precisely, one
wants to decide whether close-to-zero entries of the
mixing estimate are actually zero or not. This is commonly
done by thresholding which lacks statistical motivation. To
provide informative decisions we develop suitable model
selection criteria. To that end, we consider the recently pub-
lished second-order blind identification versions SOBIdef

[11] and SOBIsym [12]. For both algorithms the authors
showed that the (un-)mixing estimates are asymptotically
normally distributed under mild conditions, and they derived
limiting variances of the estimates when the time series
length goes to infinity. Based on these distributions we create
a framework to perform model selection on the mixing esti-
mates. Here, we use a family of linear hypothesis tests and
different information criterions including the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion
(BIC). To speed up the selection process we also consider an
alternative information criterion that does not require the
maximum likelihood parameter estimates.

In the first part, we state the second-order source
separation problem (Section 2) and shortly review the
algorithms SOBIdef and SOBIsym (Section 3). Their
practical estimation performance has not been evaluated
yet. To figure it out, we compare both algorithms to the
established methods SOBI [2] and the non-orthogonal
ACDC [4]. We find that SOBIsym achieves the same
estimation results as SOBI but with the gain of knowing
the limiting distribution of the (un-)mixing estimates
(Section 4). In the main part, we then demonstrate how
the additional information about the distribution can be
used to choose between different candidates for the
mixing matrix (Section 5). In simulations we consider a
BSS model where the mixing matrix contains zero and
close-to-zero entries (Section 6). For both algorithms
SOBIdef and SOBIsym the testing performance could be
validated and we show the percentages of correctly
reconstructed zero-patterns among different time series
models and for the different selection approaches.

Throughout the paper we use bold symbols to denote
random variables and solid symbols to denote parameters
and realizations of random variables.
2. A second-order blind source separation model

Let fxðtÞgtAZ be a p-variate observable time series that
is weakly stationary. This means that the mean and the
autocovariance at any lag τAN do not change with respect
to time. After mean-removal we assume a zero-centered
process that is generated by the following linear mixing
model:

xðtÞ ¼ΩzðtÞ; tAZ: ð1Þ
Here, Ω denotes a deterministic full rank p�p mixing
matrix and fzðtÞgtAZ is a p-variate unobservable time series
that is weakly stationary as well and has uncorrelated
components. More precisely, we assume
(A1)
 EðzðtÞÞ ¼ 0,

(A2)
 CovðzðtÞ; zðtÞÞ ¼ Ip,

(A3)
 CovðzðtÞ; zðtþτÞÞ ¼ CovðzðtþτÞ; zðtÞÞ ¼Λτ is diagonal

for all lags τAN, and

(A4)
 for all ia jAf1;…; pg there exists a lag τAN such that

λτiaλτj with λτi and λτj being the ith and jth diagonal
entries of Λτ , respectively.
With the scaling to unit variance in (A2) and the assump-
tion (A4) the mixing becomes unique up to a sign-
changing permutation: if xðtÞ ¼Ω1z1ðtÞ ¼Ω2z2ðtÞ, then
Ω2 ¼Ω1B and z2ðtÞ ¼ B�1z1ðtÞ, where B contains exactly
one non-zero entry per row and column and these entries
equal 71. This restriction on B follows from the spectral
theorem [13].

In second-order source separation we consider the
second-order statistics of the observable process, and with
these we estimate the mixing matrix Ω as well as the
unobservable process fzðtÞgtAZ. The autocovariance of
fxðtÞgtAZ at lag τAN is of the form:

CovðxðtÞ; xðtþτÞÞ ¼ΩΛτΩ
0;

where Λ0 ¼ Ip at lag zero. Let now xð1Þ;…; xðTÞ be observa-
tions at subsequent time points. The sample autocovar-
iance at lag τ is then given as

Sτ ¼
1

T�τ

XT�τ

t ¼ 1

x tð Þx tþτð Þ0:

To determine an unmixing estimate we jointly diag-
onalize sample autocovariances at distinct lags τ1;…; τK .
We assume that fτ1;…; τKgDN is such that (A4) also holds
for fτ1;…; τKg instead of N. For better readability, we
denote the corresponding autocovariances as S1;…; SK
even if the lags are different from 1;…;K . An unmixing
estimate is then a p� p matrix Γ ¼ ðγ1;…; γpÞ0 that mini-
mizes the off-diagonal elements of ΓSkΓ

0 for all k¼1,…,K
in the sense that

f nðΓÞ ¼
XK
k ¼ 1

JoffðΓSkΓ0ÞJ2F

is minimized under the constraint ΓS0Γ
0 ¼ Ip. Here,

offðMÞ ¼M�diagðMÞ with diagðMÞ being a diagonal matrix
consisting of the diagonal entries of M, and J : JF denotes
the Frobenius norm of a matrix. The above minimization is
equivalent to the maximization of

f ðΓÞ ¼
XK
k ¼ 1

JdiagðΓSkΓ0ÞJ2F ¼
Xp
j ¼ 1

XK
k ¼ 1

ðγj 0SkγjÞ2 ð2Þ

under the same constraint. From the spectral theorem it
follows that an optimal solution Γ is indeed an estimate of
the unmixing matrix.
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An important class of joint diagonalization algorithms
is restricted to the estimation of orthogonal mixing mat-
rices. In this case we first pre-whiten the data using
~xðtÞ ¼ VxðtÞ ¼ ðVΩÞzðtÞ ¼ ~ΩzðtÞ with V ¼ S�1=2

0 for t¼1,…,
T. The whitened process has unit variance and from the
constraint it follows that ~Γ and ~Ω are orthogonal. From
the diagonal unmixing estimate for the whitened process
we then get an unmixing estimate for the original process
by multiplication with V from the left.
3. The algorithms SOBIdef and SOBIsym

Recently, Miettinen et al. proposed the new second-
order blind identification algorithms SOBIdef [11] and
SOBIsym [12]. In the deflation based approach (SOBIdef)
the single rows of an unmixing matrix Γ ¼ ðγ1;…; γpÞ0 are
estimated one after the other, such that at each step j only
f ðγjÞ ¼

PK
k ¼ 1 ðγj 0SkγjÞ2 is maximized. In the symmetric

approach (SOBIsym), in contrast, all rows of Γ are esti-
mated at once, such that the complete sum in (2) is
maximized. Using Lagrange multiplier techniques, Mietti-
nen et al. formulated in both cases estimating equations
for an optimal solution Γ and derived iterative algorithms
from these equations. Both algorithms contain an update
step, where single rows of the current estimate are
replaced by HðγjÞ ¼

PK
k ¼ 1ðγj 0SkγjÞSkγj and an orthogonali-

zation step based on the Gram–Schmidt process or singu-
lar value decomposition.

SOBIdef: For j¼ 1;…; p�1 initialize γj (discussed
below), and then alternate until convergence:
Step 1:
 γj’HðγjÞ,Pj�1
Step 2:
 γj’ðIp� r ¼ 1 γrγr
0Þγj,

γj’γj=Jγj J .
SOBIsym: Initialize Γ randomly, and then alternate
until convergence:
Step 1:
 Γ’ðHðγ1Þ;…;HðγpÞÞ,
p
Step 2:
 Γ’svd ðΓÞ.
Here, svdpðΓÞ denotes orthogonalization of Γ using sin-
gular value decomposition. If Γ ¼UΣV 0 with U and V
being orthogonal and Σ being diagonal, then step 2 results
in Γ ¼UV 0. This is the closest orthogonal matrix to Γ in
terms of the Frobenius norm.

The performance of SOBIdef depends on the extrac-
tion order of the rows, or equivalently, on permutations of
the initial vectors γ1;…; γp. If we initialize SOBIdef with
all p! permutations of these vectors, we get up to p!
different estimates. To directly determine the estimate
with the highest value for the maximization function (2),
we introduce a randomization at each step j. Among a set
of 100ðp� jþ1Þ random vectors orthogonal to γ1;…; γj�1
we choose the vector γj with the highest value
f ðγjÞ ¼

PK
k ¼ 1 ðγj 0SkγjÞ2 and use it as initialization. With

this, both algorithms are independent of the initial guess.
Further, the resulting estimate Γ is affine equivariant, i.e.
if Γ and ~Γ are the estimates derived from xðtÞ and
~xðtÞ ¼ BxðtÞ for t¼1,…,T and any invertible matrix B, then
Γ ¼ ~ΓB.

3.1. Algorithm performance

To give an idea about the estimation performance of
SOBIdef and SOBIsym we compare both algorithms to
the following well-established methods.

SOBI [2] is the original second-order blind identifica-
tion algorithm and it is based on Jacobi rotations. Starting
with an orthogonal initial guess for the unmixing matrix,
the algorithm determines for each pair of rows in turn an
optimal Jacobi rotation to maximize (2). The current
unmixing estimate is then rotated in the plane spanned
by the two rows. For SOBI as well as for SOBIdef

and SOBIsym the final mixing estimate is orthogonal
by construction. Thus, these algorithms require a pre-
whitening of the data.

ACDC [4] is a non-orthogonal algorithm. Iteratively, the
algorithm optimizes in the AC-step a single row of the
unmixing estimate and updates in the DC-step the esti-
mate of the diagonal source autocovariances. Although
ACDC does not require pre-whitened data, we observed a
better convergence on such data. In this case, we need to
include S0 ¼ Ip to the set of autocovariances that we jointly
diagonalize to assure an orthogonal mixing estimate.

As performance measure we use the minimum distance
index [15]. This index compares the product of unmixing
estimate and true mixing to the identity matrix and is
defined as

MDI Γ̂ ;Ω
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
p�1

p inf
CAC

JCΓ̂Ω� Ip J ; ð3Þ

where C is the set of p�p matrices with one non-zero
entry per row and column. Thus the index is independent
of sign and permutation of the rows estimates. All MDI
values are in ½0;1�, and we say that the mixing estimate Ω̂
is close at the true mixing matrix Ω if the value is low.

Finally, we consider four different time series models to
generate data:
(i)
 AR(4)-model: Three AR(4)-processes with coeffic-
ient vectors ð0:2; �0:5;0:5; �0:4Þ, ð0:3;0:1; �0:7;0:2Þ,
ð� 0:2;0:3;0:1;0:1Þ and normal innovations.
(ii)
 ARMA-model: Three ARMA-processes with AR-coeffi-
cient vectors ð�0:4;0:2; �0:3Þ, ð0:2;0:5; �0:1Þ, ð0:5; �
0:1;0:1Þ and MA-coefficient vectors ð0:1�0:3;0:2;0:2;
�0:1Þ, ð0:7;0:4; �0:3;0:1; �0:2Þ, ð�0:5; �0:4; �0:2;
0:5;0:1Þ and normal innovations.
(iii)
 Mixed model: one AR(3)-, one AR(1)-, one MA(10)-
process with coefficient vectors ð0:5;0:1;0:3Þ, ð0:7Þ,
ð0:4;0:2; �0:1; �0:4;0:3;0:2;0:6;0:1; �0:3; �0:1Þ and
normal innovations.
(iv)
 Close-coefficient model: three MA(3)-processes with
coefficient vectors ð�0:25;0:1;0:5Þ, ð�0:3;0:1;0:35Þ,
ð�0:2;0:07;0:4Þ and normal innovations.
From all models we generate times series of length T and
scale each component to unit variance. We mix observa-
tions from these source signals using a random mixing



K. Illner et al. / Signal Processing 113 (2015) 95–10398
matrix Ω with entries from U½�1;1�. For joint diagon-
alization we consider sample autocovariances at lags
τ¼ 1;…;K . Note that all algorithms are applied to the
whitened data, and we need to transform the estimate to
the original coordinate system afterwards. Further, all
algorithms contain loops to update the single vectors or
matrices iteratively. In the simulations we repeat these
loops till the change in terms of the Frobenius norm (of the
updated vector or matrix) is less than 10�6, or a maximum
number of 1000 iterations is achieved. If there is no
convergence after this maximum number of iterations
we consider the run as non-convergent. All non-conve-
rgent runs are excluded from the performance results.

In Fig. 1 we generated data from models (i)–(iv) with a
sample size of T ¼ 10 000 and used sample autocovar-
iances at lags τ¼ 1;…;10 for joint diagonalization. All
algorithms are initialized with the identity matrix – except
SOBIdef which has an internal randomization for correct
row selection. In the abundant data situations (i)–(iii) all
algorithms achieve comparably good performances, where
SOBIdef is slightly slower in terms of runtime. In the
more challenging data situation (iv) the estimates of
SOBIdef show a decrease in performance and the runtime
of ACDC increases. Note that SOBIsym and SOBI lead to
exactly the same estimates after convergence, and this is
true for any data situation.

4. Limiting distributions for SOBIdef and SOBIsym

The crucial strength of SOBIdef and SOBIsym is that
we do not only get estimates for the mixing matrix but
also know the asymptotic distribution of these estimates.
Under general multivariate time series assumptions, the
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the initialization process. In addition we may need to
multiply single columns of the finite mixing estimates
by �1 to assure positive column sums.

We now specify our assumptions about the unobserva-
ble process fzðtÞgtAZ and assume a p-variate MA ð1Þ-pro-
cess, i. e.

zðtÞ ¼
X1

j ¼ �1
Ψ jεðt� jÞ for tAZ:

According to (A2) and (A3), the matrices Ψ j for jAZ are
diagonal and satisfy

P1
j ¼ �1Ψ 2

j ¼ Ip, and we assume
εðtÞ �N ð0; IpÞ. Using Wold's decomposition [16] every
second-order stationary process with normal components
can be transformed into such an MA ð1Þ-process.

From now on we consider the SOBIdef and SOBIsym

(un-)mixing estimates as p2-variate random variables rather
than concrete estimates and we use bold symbols Ω̂ ¼ ðω̂ ijÞ
and Γ̂ ¼ ðγ̂ ijÞ0 for visual distinction. As before, let Ω
denote the true mixing matrix and Γ ¼Ω�1 its inverse. In
[11,12] Miettinen et al. showed that

ffiffiffi
T

p
vecðΩ̂�ΩÞ andffiffiffi

T
p

vecðΓ̂�ΓÞ are asymptotically normally distributed with
a mean vector zero. The covariance matrices ASVðΩ̂Þ and
ASVðΓ̂Þ depend on the autocovariances of the unobservable
process and explicit formulas are available.

Given a finite sample xð1Þ;…; xðTÞ, the deflation-based
or symmetric mixing estimate Ω̂ is then approximately
normally distributed as

N vec Ωð Þ; 1
T
ASV Ω̂

� �� �
:

Since in general the true mixing matrix and the source
model are unknown, we can approximate the distribution
using the mixing estimate Γ̂ and the estimated source
signals Γ̂xð1Þ;…; Γ̂xðTÞ. To determine the variance we use
sample autocovariances of the source estimates and con-
sider lags from a finite subset of N. In addition, infinite
sums are approximated by finite sums. We denote the
resulting finite-sample variance by dASVðΩ̂Þ. Functions to
compute the asymptotic and the finite-sample variance
can be found in the R-package ‘BSSasymp’ [17].

5. Identification of the mixing pattern

In applications of mixing models we sometimes face
the question whether single source signals are present in a
specific observation or not. In the several speakers pro-
blem, for example, we want to decide whether a single
speakers’ sound is recorded by a specific microphone. This
question is related to the question whether single entries
in the mixing matrix are zero: if the j-th source signal
fsjðtÞgtAZ

is not present in the i-th observation fxiðtÞgtAZ

then the entry Ωði; jÞ of the mixing matrix is zero. On the
other hand, blind source separation algorithms typically
estimate a dense matrix Ω̂ where no entry is exactly equal
to zero. Simple thresholding implies the crucial choice of
an appropriate cut-off and does not appear convincing.
Another idea is to add a penalty term to the joint
diagonalization problem (2). In the supplement we show
that numerical optimization of such a penalized version
fails in practice and we discuss the reasons. As an
alternative, we perform informed pattern identification
using the limiting distributions of the SOBIdef and
SOBIsym estimates. With this, we can soundly decide
whether close-to-zero-entries are actually zero. In
Section 6 we present simulation results.

5.1. Pattern identification via hypothesis tests

First, we investigate hypothesis tests on linear combi-
nations of the mixing entries. Let therefore xð1Þ;…; xðTÞ be
observations of a BSS model with mixing matrix Ω. We
consider a family of linear null hypotheses H0:A vecðΩÞ ¼ b
and alternatives H1:A vecðΩÞab, where A is a k� p2

matrix and b is a k-vector. If the rows of A contain only
one non-zero entry and this entry equals 1 we can test
whether single entries of Ω̂ are different from zero. Under
the above null hypothesis and with Ω̂ the SOBIdef or
SOBIsym estimate we haveffiffiffi
T

p
ðA vecðΩ̂Þ�bÞ-d N kð0;AðASVðΩ̂ÞÞA0Þ

in distribution. This can be used in a test construction (still
under H0) as

M≔ A vec Ω̂
� �

�b
� �0

A
1
T
dASV Ω̂

� �� �
A0

� ��1

A vec Ω̂
� �

�b
� �

-d χ2
k :

Here χk
2

denotes the chi-squared distribution with k
degrees of freedom which equals the number of linear
equations in A vecðΩÞ ¼ b. If M is larger than the upper αth
quantile of χk

2
, we reject H0 with (asymptotic) probability

of false alarm equal to α. Similar test statistics have been
introduced by Ollia et al. [18] for the independent compo-
nent model (ICA) and the fastICA estimate.

To determine the zero pattern of the mixing matrix we
independently test H0:ωij ¼ 0 vs. H1:ωija0 for all mixing
entries. If H0 is not rejected we assume that the corre-
sponding entry is zero. This first approach for pattern
identification is rather simplistic since the dependence
structure of the mixing entries is not taken into account. In
Section 6 we refer to it as h-test.

5.2. Pattern identification via information criteria

We now move on to information criteria to select
between different zero-patterns of the mixing matrix. Let
Ωh denote a p�p matrix with zero entries at positions
given in the set h. In the following we define a model for
these reduced mixing matrices.

According to Section 4, the mixing estimate Ω̂ is
asymptotically normally distributed with the mean being
the true mixing matrix and variance given by the limiting
variance. Based on observations xð1Þ;…; xðTÞ one can
estimate the variance using the finite sample variance. A
model for the (unknown) reduced mixing matrix Ωh for
any zero-pattern h is then given by

N vec Ωh
� �

;
1
T
dASV Ω̂

� �� �
;

where dASVðΩ̂Þ is the finite sample variance calculated
from xð1Þ;…; xðTÞ. The number of model parameters equals
the number of non-zero entries inΩh, and for h¼∅we get
the full model with p2 parameters. The observations are



Table 1
Hypothesis tests on mixing entries. We generate data from the AR(4)-
model (i) with a time series length of T ¼ 10 000. The true mixing matrix
is chosen as identity matrix and for each column ωj (j¼ 1;2;3) we test

HðjÞ
0 :ωj ¼ ej vs. H

ðjÞ
1 :ωjaej. In addition, we consider the complete mixing

matrix and test HðallÞ
0 : vecðΩÞ ¼ vecðI3Þ vs. HðallÞ

1 : vecðΩÞavecðI3Þ. The table
shows the percentage of (falsely) rejected null hypotheses at significance
level 0.05 over 5000 samples.

T SOBIdef SOBIsym

Hð1Þ
0 Hð2Þ

0 Hð3Þ
0 HðallÞ

0 Hð1Þ
0 Hð2Þ

0 Hð3Þ
0 HðallÞ

0

500 5.50 6.16 7.98 8.28 5.84 6.36 7.42 8.38
1000 5.62 5.46 6.70 6.50 5.96 5.16 6.92 6.58
10 000 4.32 5.26 5.26 4.62 4.46 5.50 5.04 4.66
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given by the mixing estimate Ω̂ and with this the like-
lihood function is defined as ℓðΩhÞ ¼ ln f ðΩ̂;ΩhÞ. Finally,
let Ω̂

h ¼ argmax ℓðΩhÞ denote the maximum likelihood
estimate of the reduced mixing matrix.

To determine the most appropriate zero-pattern of the
mixing matrix, we study information criteria of the form

ICðhÞ ¼ �2ℓðΩ̂hÞþkc; ð4Þ
where h is any zero-pattern, k¼ jhj denotes the number of
model parameters, and c is some constant. For c¼2 the
above equation yields the Akaike information criterion
(AIC) and for c¼ lnðTÞ the equation yields the Bayesian
information criterion (BIC) where T is the length of the
observed time series. With this, we identify the lowest
value IC(h) among all zero-patterns and the resulting h is
the estimated zero-pattern for the mixing matrix. In the
result part we refer to this approach as AIC, BIC, or IC.

In the above approach one needs to maximize the
likelihood function for all zero-patterns h to determine
the reduced estimate Ω̂

h
. To save computational time we

invent a more heuristic variant:
Since Ω̂ itself is a mixing estimate, the non-zero entries

of Ω̂
h
will typically be close at the corresponding entries of

Ω̂. Thus, we might directly set entries of Ω̂ to zero and
leave all other entries unchanged. For a zero-pattern h we
set Ω̂

hði; jÞ ¼ Ω̂ði; jÞ for ði; jÞ=2h and zero otherwise. Note
that this approach yields different estimates than before
whenever dASVðΩ̂Þ contains non-zero off-diagonal entries.
Using this modified estimate Ω̂

h
we again determine the

zero-pattern with the lowest IC value. We refer to this
approach such as AICmod, BICmod, or ICmod.
0 0.01 0.02 0.03 0.04 0.05

epsilon

Fig. 2. Hypothesis tests on noisy mixing entries. The first column of the
mixing matrix is chosen as ω1 ¼ ð1; ε;0Þ for increasing ε, all other entries
are randomly sampled from U1¼ 7U½0:1;1:0� and U2¼ 7U½0:5;1:0�.
The figure shows the percentage of rejected null hypothesis Hð1Þ

0 :ω1 ¼ e1
at significance level 0.05. In case of ε¼ 0, this is a wrong decision,
otherwise a correct one. We used 1000 repetitions for each ε.
6. Simulations

In the following we first validate the test statistics from
Section 5.1 and investigate the impact of noise. We then
compare the three pattern identification methods IC,
ICmod and h-test and consider mixing matrices with
different numbers of zero entries.

We consider the AR(4)-model (i) from Section 3.1 and
generate 3-dimensional data with mixing matrix Ω¼ I3.
For j¼ 1;2;3 we then test the hypothesis HðjÞ

0 :ωj ¼ ej vs.
HðjÞ

1 :ωjaej, where ej is the canonical unit vector with 1 at
the jth component. In addition we consider the comp-
lete mixing matrix and test HðallÞ

0 : vecðΩÞ ¼ vecðI3Þ vs.
HðallÞ

1 : vecðΩÞavecðI3Þ. For all these tests we can easily
define a matrix A with entries in f0;1g such that
A vecðΩÞ ¼ ej (j¼ 1;2;3) or A vecðΩÞ ¼ vecðI3Þ. In the first
type of test the degrees of freedom of χk

2
equal p in the

latter p2. Table 1 shows the percentage of (falsely) rejected
null hypotheses at significance level 0.05 over 5000 runs
for a sample length of T ¼ 500;1000;10 000. We find a
better identification for the first column of the estimate,
but for T ¼ 10 000 all tests come close to the expected
value of 5%.

We further address the question of how large entries of
the mixing matrix must be such that they can be identified
as non-zero. We therefore replace the previous mixing
matrix, and we assume now that the first column ofΩ is of
the form ω1 ¼ ð1; ε;0Þ0. All other entries are chosen
randomly from the uniform distribution 7U½0:1;1:0�
(U1) or 7U½0:5;1:0� (U2). Here, 7U½a; b� for 0oaob
denotes a uniform distribution with support
½�b; �a� [ ½a; b�. We test Hð1Þ

0 :ω1 ¼ e1 vs. Hð1Þ
1 :ω1ae1 for

increasing ε¼ 0;0:01;…;0:05 and with 1000 runs in each
case. The percentage of correctly rejected null hypotheses
increases with the value of ε and already at a value of
ε¼ 0:02 we observe a rejection rate of 80% (Fig. 2).

To perform pattern identification we generate data
using the AR(4)-model (i) and fix the sample size at
T ¼ 10 000. For the mixing matrix we consider the follow-
ing four zero-patterns:

Ω1 ¼
n 0 n

n n n

n n n

0
B@

1
CA; Ω2 ¼

n 0 n

n n 0
n n n

0
B@

1
CA;

Ω3 ¼
n 0 0
n n n

n n n

0
B@

1
CA; Ω4 ¼

n 0 0
0 n n

0 n n

0
B@

1
CA;



Fig. 3. Pattern identification to determine zero entries of the mixing matrix. The data is generated using the AR(4)-model (i) with a time series length of
T ¼ 10 000. The true mixing matrix contains zeros at positions h1 ¼ fð1;2Þg, h2 ¼ fð1;2Þ; ð1;3Þg, h3 ¼ fð1;2Þ; ð2;3Þg and h4 ¼ fð1;2Þ; ð1;3Þ; ð2;1Þ; ð3;1Þg. We
reconstruct these zero-patterns from the SOBIdef and SOBIsym mixing estimates using the selection methods AIC, BIC, AICmod, BICmod and h-test from
Section 5. The percentages of correctly determined, under- and overdetermined patterns over 500 repetitions are shown as filled, shaded and dark shaded
areas, respectively.
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Fig. 4. Pattern identification for increasing constant c. The data is generated using (A) the AR(4)-model (i) and (B) the mixed model (iii) with a time series
length of T ¼ 10 000, T ¼ 1000 and T¼500 in the single rows. The true mixing matrix contains zeros at positions h1 ¼ fð1;2Þg, h2 ¼ fð1;2Þ; ð1;3Þg,
h3 ¼ fð1;2Þ; ð2;3Þg and h4 ¼ fð1;2Þ; ð1;3Þ; ð2;1Þ; ð3;1Þg. We reconstruct these zero-patterns from the SOBIsym mixing estimates using the information
criterion for increasing constant c (with and without maximization) and the h-test. The figure shows the percentage of correctly determined patterns over
500 repetitions. The black vertical lines indicate the constant values c¼2 (AIC) and c¼ lnðTÞ (BIC).
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where (n) denotes the non-zero entries. In case 1, for
example, the second source signal has no impact on
the first observation, and in case 3 the first observation
depends only on the first source signal. Let hi denote the
set of zero entries in each case, i.e. h1 ¼ fð1;2Þg, h2 ¼
fð1;2Þ; ð2;3Þg, h3 ¼ fð1;2Þ; ð1;3Þg and h4 ¼ fð1;2Þ; ð1;3Þ;
ð2;1Þ; ð3;1Þg. The non-zero entries of the mixing matrix
are chosen randomly from the uniform distribution
7U½0:1;1:0�.

The SOBIdef and SOBIsym mixing estimates and their
distributions are based on sample autocovariances at lags
τ¼ 1;…;10. From these estimates we determine the most
appropriate zero-patterns following the three approaches
in Section 5. For evaluation we compare the zero entries of
the true mixing matrix to those of the estimated pattern.
Fig. 3 shows the percentage of correctly determined patt-
erns (filled areas) as well as the percentage of partly
determined patterns (shaded areas), where not all or more
zero-entries were detected. We considered 500 samples
from time series model (i) with random mixing matrices.
We found a crucial increase in performance if we used AIC/
BIC with parameter maximization. In this case BIC deter-
mined nearly all zero-patterns correctly. Corresponding
figures for the other time series models are added in the
supplement.

We further investigated the impact of the information
criterion constant c in (4) as well as the sample size T.
Fig. 4 shows the percentage of correctly determined zero-
patterns for the SOBIsym estimate. The data was gener-
ated from time series models (i) and (iii) with a sample
length of T ¼ 500;1000;10 000. We increased c¼ 1;…;100
where the BIC is given for c¼6.2, 6.9, and 9.2 depending
on T. We find that in nearly all settings IC clearly outper-
forms the modified IC. In comparison to the h-test the
information criterion is only slightly better. The highest
rates of correct zero detection are achieved for c¼ lnðTÞ
(BIC). Furthermore, the performance depends on the
underlying time series model; for the AR(4)-model (i) we
find higher recovery rates compared to the mixed-model
(iii). Results for the remaining time series models (ii) and
(iv) can be found in the supplement.

7. Conclusions and outlook

In this paper we considered a second-order BSS model
and discussed how one can select source signals that have
a real impact on a specific component of the time series
data. Until now, this was done setting arbitrary cut-off
values below which entries of the mixing matrix are
considered negligible. In contrast, we propose more sound
methods. To that end, we focused on the recently pub-
lished algorithms SOBIdef and SOBIsym, for which the
distributions of the mixing estimates are known. In a
comparison study we showed that SOBIsym provides a
reasonable alternative to established algorithms in terms
of performance and runtime. From the distribution of the
estimates we derived methods to decide whether small
entries of the mixing estimate are actually zero or not. In
simulations with different time series models the Bayesian
information criterion leads to the best reconstruction of
the true zero-pattern. Our findings give insight whenever
one observes a linear and instantaneous mixture of sta-
tionary time series signals and is interested in the source
signals that are actually present in the data.

For further research it can be interesting to relax themodel
assumptions. Second-order source separation has for example
been translated to the case of non-stationary signals [19].
Moreover, non-instantaneous (or convolutive) mixtures have
been considered [20]. For the latter, the mixing model can be
traced back to an instantaneous mixing. To adopt our model
selection approaches to models with such relaxed assump-
tions one needs to reformulate the limiting variances of the
mixing estimates.
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