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Abstract

In this paper, the shape matrix estimators based on spatial sign and rank vec-
tors are considered. The estimators considered here are slight modifications
of the estimators introduced in Dümbgen (1998) and Oja and Randles (2004)
and further studied for example in Sirkiä et al. (2009). The shape estimators
are computed using pairwise differences of the observed data, therefore there
is no need to estimate the location center of the data. When the estimator
is based on signs, the use of differences also implies that the estimators have
the so called independence property if the estimator, that is used as an initial
estimator, has it. The influence functions and limiting distributions of the
estimators are derived at the multivariate elliptical case. The estimators are
shown to be highly efficient in the multinormal case, and for heavy-tailed dis-
tributions they outperform the shape estimator based on sample covariance
matrix.

Key words: Affine equivariance, efficiency, influence function, spatial sign,
spatial rank

1. Introduction and some notations

A p-variate random vector x is elliptically symmetric if its density func-
tion is of the form

f(x) = |Σ|−1/2g[(x − µ)T Σ−1(x − µ)], (1)
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where a p-vector µ denotes the location of the distribution and a positive
definite symmetric p × p matrix (PDS(p)) Σ, the so called scatter matrix,
defines the shape and scale of its contours. If x is a random variable from
an elliptical distribution, then the standardized variable z = Σ−1/2(x − µ)
has a spherical distribution with location 0, and z can be decomposed as
z = ru, where r = ||z|| is the Euclidean length of z, and r and u = ||z||−1z

are independent with u being uniformly distributed on the unit sphere.
The scatter matrix Σ can be decomposed into two parts, that is, Σ = σ2Λ,

where σ2 is the scale parameter and PDS(p) matrix Λ with Tr(Λ) = p is the
shape matrix. Note that the condition Tr(Λ) = p is sometimes replaced
by Det(Λ) = 1 or Λ11 = 1 (Paindaveine, 2008). A shape matrix includes
information only of the shape and orientation of the data and in several
applications it is enough to estimate the shape matrix only.

In this paper, we denote the scatter matrix functional as C(x), where x

is a random vector with cumulative distribution function F . C(x) is defined
to be a scatter matrix if it is PDS(p) and affine equivariant so that

C(Ax + b) = AC(x)AT , (2)

for every nonsingular p×p matrix A and p-vector b. Applying scatter matrix
functional to the empirical distribution function Fn gives the scatter matrix
estimate Ĉ. Further, the shape matrix functional is denoted by V (x) and it
is PDS(p) and affine equivariant in the sense that

V (Ax + b) =
p

Tr(AV (x)AT )
AV (x)AT . (3)

The corresponding estimate V̂ is again obtained by applying shape functional
to the empirical distribution function Fn. Note that in the elliptical model,
different scatter matrices are not comparable, since a correction factor is
needed in order to quarantee the Fisher consistency towards Σ. All shape
matrices, however, estimate the same population quantity Λ and are directly
comparable without any modifications.

Tyler (1987) introduced a simple shape matrix estimator based on spatial
sign vectors. His estimator is distribution-free under elliptically symmetric
distributions and highly efficient in case of heavy-tailed distributions. Under
multivariate normal model the efficiencies are, however, quite low. More
efficient estimators are obtained by using pairwise differences instead of the
original observations in Tyler’s approach (Dümbgen, 1998), or spatial rank
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vectors as in Oja and Randles (2004) and Sirkiä et al. (2009). Since the
Dümbgen’s shape matrix and the spatial rank covariance matrix use the
pairwise differences of the observed data, there is no need to estimate the
location center. The use of differences in Dümbgen’s estimator also implies
that the estimator has important independence property. It means that V (x)
is a diagonal matrix for all x with independent components. This property is
useful in several multivariate analysis problems, for example in independent
component analysis (Oja et al., 2006; Tyler et al., 2009).

The estimators derived in Dümbgen (1998) and Oja and Randles (2004)
are computed using iterative algorithms. Due to this property and the use
of pairwise differences, the estimation procedure is rather time-consuming
when the sample size is very large. In this paper, we therefore consider so
called k-step versions of these estimators, that is, the estimators obtained af-
ter k-th iteration step. Similar estimators have been considered for example
in Oja et al. (2006) and Tyler et al. (2009), where 1-step M-estimators and
1-step W-estimators were used in invariant coordinate selection and indepen-
dent component analysis. Other examples include 1-step signed-rank scatter
matrix that was introduced by Hallin et al. (2006), and 1-step Tyler’s shape
matrix that was used in the context of principal axis analysis by Chritchley
et al. (2008).

The outline of the paper is as follows. In Section 2, the corresponding
estimators are defined and in Sections 3 and 4, the robustness and efficiency
properties of them are studied. In Section 5, the properties of the estimators
are examined using simple simulation studies. The paper is concluded with
some final comments in Section 6. All the proofs are found in the Appendix.

2. Shape estimators based on spatial sign and rank vectors

The spatial sign function is defined as

S(x) =

{
‖x‖−1x, x 6= 0

0, x = 0,

where ‖x‖ = (xT x)1/2 is the Euclidean length of the vector x. Applying spa-
tial sign function to the data points x1, . . . ,xn produces spatial sign vectors
S(xi). The centered spatial rank function is defined as

R(x) = ave{S(x − xi)},
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thus unlike the sign function, the rank function depends on the data. If
x1, . . . ,xn is distributed according to F , then R(x) converges uniformly in
probability to the theoretical rank function RF (x) = EF [S(x−xi)] (Möttönen
et al., 1995). At spherical distribution,

RF (ru) = qF (r)u, (4)

for some bounded increasing function qF (r). In the following, the spatial
rank vectors are denoted by R(xi) = avejS(xi − xj).

In Visuri et al. (2000), the symmetrised spatial sign covariance matrix
and the spatial rank covariance matrix were introduced. These estimates are
given by

ĈS = ave{S(xi − xj)S
T (xi − xj)}

and
ĈR = ave{R(xi)R

T (xi)} = ave{S(xi − xj)S
T (xi − xk)}.

Since the estimates are based on differences, they can be computed without
the need for the location estimate µ̂. The main disadvantage is that these
estimates are only orthogonal equivariant, that is, they satisfy (2) only for
orthogonal p×p matrices A. The estimators are therefore not genuine scatter
matrix estimators.

To derive affine equivariant versions of these estimates, one has to proceed
as in Hettmansperger and Randles (2003) and apply the spatial sign and
rank functions to the transformed data points. Let V be a PDS(p) matrix
with Tr(V ) = p and write zi = V −1/2xi, i = 1, . . . , n, for the standardized
observations. Then the affine equivariant version of the symmetrised spatial
sign covariance matrix is such V̂ that satisfies

p ave{S(zi − zj)S
T (zi − zj)} = Ip, (5)

and for which Tr(V̂ ) = p. The resulting estimate is also known as the
Dümbgen’s estimate (Dümbgen, 1998) and it is a symmetrised version of the
Tyler’s M-estimate (Tyler, 1987) that is found as a solution to p ave{S(zi)S

T (zi)} =
Ip. The properties of the Dümbgen’s estimator are studied in Dümbgen
(1998), Dümbgen and Tyler (2005) and Sirkiä et al. (2009) among others.
The estimating equation (5) yields to the iteration step

V̂k+1 ← V̂
1/2
k ave{S(zi − zj)S

T (zi − zj)} V̂
1/2
k , (6)
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which is repeated until the sequence converges. In the end, the resulting
estimate is scaled so that Tr(V̂ ) = p. This algorithm is similar to that
considered in Tyler (1987), only computed using pairwise differences instead
of the original observations. For the proof of convergence, see Tyler (1987).

The affine equivariant version of the spatial rank covariance matrix is
obtained by solving

p ave{R(zi)R
T (zi)} = ave{RT (zi)R(zi)} Ip. (7)

The resulting estimate is again scaled so that Tr(V̂ ) = p. This estimate is
considered for example in Oja and Randles (2004) and in Sirkiä et al. (2009).
An iteration step suggested by the estimating equation (7) is now

V̂k+1 ← V̂
1/2
k ave{R(zi)R

T (zi)} V̂
1/2
k . (8)

Note that the above equation does not include any standardization term,
since the resulting estimate is scaled to have trace equal to p. The algo-
rithm (8) seems always to converge in practice, however, the proof for this is
still an open question.

In Sirkiä et al. (2009), it is shown that the above estimates are highly
efficient even in the multinormal case. The main drawback is that since
these estimates are based on pairwise differences, they are rather slow to
compute when the sample size is very large. Motivated by this computational
inconvenience and the fact that there is no proof for the convergence of (8)
so far, we consider in the following so called k-step versions of the estimates.
These are simply obtained by starting with some

√
n-consistent shape matrix

estimate, for example Tyler’s M-estimate, and repeating steps in (6) and (8)
k times.

Definition 1. Let V̂0 be some
√

n-consistent shape matrix estimate, which
is used as a starting value. The k-step sign estimate is then computed with

1. zi ← V̂
−1/2
k−1 xi, for i = 1, . . . , n

2. V̂k ← V̂
1/2
k−1 ave{S(zi − zj)S

T (zi − zj)} V̂
1/2
k−1,

and then standardized so that Tr(V̂k) = p.
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Definition 2. Let V̂0 be some
√

n-consistent shape matrix estimate, which
is used as a starting value. The k-step rank estimate is then computed with

1. zi ← V̂
−1/2
k−1 xi, for i = 1, . . . , n

2. V̂k ← V̂
1/2
k−1 ave{R(zi)R

T (zi)} V̂
1/2
k−1,

and then standardized so that Tr(V̂k) = p.

To compute influence functions of k-step estimators, we need to define
the corresponding functionals. Write Vk = Vk(x), where x ∼ F , for the

functional corresponding to k-step sign estimate V̂k. Then Vk is given by the
implicit equation

Vk = p V
1/2
k−1EF

[
S(z1 − z2)S

T (z1 − z2)
]

V
1/2
k−1, (9)

where zi = V
−1/2
k−1 xi, for i = 1, 2, and xi’s are independent and distributed

according to F .
For k-step rank estimator, the functional corresponding to the estimator

is given by

Vk = p E−1
F [RT

F (z1)RF (z1)] V
1/2
k−1 EF [RF (z1)R

T
F (z1)] V

1/2
k−1

(10)

where again zi = V
−1/2
k−1 xi and xi’s are independently distributed according

to F . Note that to quarantee that Tr(Vk) = p, (10) now includes a scaling
term.

The above k-step estimators inherit now some important properties of
the initial estimator. Estimators are naturally affine equivariant shape esti-
mators and satify (3), as the initial estimator V0 is affine equivariant. The
independence property of k-step sign estimators is also inherited from the ini-
tial estimator as stated in the following theorem. It is still unclear whether
the rank estimators have the same property.

Theorem 1. Assume that x is a random p-vector with independent compo-
nents and V0(x) has the independence property, that is, V0(x) is diagonal.
Then the k-step sign functional has the independence property.

In the following sections, we examine the robustness and efficiency prop-
erties of the k-step estimators. It is shown that when for example Tyler’s
M-estimate is used as a starting value, then even the resulting 1-step estima-
tors are highly robust and efficient shape matrix estimators.
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3. Influence functions

The robustness of a functional T against a single outlier x can be mea-
sured using the influence functions (Hampel et al., 1986). Let

Fǫ = (1 − ǫ)F + ǫ∆x,

denote the contaminated distribution, where ∆x is the cdf of a distribution
with probability mass one at point x. The influence function of T is then
given by

IF (x; T, F ) = lim
ǫ→0

T (Fǫ) − T (F )

ǫ
.

Hampel et al. (1986) showed that, for any scatter functional C(F ), the
influence function of C at a spherical F0, symmetric around the origin and
with C(F0) = Ik, is given by

IF (x; C,F0) = αC(r)uuT − βC(r)Ik,

where r = ||x|| and u = ||x||−1x, and weight functions αC and βC depend
on the functional and the distribution F0. For shape functionals V (F ), the
influence function reduces to

IF (x; V, F0) = αV (r)

[
uuT − 1

p
Ip

]
, (11)

where αV is again a weight function that includes all information of the
influence of x on the estimator. For robust estimators, αV is continuous and
bounded and for comparisons between different shape estimators, we only
need to compare functions αV .

The influence function of k-step sign functional defined in (9) is now given
by the following theorem.

Theorem 2. At spherical F0, the influence function of k-step sign functional
Vk with initial shape matrix V0 is given by (11) with

αVk
(r) = ck

p αV0
(r) + (1 − ck

p) 2(p + 2)(1 − pg(r)),

where cp = 2/(p + 2) and

g(r) = Ex1

[
(x1 − re1)

2
2

||x1 − re1||2
]

,

where e1 = (1, 0, . . . , 0)T , r = ||x|| and x and x1 are independent and spher-
ically distributed.
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Note that when k → ∞, the weight function reduces to αV (r) = 2(p +
2)(1 − pg(r)), that is, the weight function of the regular Dümbgen’s shape
matrix (Sirkiä et al., 2009).

For k-step rank functional defined in (10) the following result holds:

Theorem 3. At spherical F0, the influence function of k-step rank func-
tional Vk with initial shape matrix V0 is given by (11) with

αVk
(r) = ck

p αV0
(r) + (1 − ck

p)
p + 2

c2
F

(g1(r) − g2(r)),

where cp = 2/(p + 2), c2
F = EF [q2

F (r)] and qF (r) is defined in (4). Further,

g1(r) = Ex2,x3

[
(re1 − x2)1(re1 − x3)1

‖re1 − x2‖‖re1 − x3‖

]
+ 2Ex2,x3

[
(x2 − re1)1(x2 − x3)1

‖x2 − re1‖‖x2 − x3‖

]

and

g2(r) = Ex2,x3

[
(x2 − re1)2(x3 − re1)2

‖x2 − re1‖‖x3 − re1‖

]
+ 2Ex2,x3

[
(x2 − re1)2(x2 − x3)2

‖x2 − re1‖‖x2 − x3‖

]
,

where e1 = (1, 0, . . . , 0)T , r = ||x|| and x, x2 and x3 are independent and
spherically distributed.

When k → ∞, the influence function of regular rank covariance functional is
obtained. In that case, αV (r) = (p + 2)(g1(r) − g2(r))/c

2
F .

Figure 1 illustrates functions αVk
at bivariate standard normal distribu-

tion case for k-step sign and rank estimators with k = 1, 2, 3 and ∞ and
when the Tyler’s M-estimator with αV0

= p + 2 (first row) or the sample
covariance matrix with αV0

= r2 (second row) is used as a starting value.
As seen in the figure, when k = 3 and the Tyler’s M-estimator is used

as a starting value, the αVk
functions are very similar to those obtained as

k → ∞. For all estimators, the functions αVk
are clearly continuous. Influ-

ence functions are also bounded as stated in the following corollary. When the
sample covariance matrix is used as an initial estimator, the influence func-
tions of k-step estimators are naturally unbounded. However, as k increases,
the resulting estimators are clearly more robust than the sample covariance
matrix as the outlying observations do not have that much influence on the
estimators.

Corollary 1. For k-step sign and rank estimators, the functions αVk
are

bounded when αV0
is bounded.
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4. Asymptotic distributions and efficiencies

In the next, we will denote

Cp,p(V ) = (Ip2 + Kp,p)(V ⊗ V ) − 2

p
vec(V )vecT (V ),

where Kp,p is the commutation matrix, that is, a p2 × p2 block matrix with
(i, j)-block being equal to a p × p matrix that has 1 at entry (j, i) and zero
elsewhere. By vec(V ) we mean the vectorization of a matrix V , which is
obtained by stacking the columns of V on top of each other. If V = Ip, then

Cp,p(Ip) = Ip2 + Kp,p −
2

p
Jp,p,

where Jp,p = vec(Ip)vec(Ip)
T .

The limiting distributions of k-step sign and rank estimators are given by
the following theorem.

Theorem 4. Let F0 be a spherical distribution. Assume that the initial es-
timate V̂0 is

√
n-consistent and follows the multinormal distribution. Then

the limiting distribution of
√

n vec(V̂k − Ip) is also multinormal with mean 0

and asymptotic covariance matrix τ Cp,p(Ip), where

τ = ASV (V̂k,12; F0) =
EF0

[α2
Vk

(r)]

p(p + 2)

denotes the asymptotic variance of any off-diagonal element of V̂k and func-
tions αVk

(r) are defined in Theorems 2 and 3.

The limiting distributions at elliptical case can be derived using the affine
equivariance properties of the estimators.

Corollary 2. Let F be an elliptical distribution with population shape pa-
rameter V . Then the limiting distribution of

√
n vec(V̂k − V ) is multivariate

normal with mean 0 and asymptotic covariance matrix

τ

(
Ip2 − 1

p
vec(V )vec(Ip)

T

)
(Ip2 + Kp,p)(V ⊗ V )

(
Ip2 − 1

p
vec(Ip)vec(V )T

)
,

where τ is given in Theorem 4.
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Note that only the scalars τ are needed to characterize the limiting distri-
butions of the shape estimators. Therefore, in order to compare asymptotic
efficiencies of different estimators, one only has to compare these scalars.

In Table 1, we list the asymptotic relative efficiencies of k-step sign and
rank estimators with k = 1, 2, 3 and ∞ with respect to the regular shape
estimator. By regular shape estimator, we mean the estimator, which is ob-
tained by standardizing the sample covariance matrix. The efficiencies are
computed at different p-variate t-distributions with selected values of dimen-
sions p and degrees of freedom ν, where ν = ∞ refers to the multivariate
normal case. The variance of the off-diagonal element of regular shape es-
timator at the t-distribution is (ν − 2)/(ν − 4). In the table, the notation
k = 0 refers to the Tyler’s M-estimator, which is used as a starting value.
The variance of the off-diagonal element of it is (p+2)/p. When k = ∞, the
efficiencies of regular Dümbgen’s estimator and the rank covariance estimator
are listed.

As seen in Table 1, when p is small, by taking just one step in this estima-
tion procedure, a significant increase in the efficiencies is seen as compared
to the initial Tyler’s M-estimator (k = 0). After three steps, the efficien-
cies of k-step estimators are already very close to those of the Dümbgen’s or
rank covariance estimator (k = ∞). When p increases, there are not much
differences seen in the efficiencies of different k-step estimators. In fact, for
high-dimensional data, 1-step sign estimator seems to provide a robust and
highly efficient alternative to the regular shape estimator.

In case of multivariate normal data, the limiting efficiencies of sign and
rank covariance estimators are very close to each other. When high-dimensional
heavy-tailed data is encountered, the sign estimators seem to outperform the
rank estimators. In other cases, the rank estimators are slightly more effi-
ciencient than the sign estimators.

5. Simulation studies

In this section, we will use simple simulation studies to compare the finite-
sample efficiencies of different k-step shape estimators with respect to those
of the regular shape estimator.

M = 2500 samples with sample sizes n = 50, 100 and 200 and dimensions
p = 3 and 5 were drawn from t-distributions with ν = 5, 8 and ∞ degrees
of freedom, where ν = ∞ corresponds to multinormal samples. For every
estimator and distribution, the mean squared errors (MSE) were computed
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Table 1: AREs of k-step sign and rank (in brackets) estimators as compared
to the regular shape estimator at different p-variate t-distributions with se-
lected values of dimension p and degrees of freedom ν. k = 0 refers to the
Tyler’s M-estimator that is used as a starting value. k = ∞ refers to the
Dümbgen’s estimator and the regular rank estimator.

p k = 0 k = 1 k = 2 k = 3 k = ∞
ν = 5 2 1.50 2.03 2.24 2.30 2.33

1.50 (2.04) (2.25) (2.32) (2.34)
3 1.80 2.28 2.38 2.39 2.40

1.80 (2.29) (2.39) (2.40) (2.40)
4 2.00 2.41 2.45 2.45 2.45

2.00 (2.41) (2.45) (2.45) (2.45)
5 2.14 2.48 2.49 2.49 2.49

2.14 (2.47) (2.47) (2.47) (2.47)
ν = 8 2 0.75 1.04 1.16 1.20 1.23

0.75 (1.04) (1.17) (1.21) (1.24)
3 0.90 1.17 1.24 1.25 1.26

0.90 (1.18) (1.25) (1.27) (1.28)
4 1.00 1.23 1.27 1.28 1.28

1.00 (1.24) (1.28) (1.29) (1.29)
5 1.07 1.27 1.30 1.30 1.30

1.07 (1.27) (1.30) (1.30) (1.30)
ν = ∞ 2 0.50 0.72 0.83 0.88 0.91

0.50 (0.72) (0.83) (0.88) (0.91)
3 0.60 0.82 0.89 0.91 0.92

0.60 (0.82) (0.89) (0.91) (0.92)
4 0.67 0.86 0.92 0.93 0.93

0.67 (0.86) (0.92) (0.93) (0.93)
5 0.71 0.89 0.93 0.94 0.94

0.71 (0.89) (0.93) (0.94) (0.94)
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using

MSE(V̂k,ij) =
1

M

2500∑

k=1

V̂
(m) 2

k,ij ,

where V̂k,ij, with i 6= j, denotes the off-diagonal element of corresponding
k-step estimate computed from the m-th generated sample. The estimated
finite sample efficiencies were then computed as ratios of the simulated MSEs
and are listed in Tables 2 and 3 for p = 3 and p = 5 respectively. The corre-
sponding asymptotic relative efficiencies (denoted by n = ∞) from Table 1
are also listed for easy reference.

The results in Tables 2 and 3 show that when samples are generated from
the multinormal distributions, the finite sample and the limiting efficiencies
are almost the same even when n = 50. When sampling is done from the
heavy-tailed distributions, the convergence to the limiting efficiency is clear
but much slower. Especially for small sample sizes, the loss in efficiency is
remarkable, but also in the case n = 200, the efficiencies are far from the
asymptotical ones.

In Figure 2 examples of the average computation times (in seconds) of
different k-step sign (left column) and rank (right column) estimators are
illustrated as a function of n for p = 2, 3 and 5. The average was taken
over 100 trials. Tyler’s M-estimator was again used as an initial estima-
tor. The estimators were computed on an ordinary workstation using C-
functions called from R, similar to the implementations found in R-package
SpatialNP (Sirkiä et al., 2008).

Since these estimators operate on pairs of observations instead of obser-
vations themselves it is clear that in relative terms they are much more time
consuming than the ordinary covariance matrix, for example. However, as
shown in Figure 2, in absolute terms the increase is not unbearable, at least
in a simple application. As the number of dimensions increase the time con-
sumption of the sign estimator increases as a function of n faster than that of
the rank estimator. This is because the computation of an outer product be-
comes heavier in higher dimension, and the number of those to be computed
for the sign estimator is of order n2 and only n for the rank estimator.

The use of pairs also implies that the increase in time consumption as
a function of sample size is essentially quadratic. This together with the
iterative nature of the original estimators can indeed lead to rather long
computing times but it should be kept in mind that in practice the iteration
is just a repetition of the step until some convergence criteria is met. This
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Table 2: Finite sample efficiencies of the k-step sign (left column) and rank
(right column) estimators as compared to the regular shape estimator at
different 3-variate t-distributions with selected values of ν.

sign rank
n k = 1 k = 2 k = 3 k = ∞ k = 1 k = 2 k = 3 k = ∞

ν = ∞ 50 0.81 0.88 0.91 0.92 0.81 0.89 0.91 0.93
100 0.81 0.88 0.91 0.92 0.81 0.88 0.91 0.92
200 0.82 0.90 0.92 0.93 0.82 0.89 0.92 0.93
∞ 0.82 0.89 0.91 0.92 0.82 0.89 0.91 0.92

ν = 8 50 1.07 1.14 1.16 1.17 1.08 1.15 1.17 1.17
100 1.10 1.17 1.19 1.20 1.11 1.18 1.20 1.20
200 1.14 1.21 1.23 1.24 1.14 1.22 1.23 1.24
∞ 1.17 1.24 1.25 1.26 1.18 1.25 1.27 1.28

ν = 5 50 1.41 1.47 1.49 1.49 1.42 1.48 1.50 1.50
100 1.60 1.67 1.68 1.68 1.61 1.67 1.69 1.69
200 1.70 1.77 1.79 1.79 1.70 1.78 1.79 1.79
∞ 2.28 2.38 2.40 2.40 2.29 2.39 2.40 2.40

Table 3: Finite sample efficiencies of the k-step sign (left column) and rank
(right column) estimators as compared to the regular shape estimator at
different 5-variate t-distributions with selected values of ν.

sign rank
n k = 1 k = 2 k = 3 k = ∞ k = 1 k = 2 k = 3 k = ∞

ν = ∞ 50 0.88 0.92 0.93 0.94 0.88 0.92 0.93 0.94
100 0.89 0.93 0.94 0.94 0.89 0.93 0.94 0.94
200 0.90 0.94 0.94 0.95 0.89 0.93 0.94 0.94
∞ 0.89 0.93 0.94 0.94 0.89 0.93 0.94 0.94

ν = 8 50 1.17 1.20 1.20 1.20 1.17 1.20 1.20 1.20
100 1.23 1.25 1.25 1.25 1.23 1.25 1.25 1.26
200 1.24 1.26 1.26 1.26 1.24 1.26 1.26 1.26
∞ 1.27 1.30 1.30 1.30 1.27 1.30 1.30 1.30

ν = 5 50 1.55 1.57 1.57 1.57 1.56 1.58 1.57 1.57
100 1.73 1.75 1.75 1.75 1.73 1.75 1.75 1.74
200 1.98 2.00 2.00 2.00 1.98 1.99 1.99 1.99
∞ 2.48 2.49 2.49 2.49 2.47 2.47 2.47 2.47
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criteria is basically a small number which is usually chosen somewhat arbi-
trarily but it has a severe impact on how many times the iteration step is
repeated. On the other hand it has been previously shown that even with
a very modest number of steps the properties of the k-step estimators are
already close to those of the (theoretical) limit. Using the k-step versions
removes the need for choosing the converence criteria, and as can be seen
from the figure, can greatly reduce the total time consumption.

6. Conclusions

In this paper, we proposed so called k-step versions of the shape esti-
mators introduced by Dümbgen (1998) and Oja and Randles (2004). The
motivation for this study arose mainly from the fact that at the moment
there is no proof for the existence and uniqueness of the estimator based on
spatial rank vectors (Oja and Randles, 2004). From the practical point of
view, the long computation times of the estimators may also cause problems
in some applications.

The estimators proposed in this paper appear to be very practical with
known asymptotical properties. We showed that the k-step estimators inherit
some important properties of the initial estimators, namely, affine equivari-
ance, robustness and limiting normality. The k-step sign estimator was also
shown to have the important independence property if the initial estimator
has it. This property is needed for example if the independent component
analysis problem is solved using the technique utilizing two scatter (or shape)
matrices (Tyler et al., 2009). Note that in our robustness and simulation
studies we used as a starting values the Tyler’s M-estimator (Tyler, 1987),
which does not possess the independence property. A simple example of
the robust initial estimator with independence property is obtained as the
Tyler’s M-estimator is computed using n/2 pairwise differences x2i − x2i−1,
i = 1, . . . , n/2.

In our simulation studies of Section 5 we showed that with taking just
few steps in the estimation procedure, robust and highly efficient alternatives
to traditional spatial sign and rank covariance estimators are obtained. The
computation times of these estimators are very low as compared to those
of Dümbgen’s estimator and spatial rank covariance matrix. Programs are
available in the R-package SpatialNP.
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Appendix: Proofs of the results

Proof of Theorem 1. As in Sirkiä et al. (2007), write I−

i for the p × p
diagonal matrix that has −1 as the ith element and 1 as all other diagonal
elements. Now as the components of x are independent, then the components
of x1 − x2 are independent as well and symmetrically distributed around
zero. Moreover, x1 −x2 and I−

i (x1 −x2) have the same distribution and the
corresponding shape functionals are equivalent.

For simplicity, write V1(x1 − x2) and V1(I
−

i (x1 − x2)) for the 1-step sign
functional obtained using x1 − x2 and I−

i (x1 − x2), respectively. Then if V0

is diagonal, we get

V1(x1 − x2) = V1(I
−

i (x1 − x2)) = p E

[
I−

i (x1 − x2)(x1 − x2)
T I−

i

(x1 − x2)T I−

i V −1
0 I−

i (x1 − x2)

]

= p E

[
I−

i (x1 − x2)(x1 − x2)
T I−

i

(x1 − x2)T V −1
0 (x1 − x2)

]
= I−

i V1(x1 − x2) I−

i ,

for all i = 1, . . . , p. This implies that [V1(x1 − x2)]ij = −[V1(x1 − x2)]ij, for
all i 6= j, that is, V1(x1 − x2) and further the subsequent k-step functionals
are diagonal.

Proof of Theorem 2. Applying functional (9) to Fǫ = (1 − ǫ)F0 + ǫ∆x
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and taking the derivative with respect to ǫ at ǫ = 0 yields to

IF (x; Vk, F0) =
∂

∂ǫ
p E

[
(x1 − x2)(x1 − x2)

T

(x1 − x2)T V −1
k−1(Fǫ)(x1 − x2)

] ∣∣∣∣
ǫ=0

− 2p E

[
(x1 − x2)(x1 − x2)

T

(x1 − x2)T V −1
k−1(Fǫ)(x1 − x2)

] ∣∣∣∣
ǫ=0

+ 2p Ex1

[
(x1 − x)(x1 − x)T

(x1 − x)T V −1
k−1(Fǫ)(x1 − x)

] ∣∣∣∣
ǫ=0

.

Then by writing u12 = ||x1−x2||−1(x1−x2), and u1x = ||x1−x||−1(x1−x)
and assuming that the order of differentiation and integration can be changed,
we get that

IF (x; Vk, F0) = p E[u12u
T
12u

T
12IF (x; Vk−1, F0)u12] − 2p E[u12u

T
12] + 2p Ex1

[u1xuT
1x

].

Now using

E[u12u
T
12u

T
12IF (x; Vk−1, F0)u12] = 2 [p(p + 2)]−1IF (x; Vk−1, F0)

and
Ex1

[u1xuT
1x

] = (1 − pg(r))uuT + g(r)Ip,

where

g(r) = Ex1

[
(x1 − re1)

2
2

||x1 − re1||2
]

(Sirkiä et al., 2009), the influence function reduces to

IF (x; Vk, F0) =
2

p + 2
IF (x; Vk−1, F0) + 2p(1 − pg(r))

(
uuT − 1

p
Ip

)

=

(
2

p + 2
αVk−1

(r) + 2p(1 − pg(r))

)(
uuT − 1

p
Ip

)

= αVk
(r)

(
uuT − 1

p
Ip

)
.

Since the influence functions of k-step estimators for all k are of the same
type, we get

αVk
(r) =

(
2

p + 2

)k

αV0
+

k−1∑

q=0

(
2

p + 2

)q

2p(1 − pg(r))

= ck
p αV0

(r) + (1 − ck
p) 2(p + 2)(1 − pg(r)),

where cp = 2(p + 2)−1.
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Proof of Theorem 3. The functional (10) may alternatively be written
as

EF

[
V

−1/2
k V

1/2
k−1 S(z1 − z2)S

T (z1 − z3) V
1/2
k−1 V

−1/2
k

− p−1S(z1 − z2)S
T (z1 − z3)Ip

]
= 0.

(12)

Then proceeding as in the proof of Theorem 2, that is, applying func-
tional (12) to Fǫ = (1− ǫ)F0 + ǫ∆x and taking the derivative with respect to
ǫ at ǫ = 0, we get

E[IF (x; Vk, F0)u12u
T
13] − E[u12u

T
13u

T
13IF (x; Vk−1, F0)u13]

− p−1E[uT
12IF (x; Vk−1, F0)u13]Ip + p−1E[uT

12u13u
T
13IF (x; Vk−1, F0)u13]Ip

− Ex2,x3
[ux2u

T
x3 − p−1uT

x2ux3Ip] − 2Ex1,x3
[u1xuT

13 − p−1uT
1x

u13Ip] = 0,

(13)

where u12, u13, u1x, ux2 and ux3 are defined as in the previous proof. Next
we will use the results given in the proof of Lemma 4 in Sirkiä et al. (2009).
The terms on the second line of (13) include Tr(IF (x; Vk−1, F0)) and there-
fore equal to zero. Further,

E[IF (x; Vk, F0)u12u
T
13] = p−1c2

F IF (x; Vk, F0),

E[u12u
T
13u

T
13IF (x; Vk−1, F0)u13] = 2c2

F [p(p + 2)]−1IF (x; Vk−1, F0)

and

Ex2,x3
[ux2u

T
x3] + 2Ex1,x3

[u1xuT
13] = (g1(r) − g2(r))(uuT − p−1Ip),

where c2
F = EF [q2

F (r)] and qF (r) is defined in (4). Functions g1(r) and g2(r)
are given in the proof of Lemma 3 in Sirkiä et al. (2009). Thus

IF (x; Vk, F0) =
2

p + 2
IF (x; Vk−1, F0) +

p

c2
F

(g1(r) − g2(r))

(
uuT − 1

p
Ip

)
,

and further

IF (x; Vk, F0) =

(
2

p + 2
αVk−1

(r) +
p

c2
F

(g1(r) − g2(r))

)(
uuT − 1

p
Ip

)

= αVk
(r)

(
uuT − 1

p
Ip

)
.

The result then follows by proceeding as in the proof of Theorem 2.
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Proof of Corollary 1. As in Sirkiä et al. (2007), note that

g(r) = Ex1

[
(x1 − re1)

2
2

||x1 − re1||2
]

is clearly finite since 0 ≤ (x1 − re1)
2
2 ≤ ||x1 − re1||2. By similar argument, it

is seen that g1(r) − g2(r) in the influence function of k-step rank estimator
is finite. Corresponding influence functions are therefore bounded when αV0

is bounded.

Proof of Theorem 4. Consider first the limiting distribution of 1-step
sign estimator. Write

V̂1 = p

[
ave

{
(xi − xj)

T (xi − xj)

(xi − xj)T V̂ −1
0 (xi − xj)

}]
−1

ave

{
(xi − xj)(xi − xj)

T

(xi − xj)T V̂ −1
0 (xi − xj)

}
,

that is, the estimator is scaled so that Tr(V̂1) = p. Let now xi, . . . ,xn be a
sample from a spherically symmetric distribution and write xij = xi − xj,

rij = ‖xij‖ and uij = r−1
ij xij, for simplicity. Further, write V ∗

0 =
√

n(V̂0−Ik)

and note that since V̂0 is
√

n-consistent, V ∗

0 is bounded in probability. Now,

V̂
−1/2
0 = Ik −

1

2
√

n
V ∗

0 + op(n
−1/2),

V̂
−1/2
0 xij = xij −

1

2
√

n
V ∗

0 xij + op(n
−1/2),

and

[xT
ijV̂

−1
0 xij]

−1 =
1

||xij||2
(

1 +
1√
n

uT
ijV

∗uij + op(n
−1/2)

)
.

Then (omitting the op(n
−1/2) terms)

V̂1 = p

[
1 +

1√
n

ave{uT
ijV

∗uij}
]
−1 [

ave{uiju
T
ij} +

1√
n

ave{uT
ijV

∗uijuiju
T
ij}

]

and further

√
n(V̂1 − Ip) =

[
1 +

1√
n

ave{uT
ijV

∗uij}
]
−1 [

p
√

n

(
ave{uiju

T
ij} −

1

p
Ip

)

+ p ave{uT
ijV

∗uijuiju
T
ij} − ave{uT

ijV
∗uij}Ip

]
.

(14)
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The asymptotic normality of
√

n (ave{uiju
T
ij} − p−1Ip) follows from the

U-statistic theory and is proved in Sirkiä et al. (2009). The asymptotic

normality of
√

n(V̂1 − Ip) then follows from the Slutsky’s theorem and the
fact that

E[uT
ijV

∗uij] = Tr(V ∗) = 0

and

E[uT
ijV

∗

0 uijuiju
T
ij] =

2

p(p + 2)
V ∗

0 =
2

p(p + 2)

√
n(V̂0 − Ip),

where, by assumption,
√

n(V̂0 − Ip) is multivariate normal.
Equation (14) reduces now to

√
n(V̂1 − Ip) = p

√
n

(
ave{uiju

T
ij} −

1

p
Ip

)
+

2

p + 2

√
n(V̂0 − Ip),

and by applying similar technique to subsequent k-step estimators, we obtain

√
n(V̂k − Ip)

=
k−1∑

q=0

(
2

p + 2

)q

p
√

n

(
ave{uiju

T
ij} −

1

p
Ip

)
+

(
2

p + 2

)k √
n(V̂0 − Ip)

= (1 − ck
p)(p + 2)

√
n

(
ave{uiju

T
ij} −

1

p
Ip

)
+ ck

p

√
n(V̂0 − Ip). (15)

The asymptotic covariance matrix may be computed by writing (15) using
the influence functions as follows

√
n vec(V̂k − Ip)

=
√

n vec

(
ave

{[
(1 − ck

p)2(p + 2)(1 − pg(ri)) + ck
pαV0

(ri)
] [

uiu
T
i − 1

p
Ip

]})

=
√

n vec

(
ave

{
αVk

(ri)

[
uiu

T
i − 1

p
Ip

]})
.

Then the covariance matrix of
√

n vec(V̂k − Ip) equals

E

[
α2

Vk
(r) vec

(
uuT − 1

p
Ip

)
vecT

(
uuT − 1

p
Ip

)]

=
E[α2

Vk
(r)]

p(p + 2)
(Ip2 + Kp,p −

2

p
Jp) =

E[α2
Vk

(r)]

p(p + 2)
Cp,p(Ip).
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The limiting distribution of 1-step rank estimator can be derived as above.
In that case

V̂1 =p

[
ave{uT

ijuik} +
1

2
√

n
ave{uT

ikV
∗uT

iku
T
ijuik} +

1

2
√

n
ave{uT

ijV
∗uT

iju
T
ijuik}

]
−1

·
[
ave{uiju

T
ik} +

1

2
√

n
ave{uT

ikV
∗uT

ikuiju
T
ik} +

1

2
√

n
ave{uT

ijV
∗uT

ijuiju
T
ik}

]
.

Note next that

E[uT
ijuik] = c2

F , E[uT
ijV

∗uT
iju

T
ijuik] =

c2
F

p
tr(V ∗) = 0

and

E[uT
ijV

∗uT
ijuiju

T
ik] =

2c2
F

p(p + 2)
V ∗,

where c2
F = EF [q2(r)] (Sirkiä et al., 2009). Then using again the Slutsky’s

theorem and the U-statistics theory, we get that

√
n(V̂1 − Ip) =

p
√

n

c2
F

(
ave{uiju

T
ik} − ave{uT

ijuik}
1

p
Ip

)
+

2

p + 2

√
n(V̂0 − Ip)

has the limiting normal distribution. Further,

√
n(V̂k − Ip)

=
k−1∑

q=0

(
2

p + 2

)q
p
√

n

c2
F

(
ave{uiju

T
ik} − ave{uT

ijuik}
1

p
Ip

)
+

(
2

p + 2

)k √
n(V̂0 − Ip)

=
(1 − ck

p)(p + 2)

c2
F

√
n

(
ave{uiju

T
ik} − ave{uT

ijuik}
1

p
Ip

)
+ ck

p

√
n(V̂0 − Ip).

The asymptotic covariance matrix is obtained by writing

√
n vec(V̂k − Ip)

=
√

n vec

(
ave

{[
(1 − ck

p)(p + 2)

c2
F

(g1(ri) − g2(ri)) + ck
pαV0

(ri)

] [
uiu

T
i − 1

p
Ip

]})

=
√

n vec

(
ave

{
αVk

(ri)

[
uiu

T
i − 1

p
Ip

]})
,

and proceeding as in the case of sign estimator.
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Proof of Corollary 2. Let X = {x1, . . . ,xn} denote a random sample

from a spherical distribution and write V̂k(X) for the estimator computed on

the sample. Now due to affine equivariance of V̂k, in the elliptical case

V̂k(V
1/2X) = p [Tr(V 1/2V̂k(X)V 1/2)]−1V 1/2V̂k(X)V 1/2.

Then using some simple matrix algebra, we get

√
n vec(V̂k(V

1/2X) − V )

=
√

n vec
(
p [Tr(V 1/2V̂k(X)V 1/2)]−1V 1/2V̂k(X)V 1/2 − V

)

=
√

n p [Tr(V 1/2V̂k(X)V 1/2)]−1

[
Ip2 − 1

p
vec(V )vecT (Ip)

]
vec(V 1/2V̂k(X)V 1/2 − V )

=
√

n p [Tr(V 1/2V̂k(X)V 1/2)]−1W (V 1/2 ⊗ V 1/2)vec(V̂k(X) − Ip),

where W =
[
Ip2 − p−1vec(V )vecT (Ip)

]
. By Slutsky’s theorem,

√
n vec(V̂k(V

1/2X)−
V ) has now a limiting normal distribution with asymptotic covariance matrix

ASC
{√

nW (V 1/2 ⊗ V 1/2)vec(V̂k(X) − Ip)
}

= W (V 1/2 ⊗ V 1/2)ASC{vec(V̂k(X) − Ip)}(V 1/2 ⊗ V 1/2)T W T

= ASV (V̂k,12; F0)W (V 1/2 ⊗ V 1/2)Cp,p(Ip)(V
1/2 ⊗ V 1/2)T W T

= ASV (V̂k,12; F0)WCp,p(V )W T .

Finally note that W 2p−1vec(V )vecT (V ) W T = 0, the result thus follows.
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Figure 1: Functions αVk
for some k-step sign and rank estimators when the

Tyler’s M-estimator (first row) and the sample covariance matrix (second
row) is used as a starting value. The functions are computed at the bivariate
standard normal distribution case.
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Figure 2: Average computation times of the k-step sign (left column) and
rank (right column) estimators as a function of n at 2-dimensional (first row),
3-dimensional (second row) and 5-dimensional (third row) distribution cases.
Tyler’s M-estimate is used as a starting value.
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