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Deflation-based FastICA
with adaptive choices of nonlinearities

Jari Miettinen, Klaus Nordhausen, Hannu Oja and Sara Taskinen

Abstract—Deflation-based FastICA is a popular method for
independent component analysis. In the standard deflation-based
approach the row vectors of the unmixing matrix are extracted
one after another always using the same nonlinearities. In prac-
tice the user has to choose the nonlinearities and the efficiency
and robustness of the estimation procedure then strongly depends
on this choice as well as on the order in which the components
are extracted. In this paper we propose a novel adaptive two-
stage deflation-based FastICA algorithm that (i) allows one to
use different nonlinearities for different components and (ii)
optimizes the order in which the components are extracted. Based
on a consistent preliminary unmixing matrix estimate and our
theoretical results, the algorithm selects in an optimal way the
order and the nonlinearities for each component from a finite set
of candidates specified by the user. It is also shown that, for each
component, the best possible nonlinearity is obtained by using
the log-density function. The resulting ICA estimate is affine
equivariant with a known asymptotic distribution. The excellent
performance of the new procedure is shown with asymptotic
efficiency and finite-sample simulation studies.

Index Terms—Independent component analysis, minimum dis-
tance index, asymptotic normality, affine equivariance

EDICS: SSP-SSEP

I. I NTRODUCTION

An observablep-variate real-valued random vectorx =
(x1, . . . , xp)

T obeys the basic independent component (IC)
model, if it is a linear mixture ofp mutually independent latent
random variables inz = (z1, . . . , zp)

T . The latent variables
z1, . . . , zp are also called sources and it is assumed that at
most one of the sources is gaussian. We then write

x = Az,

and assume, for simplicity, thatA is a full rankp× p mixing
matrix. In this model specification,A andz are confounded,
and the mixing matrixA can be identified only up to the order,
the signs and heterogenous multiplications of its columns.One
can however accept the ambiguity in the model, and define
the concepts and analysis tools so that they are independent
of the model specification. Ap × p matrix W is called an
unmixing matrix in the IC model, if the components ofWx

are independent. Then all the unmixing matricesW satisfy
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W = CA−1 whereC is in the set ofp × p matrices

C = {C : each row and column ofC has exactly one

non-zero element.}.

We also writeW 1 ∼ W 2, if W 1 = CW 2 for someC ∈ C.

We now give a formal definition of ap × p matrix valued
IC functionalW (F ) such that, for anx coming from the IC
model, the components ofW (Fx)x are independent and do
not depend on the model specification and the value ofA at
all.

Definition 1. Let Fx denote the cumulative distribution func-
tion ofx. The functionalW (Fx) is an independent component
(IC) functional if (i) W (Fz) ∼ Ip for anyz with independent
components and with at most one gaussian component, and
(ii) W (F ) is affine equivariant in the sense thatW (FBx) ∼
W (Fx)B−1 for all full rank p × p matricesB.

Let X = (x1, . . . ,xn) be a random sample from a
distribution ofx. An estimate ofW = W (Fx) is obtained if
the IC functional is applied to the empirical distributionFn of
X = (x1, . . . ,xn). Then, according to our Definition 1, (ii)
is true for Fn as well, and the resulting estimatorW (X) is
affine equivariant in the sense thatW (BX) ∼ W (X)B−1.

Write S(Fx) for the covariance matrix functional of a
random vectorx. The scale ambiguity of the IC functional is
usually fixed by requiring that the obtained independent com-
ponents have unit variances, that is,S(FW (Fx)x) = Ip. This
then implies thatW (Fx) = U(Fx)S−1/2(Fx) for some or-
thogonal matrixU(Fx), and the estimation problem is reduced
to the estimation of an orthogonal matrixU(Fx). The sample
statistic then similarly satisfiesW (X) = U(X)S−1/2(X)
for some orthogonal matrixU(X).

The outline of this paper is the following. In Section II
the classical deflation-based FastICA algorithm and its de-
pendence on the initial value is first discussed. Then the
algorithm and estimating equations for a modified deflation-
based FastICA procedure that allows us to use different
nonlinearity functions for different sources are introduced.
The nonlinearities used for the illustration are introduced as
well. Section III presents the statistical properties of the new
procedure. Based on these theoretical results we further extend
in Section IV our procedure by allowing the sources to be
found in an optimal order. Finally, the excellent performance
of the new estimation procedure is verified by some simulation
studies in Section V.
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II. D EFLATION-BASED FASTICA

A. Algorithm

Originally deflation-based FastICA [4] was introduced as an
algorithm, which, like many other ICA methods, begins with
the whitening of the data. Letxst = S−1/2(Fx)(x−µ(Fx))
be the data whitened using the mean vectorµ(Fx) and
the covariance matrixS(Fx) . The second step is to find
an orthogonal matrixU such thatUxst has independent
components. In deflation-based FastICA the rows of the matrix
U = (u1, . . . ,up)

T are found one by one, so thatuk maxi-
mizes a measure of non-Gaussianity|E(G(uT

k xst))| under the
constraint thatuk has the length one and that it is orthogonal
to rows u1, . . . ,uk−1. The functionG is allowed to be any
twice continuously differentiable nonquadratic functionwith
G(0) = 0 and with first and second derivative functionsg and
g′. For more details, see Section II-C

To find an estimate, the observed dataX are first whitened
with the sample mean vectorµ(X) and the sample covariance
matrix S(X). The second step is to find the rotation matrix
U(X) and the final estimateW (X) = U(X)S−1/2(X).
The so called deflation-based FastICA algorithm for finding
the rows of U(X) one-by-one is given in [4]. The value
U(X) provided by the algorithm however depends on the
initial value U init = (uinit,1, . . . ,uinit,p)

T used for the
computation. Depending on where one starts from, the al-
gorithm may stop at any critical point instead of the global
maximum. It is then remarkable that extracting the sources
in a different order changes the unmixing matrix estimate
more than just the permutation [17], [15]. To be precise in
our notation, we therefore writeW (U ,X; g) for the estimate
that is provided by the FastICA algorithm for the dataX with
the initial valueU init = U and the nonlinearityg. Estimates
such asW (Ip,X; g) and W (U rand,X; g) with a random
orthogonalU rand are often used in practice. Unfortunately,
these estimates are not affine equivariant and therefore notIC
functionals in the sense of Definition 1. Also, the common
practise to use the deflation-based approach to extract only
few first components with such fixed or random initial values
seems in this light highly questionable.

To obtain an affine equivariant estimator the initial value
must be data-based and affine equivariant as well. A prelimi-
nary unmixing matrix estimate may be used here as shown by
the following lemma.

Lemma 1. Let W 0(X) = U0(X)S−1/2(X) be an IC
functional satisfyingW 0(BX) = W 0(X)B−1 for all full-
rank p × p matricesB. ThenW (U0(X),X; g) satisfies

W (U0(BX),BX; g) = W (U0(X),X; g)B−1

for all full-rank p × p matricesB.

The proof follows from the fact thatU0(BX) =
U0(X)V T and S−1/2(BX)BX = V S−1/2(X)X with
an orthogonalV = S−1/2(BX)BS1/2(X). Thus the trans-
formation X → BX induces in the algorithm the trans-
formations xi → V xi, i = 1, . . . , n, and uk → V uk,
k = 1, . . . , p, and finally U(X) → U(X)V T . Thus

U(BX)S−1/2(BX)BX = U(X)S−1/2(X)X and the
result follows.

B. Estimating equations

The deflation-based FastICA algorithm discussed in the
previous section aims, foruk, k = 1, . . . , p − 1, to maximize
|E(G(uT

k xst))| under the constraint thatuT
k uk = 1 and

uT
j uk = 0, j = 1, . . . , k − 1. Consider next the modification

of the FastICA procedure that, foruk, k = 1, . . . , p−1, max-
imizes |E(Gk(uT

k xst))| under the constraint thatuT
k uk = 1

anduT
j uk = 0, j = 1, . . . , k− 1. We thus allow that the non-

linearity functions may be different for different components.
If gk = G′

k, k = 1, . . . , p, we obtain, using similar Lagrange
multiplier technique as in [17], the estimating equations

E[gk(zk)zk]uk =



Ip −
k−1
∑

j=1

uju
T
j



 E[gk(zk)xst],

k = 1, . . . , p, and we give the following definition.

Definition 2. Let U(X) be the solution where, after finding
u1, ...,uk−1, uk is found from a fixed point algorithm with
the steps

zk ← uT
k xst and

uk ← 1

E[gk(zk)zk]



Ip −
k−1
∑

j=1

uju
T
j



 E[gk(zk)xst],

and the initial valueU init is used in the computation. Then
the modified deflation-based FastICA estimator is defined as

W m(U init,X; g1, . . . , gp) = U(X)S−1/2(X).

It is worth noticing that the estimated equations above do
not fix the order of the independent components in the IC
model: If U is a solution then so isPU for all permuta-
tion matricesP . This also means that the algorithm that is
solely based on the estimating equations extracts the estimated
sources in the order suggested by the initial valueU init. Also,
the rows ofU(X) are then again changed more than just
permuted.

C. Nonlinearities

The derivative functiong = G′ is called the nonlinearity.
Using the classical kurtosis measure as an optimizing criterion
gives the nonlinearityg(z) = z3 (pow3), see [4]. Functions
g(z) = tanh(az) (tanh) and g(z) = zexp(−az2/2) (gaus)
with tuning parametersa were suggested in [5]. The classical
skewness measure givesg(z) = z2 (skew). The FastICA
algorithm thus uses the same nonlinearity for all components
with certain general guidelines for its choice. The nonlinearity
pow3, for example, is considered efficient for sources with
light-tailed distributions, whereastanhandgausare preferable
for heavy-tailed sources. The nonlinearityskew finds skew
sources but fails in the case of symmetric sources. In practice,
tanhandgausseem to be common choices. We will later prove
the well-known fact that, for a component with the density
function f(z), the function corresponding toG(z) = log f(z)
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with the nonlinearityg(z) = −f ′(z)/f(z) provides an optimal
choice.

In practical data analysis, however, it does not seem likely
that all sources are either light-tailed, heavy-tailed or skew or
even that the knowledge about these properties is available.
Therefore, the use of only a single nonlinearityg for all
different components seems questionable. In this paper we
propose a novel algorithm that (i) allows the use of different
nonlinearities for different components and (ii) optimizes the
order in which the components are extracted. The nonlin-
earities g1, . . . , gk are selected from a large but finite set
of nonlinearitiesG. In the illustration of our theory, we
later chooseG with the four popular nonlinearities mentioned
above, namely,pow3, skew, tanh andgaus, and the functions

• g(z) = (z + a)2− (left)
• g(z) = (z − a)2+ (right)
• g(z) = (z − a)2+ − (z + a)2− (both)

with different choices of tuning parametera > 0. The
functions left and right seem useful for extracting skewed
sources whereasboth provides an alternative measure of tail
weight (kurtosis). Note that these new functions are simply
used to enrich the setG with different types of nonlinearities
for our new estimator in Section IV but may fail, if used alone
in traditional deflation-based FastICA.

We end this discussion about the choice of the nonlinearity
function with a short note on robustness. As the random
vector is first standardized by the regular covariance matrix,
the influence function of the functionalW (F ) is unbounded
for any choice of the nonlinearityg and, unfortunately, the
FastICA functional is not robust in this sense. See [17].

III. A SYMPTOTICS

The statistical properties of the deflation-based FastICA
estimator were rigorously discussed only recently in [15],[16]
and [17]. LetX = (x1, . . . ,xn) be a random sample from a
distribution of x obeying the IC model. Thusx = Az + b

where E(z) = 0, Cov(z) = Ip and the componentsz1, . . . , zp

of z are independent. As our unmixing matrix estimate is
affine equivariant, we can then assume (wlog) thatA = Ip

and b = 0, that is, X = Z. In the following, for a
sequence of random variablesT n, we write in a regular way
(i) T n = OP (1) if, for all ǫ > 0, there exists anMǫ > 0 and
Nǫ such thatP(||T n|| > Mǫ) ≤ ǫ for all n ≥ Nǫ, and (ii)
T n = oP (1) if Tn →P 0.

For the asymptotic distribution of the extended FastICA
estimator satisfying the estimating equations (2) we need the
following assumption. We assume the existence of fourth
momentsE(z4

k) and the following expected values

µgk,k = E[gk(zk)], σ2
gk,k = Var[gk(zk)],

λgk,k = E[gk(zk)zk] and

δgk,k = E[g′k(zk)] = E[gk(zk)g0k(zk)],

whereg0k = −f ′
k/fk is the optimal location score function

for the densityfk of zk, k = 1, . . . , p. We assume thatδgk,k 6=
λgk,k, k = 1, . . . , p − 1. Note that, if thekth component is
gaussian, thenδgk,k = λgk,k for all choices ofgk.

The asymptotic distribution
√

n (W (Z)−Ip) is then easily
obtained if we only know the joint asymptotic distribution of√

n (S(Z) − Ip) and
√

n (T (Z) − Λ), where

(T (Z))kl =
1

n

n
∑

i=1

(gk(zik) − µgk,k)zil

and Λ = diag(λk1,1, . . . , λkp,p). Write (S(Z))kl =
skl, (T (Z))kl = tkl and (W (Z))kl = wkl. Under our
assumptions,
√

n (S(Z) − Ip) = OP (1) and
√

n (T (Z) − Λ) = OP (1).

The following theorem extends Theorem 1 in [15], allowing
different nonlinearity functions for different source compo-
nents. The proof is similar to the proof in [15].

Theorem 1. Let Z = (z1, . . . ,zn) be a random sample from
a distribution of z satisfying the assumptions stated above.
Assume also thatW = W m(U init,Z; g1, . . . , gp) is the
solution for the estimating equations (2) with a sequence of
initial valuesU init such thatW →P Ip. Then

√
n wkl = −

√
n wlk −

√
n skl + oP (1), l < k,

√
n (wkk − 1) = −1

2

√
n (skk − 1) + oP (1), l = k,

√
n wkl =

√
n tkl − λgk,k

√
n skl

λgk,k − δgk,k
+ oP (1), l > k.

In Theorem 1 we thus have to assume that the sequence of
estimatorsW (U init,Z; g1, . . . , gp) can be selected in such a
way thatW →P Ip. Based on extensive simulations, it seems
to us that this can be guaranteed if the initial valueU init

in the algorithm forW m(U init,Z; g1, . . . , gp) converges in
probability to Ip as well. In the next section IV we propose
a new estimatorW m(U(Z),Z;G) that is using a data-based
consistent initial valueU(Z) and then finds the components
and nonlinearities in a preassigned, optimal order.

We have the following useful corollaries.

Corollary 1. Under the assumptions of Theorem 1, the joint
asymptotic distribution of the elements of

√
n (T (Z)−Λ) and

the elements of
√

n (S(Z) − Ip) is a (singular) multivariate
normal distribution, and also the asymptotic distributionof√

n vec(W − Ip) is multivariate normal.

For an affine equivariantW (X), W (X)A = W (Z) and

vec(W (X) − A−1) = (A−T ⊗ Ip)(W (Z) − Ip)

which implies that, if
√

n vec(W (Z) − Ip) →d Np2(0,Σ)
then the asymptotic distribution of

√
n vec(W (X)−A−1) is

Np2(0, (A−T ⊗ Ip)Σ(A−1 ⊗ Ip)).
The asymptotic variances of the components ofW (Z) may

then be used to compare the efficiencies of the estimates for
different choices of nonlinearities.

Corollary 2. Under the assumptions of Theorem 1, the
asymptotic covariance matrix (ASV) of thek-th row wk of
W = W m(U init,Z; g1, . . . , gp) is

ASV (wk) =

k−1
∑

j=1

(αgj ,j+1)eje
T
j +κkekeT

k +αgk,k

p
∑

j=k+1

eje
T
j
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and the sum of the asymptotic variances of the off-diagonal
elements is

∑

i6=j

ASV (wij) = 2

p
∑

k=1

(p − k)αgk,k +
p(p − 1)

2
.

Here ek is a p-vector with thekth element one and other
elements zero and

αgk,k =
σ2

gk,k − λ2
gk,k

(λgk,k − δg,k)2
and κk =

E(z4
k) − 1

4
,

k = 1, . . . , p.

For optimal choices ofgk, we need the following auxiliary
result.

Lemma 2. Let z be a random variable withE(z) = 0,
V ar(z) = 1 and assume that its density functionf is
twice continuously differentiable, the location score function
g0(z) = −f ′(z)/f(z) is continuously differentiable and
the Fisher information number for the location problem,
I = Var(g0(z)), is finite. For a nonlinearityg, write σ2 =
Var[g(z)], λ = E[g(z)z], δ = E[g′(z)] = E[g(z)g0(z)] and

α(g, f) =
σ2 − λ2

(λ − δ)2
.

Then, for all nonlinearitiesg,

α(g, f) = [(I − 1)ρ2
g(z)g0(z)·z]

−1,

whereρ2
g(z)g0(z)·z is the squared partial correlation between

g(z) and g0(z) givenz. Therefore

α(g, f) ≥ α(g0, f) = (I − 1)−1.

The lemma implies that, for an optimalg, the nonlin-
earity parts ofg(z) and g0(z) should be the same, that is
g(z)−E[g(z)z]z = g0(z)−E[g0(z)z]z. Note that the function
g̃(z) = g(z) − E[g(z)z]z is orthogonal to linear (function)
z in the sense thatE[g̃(z)z] = 0. The lemma then implies
the following important optimality result for deflation-based
FastICA estimates.

Theorem 2. Under the assumptions of Theorem 1 and
Lemma 2, the sum of the asymptotic variances of the off-
diagonal elements ofW = W m(U init,Z; g1, . . . , gp),

∑

i6=j

ASV (wij) = 2

p
∑

k=1

(p − k)αgk,k +
p(p − 1)

2
,

is minimized if the components are extracted according to a
decreasing order of Fisher information numbersI1 ≥ . . . ≥
Ip and the optimal location scoresg01, . . . , g0p are used as
nonlinearities. The minimum value then is

2

p
∑

k=1

(p − k)[Ik − 1]−1 +
p(p − 1)

2
.

One of the implications of Theorem 2 is that the deflation-
based FastICA can never be fully efficient: the variances
of the components cannot all attain the Cramer-Rao lower
point, see [17]. However, Theorem 2 gives us tools to find
optimal deflation-based FastICA estimate among all FastICA
estimates with different extract orders and different choices of
nonlinearities.

IV. T HE NEW ESTIMATOR

The so called reloaded FastICA estimator in [15] optimizes
the extraction order for a single nonlinearity function with a
data based initial valueU(X) in the algorithm. In this paper
we introduce a new estimator which allows us to use different
nonlinearities for different components, optimizes the choice
of nonlinearities as well as the order in which the components
are found. The nonlinearities are chosen from a finite set of
available functionsG.

In Corollary 2, the asymptotic covariance matrices of the
rows of W = W m(U init,Z; g1, . . . , gp) were obtained
and we found that the asymptotic variances of the diagonal
elements do not depend on the choice of the nonlinearities
gk, k = 1, . . . , p. Therefore, the asymptotic efficiencies of the
estimates are measured using the sum of asymptotic variances
of the off-diagonal elements, that is,

∑

i6=j

ASV (wij) = 2

p
∑

k=1

(p − k)αgk,k +
p(p − 1)

2
.

This is clearly minimized if first (i)g1, . . . , gp satisfy

αgk,k = min{αg,k : g ∈ G}

and then (ii) the indices are permuted so that

αg1,1 ≤ · · · ≤ αgp,p.

These findings suggest the following estimation procedure.

Definition 3. The deflation-based FastICA estimate
W m(U0(X),X;G) with adaptive choices of nonlinearities
is obtained using the following steps.

1) Transform the data using a preliminary affine equivari-
ant estimateW 0(X) = U0(X)S−1/2(X) and write
Ẑ = W 0(X)(X − µ(X)1T

n ).
2) UseẐ to findα̂g,k for all g ∈ G and for allk = 1, . . . , p.
3) Find ĝ1, . . . , ĝp ∈ G that minimizeα̂g,1, . . . , α̂g,p, resp.
4) Permute the rows ofU0(X), U0(X) → P̂U0(X), so

that, after the permutation,̂αĝ1,1 ≤ · · · ≤ α̂ĝp,p.
5) The estimate is the modified deflation-based estimate

W m(P̂U0(X),X; ĝ1, . . . , ĝp).

The estimateW m(U0(X),X;G) is affine equivariant,
see Lemma 1. The following theorem gives the asymptotic
distribution of the new estimatorW m(U0(X),X;G). The
theorem is proved in the Appendix.

Theorem 3. Let Z = (z1, . . . ,zn) be a random sample from
a distribution ofz satisfying the assumptions of Theorem 1.
Assume that the components ofz are ordered so thatαg1,1 <
· · · < αgp,p. If the initial estimateW 0(Z) →P P T for some
permutation matrixP T , then under general assumptions (see
the Appendix)

P (W m(U0(Z),Z;G) = W m(PU0(Z),Z; g1, . . . , gp)) → 1.

Remark 1. The theorem thus shows that the asymptotic
behavior of the deflation-based FastICA with adaptive choices
of nonlinearities is similar to that of the modified deflation-
based FastICA with known optimal choices of the nonlinear-
ities and known optimal extraction order of the components,
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see Theorem 1. Note also that the reloaded deflation-based
FastICA estimator [15] with a single nonlinearity is a special
case here.

Remark 2. The estimateW m(U0(X),X;G) is the best
possible fastICA estimate as soon as the optimal marginal
nonlinearities log fk, k = 1, . . . , p, are all in the setG.
In practice f1, . . . , fk are of course unknown, but instead
of trying to estimate optimal nonlinearitiesg1, . . . , gk, we
hope to get a high efficiency with a careful flexible choice
of possible candidates. In this way, our estimate is made fast
in computation with a small loss of efficiency (as compared to
the estimate with maximum efficiency).

V. SIMULATIONS

A. The minimum distance index

To measure the separation accuracies in our simulation
studies we use the minimum distance index [11] defined by

D̂ =
1√

p − 1
inf

C∈C
‖CW (X)A − Ip‖ (1)

with the matrix (Frobenius) norm‖ · ‖. The index is affine
invariant asW (X)A does not depend on the mixing matrix
A. The minimum distance index is a natural choice for our
simulation studies, as it is the only performance criteriumwith
known asymptotical behavior. If

√
n vec(W (X)A − Ip) has

asymptotic normal distribution with zero mean, then

nD̂2 =
n

p − 1
‖off(W (X)A)‖2 + op(1),

where off(A) = A − diag(A). The expected value of its
asymptotic distribution is the sum of the asymptotic variances
of off(W (Z)). This relates the finite sample efficiencies to
the asymptotic efficiencies considered in Section III.

B. Models and asymptotic behavior

For the rest of the paper we assume for demonstration
purposes that the setG will consist of the functions:pow3,
tanh with a = 1, gauswith a = 1, left with a = 0.6 (lt0.6),
right with a = 0.6 (rt0.6), andboth with several values ofa
(bt0, bt0.2, bt0.4, bt0.6, bt0.8, bt1.0, bt1.2, bt1.4 andbt1.6).

We will consider the performance of our adaptive deflation-
based FastICA method in four different settings of source
distributions:

Setting 1: The log-normal distribution with variance pa-
rameter value 0.25 (LN), exponential power dis-
tribution with shape parameter value 4 (EP4),
uniform distribution (U) andt5-distribution (T).

Setting 2: The exponential distribution (E), the chi-square
distribution with 8 degrees of freedom (C), the
Laplace distribution (L) and the gaussian distri-
bution (G).

Setting 3: The gaussian distribution (G), exponential power
distribution with shape parameter value 3 (EP3),
exponential power distribution with shape pa-
rameter value 6 (EP6) and the nonsymmetric
mixture of two gaussian distributions as defined
as distribution (l) in [1] (MG).

Setting 4: The distributions (T), (EP3) and (EP6).

For all settings the distributions are standardized to havemean
value zero and variance one.

We used numerical integration to calculateαg,k for each
nonlinearity functiong ∈ G and for each distribution in our
four settings. See Section II-C for our set of nonlinearities
G. Also αg,k for the optimal nonlinearity function (optim)
is given if only the density function is twice continuously
differentiable. The values are given in Table I.

TABLE I
THE VALUES αg,k FOR ALL NONLINEARITY FUNCTIONS IN G AND ALL

SOURCES USED INSETTING 1 -SETTING 4.

g(·) LN U EP4 T E C L EP3 EP6 MG

pow3 8.39 0.43 2.70 ∞ 5 15 6 7.97 1.16 14.53

tanh 4.33 0.69 2.98 4.00 3.14 32.13 2.01 7.73 1.47 11.50

gaus 6.08 0.71 3.09 4.32 3.94 86.95 1.82 7.95 1.53 11.47

skew 1.58 ∞ ∞ ∞ 1 2.5 ∞ ∞ ∞ 16.26

lt0.6 0.55 1.67 8.89 20.63 0.08 1.23 11.49 24.92 4.05 1475

rt0.6 3.28 1.67 8.89 20.63 2.33 5.92 11.49 24.92 4.05 8.38

bt0 4.55 0.60 2.82 7.61 3.31 16.85 3.00 7.57 1.35 12.10

bt0.2 4.52 0.58 2.80 7.72 3.26 16.4 3.13 7.58 1.33 12.21

bt0.4 4.44 0.53 2.77 8.06 3.11 15.25 3.43 7.63 1.27 12.62

bt0.6 4.36 0.45 2.72 8.66 2.95 13.79 3.87 7.79 1.20 13.46

bt0.8 4.37 0.37 2.73 9.55 2.87 12.45 4.43 8.15 1.13 14.88

bt1.0 4.51 0.29 2.82 10.74 3.04 11.51 5.13 8.79 1.09 17.17

bt1.2 4.85 0.20 3.04 12.38 3.47 11.15 5.97 9.87 1.09 20.68

bt1.4 5.41 0.12 3.49 14.18 3.96 11.52 6.99 11.63 1.18 26.13

bt1.6 6.12 0.05 4.38 16.51 4.52 12.72 8.23 14.54 1.45 34.74

optim 0.50 - 2.70 4 - 1 - 7.57 1.07 3.69

Hence, in Setting 1, the adaptive procedure aims to extract
first the uniformly distributed component usingbt1.6, then the
log-normally distributed one withlt0.6, before usingpow3for
EP4 distributed component. This yields, as Table II shows, a
performance value of 16.18 which is about one half of the
value obtained usingpow3, tanhor gausalone in the reloaded
deflation-based FastICA procedure. In Setting 2 the optimal
performance is obtained by first finding the exponentially
distributed and chi-squared component (in this order) with
lt0.6 and then Laplace distributed component withgaus. The
expected value of the asymptotic distribution ofn(p − 1)D̂2

is then 15.04 which is a highly significant improvement as
compared to the reloaded procedures with traditional nonlin-
earities. In Setting 3 the separation order is EP6, EP3 and MG
using bt1.0, bt and rt0.6, respectively. Finally, in Setting 4,
one finds first EP6 and EP3. In the last two settings, the
adaptive procedure again outperforms reloaded proceduresbut,
of course, are not as good as the optimal procedure as the
optimal nonlinearities are not included inG.

C. Simulation study

We next consider the performance of the adaptive FastICA
procedure for finite data sets from the same Settings 1-4. This
then allows us to make comparisons between finite sample and
asymptotic behaviors as well. For the adaptive procedure we
thus need an equivariant and consistent initial ICA estimate
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TABLE II
THE ASYMPTOTIC VALUES OFn(p − 1)E[D(Ŵ , A)2] FOR THE FOUR

SETTINGS OF RELOADED DEFLATION-BASED FASTICA WITH

NONLINEARITIES pow3, tanhAND gausAND ADAPTIVE DEFLATION -BASED

FASTICA WITH G (adaptive) AND G′ (optimal).

pow3 tanh gaus adaptive optimal

Setting 1 36.16 30.06 31.26 16.18 -

Setting 2 90.00 94.88 206.58 15.04 -

Setting 3 73.91 68.75 69.91 59.57 42.32

Setting 4 23.59 16.90 17.75 15.37 15.27

W 0(X). Of course any estimate meeting the requirements
will do - but in the following we will consider the following
three estimates

1) FOBI [2] is the initial estimate that is easiest to compute.
For its convergence, the fourth moments ofz must exist
and the kurtosis valuesE(z4

k)−3, k = 1, . . . , p must be
distinct.

2) For the convergence of the JADE [3] estimator, fourth
moments must exist with at most one zero kurtosis value.
JADE is, however, computationally expensive for large
dimensionsp.

3) k-JADE [12], k = 1, . . . , p, may be seen as a com-
promise between FOBI and JADE where. The smaller
k the faster is its computation. For the consistency,
the procedure allows at mostk components with equal
kurtosis values and at most one zero kurtosis value.

For Setting 1, we first consider the performance of adaptive
FastICA when different initial estimators are used. Figure1
shows, for different sample sizesn and with 10000 repetitions,
the average criterium values for the three initial estimates
FOBI, JADE and 2-JADE as well as for the adaptive FastICA
estimates FI-FOBI, FI-JADE and FI-2-JADE with different
initial estimates. The difference between JADE and 2-JADE is
negligible in this low-dimensional case and they both clearly
outperform FOBI. Despite the differences in initial estimates,
the average behavior of the adaptive FastICA seems similar
in all cases and it is in accordance with the asymptotic
theory. (The horizontal line yields the expected value of the
asymptotic distribution ofn(p−1)D̂2.) Based on these results,
we recommend to use JADE for low-dimensional problems
and k-JADE for higher dimensions. In the simulations that
follow we always use JADE as an initial estimate.

In all four settings, we compare the performance of our
new adaptive FastICA method to the reloaded procedure that
uses only one popular linearity function, namely,pow3, tanh
and gaus. For the comparison we also include, in Setting 1
and Setting 2, the original deflation-based FastICA withtanh
and a random initial value (denoted hererand), which may
be the most common version used in practice. In Setting 3
and Setting 4 all the marginal densities are continuously
differentiable, and, in adaptive fastICA, we can compare two
sets of nonlinearity functions,G and G0 where the latter
includes the optimal marginal nonlinearities as well as the
established nonlinearitiespow3, tanh, gaus and skew. The
adaptive FastICA usingG0 is calledoptimal.

1
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1)
av

e(
D

2 )

100 500 2000 5000 20000
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2−JADE
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FI−FOBI
FI−2−JADE
FI−JADE

Fig. 1. The averages ofn(p − 1)D̂2 from 10 000 repetitions in Setting 1.
The horizontal line gives the expected value of the asymptotic distribution of
n(p − 1)D̂2 for the adaptive fastICA method.

The averages ofn(p − 1)D̂2 for all four settings and for
different estimates are depicted in Figure 2. Naturally, the
performance of the new adaptive method is better thanpow3,
tanh andgausalone and seems to reach the asymptotic level
quite fast. No asymptotic level can be given forrand since
its asymptotic distribution is unknown. It is remarkable that
adaptive FastICA also makes the computations more reliable,
see Tables III-VI for the number of runs that failed to converge
in 10000 repetitions. While reloadedpow3, gausandtanhwith
a data-based initial value are already more stable thanrand,
see also [15], the adaptive algorithm has the clearly lowest
failure rates.

All computations were done using our freely available R-
package fICA [13], which implements the new deflation-based
FastICA method allowing the user to choose the initial estima-
tor and to provide the set of nonlinearitiesG. The computation
times for the adaptive estimates (using the default setG)
were in our simulation studies only 5-10 times longer than
the computation times for the traditional FastICA estimates.
This extra computational load is a very small price to pay
considering the efficiency gain of the adaptive method. Finally
notice that, the asymptotic as well as estimated covariances can
be computed using our R-package BSSasymp [14].

VI. CONCLUSION

In this paper we extend recent theoretical results for
deflation-based FastICA and suggest a novel adaptive
deflation-based FastICA method that, for each component,
picks up the best nonlinearity function among the nonlinearity
functions specified by the user, and finds the sources in an
optimal order. The approach is based on new theoretical results
for the asymptotic distribution of the FastICA estimate; the
asymptotic efficiency is shown to depend (i) on the marginal
distributions of the sources, (ii) on the used nonlinearity
functions, and (iii) on the order in which the sources are found.
It is shown that the best possible set of nonlinearities then
includes the optimal location scores of the twice differentiable
marginal densities. For the optimization step of the algorithm
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Fig. 2. The averages ofn(p− 1)D̂2 from 10 000 repetitions in all four settings (Setting 1 in thetop left panel, Setting 2 in the top right panel, Setting 3 in
the bottom left panel and Setting 4 in the bottom right panel.The horizontal lines give the expected values of the asymptotic distributions ofn(p − 1)D̂2.

and for the affine equivariance of the procedure, an affine
equivariant preliminary ICA estimate such as FOBI, JADE
or k-JADE is needed. With the sparse set of nonlinearities
used in our simulations, the new estimate clearly outperforms
estimates that are based on the use of a single nonlinearity
only and is more stable in simulations. We thus think that the
adapted version of FastICA developed in the paper is the best
possible approach available if one wishes to find the sources
one after another using FastICA method.

APPENDIX A
PROOF OFLEMMA 2

Sinceα(g, f) = α(ag + b, f) for any nonzero real number
a and any real numberb, we may assume that E[g(z)] = 0
andV ar[g(z)] = σ2 = 1. The assumptions and integration by

parts then gives

E[g0(z)] = 0,

ρg(z)g0(z) = I−1/2E[g(z)g0(z)] = I−1/2δ,

ρg(z)z = E[g(z)z] = λ and

ρg0(z)z = I−1/2E[g0(z)z] = I−1/2.

Hence

α(g, f) =
1 − λ2

(λ − δ)2
=

I(1 − I−1)(1 − λ2)

(I − 1)(λ − δ)2

=
(1 − I−1)(1 − λ2)

(I − 1)(I−1/2λ − I−1/2δ)2

=
(1 − ρ2

g0(z)z)(1 − ρ2
g(z)z)

(I − 1)(ρg0(z)zρg(z)z − ρg(z)g0(z))2

= [(I − 1)ρ2
g(z)g0(z)·z]

−1.
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TABLE III
NUMBER OF NON-CONVERGENT RUNS IN10000RUNS FORSETTING 1.

n=100 200 400 800 1600 ≥ 3200

adaptive 127 12 1 0 0 0

pow3 503 43 0 0 0 0

gaus 981 245 18 0 0 0

tanh 658 98 3 0 0 0

rand 1541 626 164 18 2 0

TABLE IV
NUMBER OF NON-CONVERGENT RUNS IN10000RUNS IN SETTING 2.

n=100 200 400 800 1600 3200 6400 12800 25600

adaptive 341 73 6 1 0 0 0 0 0

pow3 1698 700 236 37 0 0 0 0 0

gaus 2391 1704 1379 1268 938 433 101 4 0

tanh 1932 1164 848 507 177 14 0 0 0

rand 2739 1957 1477 1002 477 187 79 36 28

TABLE V
NUMBER OF NON-CONVERGENT RUNS IN10000RUNS FORSETTING 3.

n=100 200 400 800 1600 ≥ 3200

adaptive 1113 722 277 33 1 0

pow3 2140 1371 658 165 15 0

tanh 1579 1016 429 91 6 0

gaus 1463 975 433 100 5 0

optimal 980 560 167 14 0 0

TABLE VI
NUMBER OF NON-CONVERGENT RUNS IN10000RUNS FORSETTING 4.

n=100 200 400 ≥ 800

adaptive 281 47 1 0

pow3 440 49 3 0

tanh 329 51 0 0

gaus 373 72 0 0

optimal 253 37 0 0

APPENDIX B
PROOF OFTHEOREM 3

It is not a restriction to assume thatW 0(Z) =
(w01, . . . ,w0p)

T →P Ip. The algorithm then uses forβh,k =
E[h(zk)] the estimates of the type

β̂h,k =
1

n

n
∑

i=1

h(wT
0kzi).

Recall that, for allg ∈ G andk, we need the estimates forσ2 =
E[(g(zk))2]−(E[g(zk)])2, λ = E[g(zk)zk], δ = E[g′(zk)] and,
finally,

αg,k =
σ2 − λ2

(λ − δ)2
.

In the following we therefore assume thath is in

H =
{

h : h(z) = (g(z))2, g(z), g(z)z or g′(z), g ∈ G
}

.

First note that, assuming that theβh,k exist,

β̃h,k =
1

n

n
∑

i=1

h(zik) →P βh,k, for all k andh ∈ H.

Then if, for allh ∈ H and all componentszk of z, there exists
an integers > 0 such that

sup
z

|h(s)(z)| ≤ M and E(||h(r)(zk)zr
k||) < ∞, r = 0, . . . , s−1,

and thesth moments exist, then, using Taylor expansions,
it easily follows thatβ̂h,k − β̃h.k →P 0 and, consequently,
β̂h,k →P βh,k for all h and k. If, for example,h(z) = z2,
thenh′′(z) ≡ 2,

h(wT
0kzi) = h(zik) + (w0k − ek)T 2zikzi

+ (w0k − ek)T (ziz
T
i )(w0k − ek)

and therefore

β̂h,k − β̃h,k = (w0k − ek)T 2

n

n
∑

i=1

zikzi

+ (w0k − ek)T (
1

n

n
∑

i=1

ziz
T
i )(w0k − ek)

→P 0.

Note that if the assumption above holds true for allh ∈ H
and for allk, then we obtain also the convergence

α̂g,k →p αg,k, for all g ∈ G and for allk.

This implies that the probability for

α̂gk,k = min{α̂g,k : g ∈ G}

and
α̂g1,1 < · · · < α̂gp,p

goes to one. This further means that, in the algorithm, the rows
of U0(z) are permuted with a probability going to zero and
therefore ’permuted’U0(z) converges in probability toIp as
well. The asymptotic distribution is then given in Theorem 1.
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