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Deflation-based FastICA
with adaptive choices of nonlinearities

Jari Miettinen, Klaus Nordhausen, Hannu Oja and Sara Taskine

Abstract—Deflation-based FastICA is a popular method for W = CA~! whereC is in the set ofp x p matrices
independent component analysis. In the standard deflation-bade
approach the row vectors of the unmixing matrix are extracted
one after another always using the same nonlinearities. In prac- C = {C : each row and column of’ has exactly one
tice the user has to choose the nonlinearities and the efficiency non-zero elemen.
and robustness of the estimation procedure then strongly depeis
on this choice as well as on the order in which the components
are extracted. In this paper we propose a novel adaptive two- We also writeW,; ~ W, if W, = CW, for someC € C.

stage deflation-based FastICA algorithm that (i) allows one to Wi . f | definiti f i lued
use different nonlinearities for different components and (ii) € now give a formal deninition ot @ > p matrix vajue

optimizes the order in which the components are extracted. Based |C functional W () such that, for anc coming from the IC
on a consistent preliminary unmixing matrix estimate and our model, the components dWV (F,)x are independent and do
theoretical results, the algorithm selects in an optimal way the not depend on the model specification and the valued it
order and the nonlinearities for each component from a finite set all

of candidates specified by the user. It is also shown that, for each ~

component, the best possible nonlinearity is obtained by using e ; fetribg _
the Iog-density function. The resulting ICA estimate is_affine Definition 1. Let F,, denote the cumulative distribution func

equivariant with a known asymptotic distribution. The excellent 10N Of . The functionaW (F%;) is an independent component

performance of the new procedure is shown with asymptotic (IC) functional if (i) W (F) ~ I, for any z with independent
efficiency and finite-sample simulation studies. components and with at most one gaussian component, and

Index Terms—Independent component analysis, minimum dis- (1) W (F) is affine equivariant in the sense th&it (Fipz) ~

tance index, asymptotic normality, affine equivariance W (Fy)B~" for all full rank p x p matricesB.
EDICS: SSP-SSEP Let X = (x,...,z,) be a random sample from a
distribution ofz. An estimate ofWW = W (F,) is obtained if
I. INTRODUCTION the IC functional is applied to the empirical distributiéiy of
X = (x1,...,2,). Then, according to our Definition 1, (ii)
An observablep-variate real-valued random vectar = s true for F,, as well, and the resulting estimat®¥ (X) is

(z1,...,2,)" obeys the basic independent component (IG¥fine equivariant in the sense tHat (BX) ~ W (X)B".
model, if it is a linear mixture op mutually independent latent  \y/ita S(F,) for the covariance matrix functional of a
random variables iz = (z1,...,2,)". The latent variables \n4om vectorr. The scale ambiguity of the IC functional is
z1,...,2p are also called sources and it is assumed that af, 51y fixed by requiring that the obtained independent-com
most one of the sources is gaussian. We then write ponents have unit variances, that &Fyy (5, )s) = I, This

v — As then implies thatW (F,) = U (F,)S~/?(F,) for some or-

’ thogonal matrixJ (F,), and the estimation problem is reduced
and assume, for simplicity, that is a full rankp x p mixing to the estimation of an orthogonal matiix(F). The sample
matrix. In this model specificationd and z are confounded, statistic then similarly satisfie¥V (X) = U(X)S 1%(X)
and the mixing matrixA can be identified only up to the order,for some orthogonal matrik/ (X).
the signs and heterogenous multiplications of its colur@me  The outline of this paper is the following. In Section II
can however accept the ambiguity in the model, and defifige classical deflation-based FastICA algorithm and its de-
the concepts and analysis tools so that they are independs#tidence on the initial value is first discussed. Then the
of the model specification. A x p matrix W is called an algorithm and estimating equations for a modified deflation-
unmixing matrix in the IC model, if the components Bz based FastICA procedure that allows us to use different
are independent. Then all the unmixing matridds satisfy nonlinearity functions for different sources are introddc

The nonlinearities used for the illustration are introdiices
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Il. DEFLATION-BASED FASTICA UBX)S™Y*(BX)BX = U(X)S Y/*(X)X and the
_ result follows.
A. Algorithm
Originally deflation-based FastICA [4] was introduced as g8, Estimating equations
algorithm, which, like many other ICA methods, begins with

the whitening of the data. Let,, = S™'/2(F,)(x — pu(Fy)) ) o aime. { -

be the data whitened using the mean veci(F,) and pEreV|ou$ section ac;ms,hank, k= 1’."'}? _Tl’ to inammag
the covariance matrixS(F,) . The second step is to find| T(G(u_k mStm_ under the constre_l:jnt thats ﬁ’“ N d1f' an
an orthogonal matrixU such thatUzx,, has independent u;up = 0,7 =1,...,k—1. Consider next the modification
components. In deflation-based FastICA the rows of the lmatﬁ]c Fhe FastiCA grocedure that, fa;;, & = L. 7p;1’ max-
U = (us,...,u,)” are found one by one, so thaf, maxi- Imizes |[E(Gx(u, )| under the constraint that; u, = 1

. . andulu, =0, j =1,...,k—1. We thus allow that the non-
mizes a measure of non-GaussiaBYG(uj. x.;))| under the I'nearfty ]Functiojns may be different for different compaone
constraint that;, has the length one and that it is orthogonal‘[ ) . . -

g = G, k=1,...,p, we obtain, using similar Lagrange

The deflation-based FastICA algorithm discussed in the

to rowsuy,...,u,_1. The functionG is allowed to be any . . ! . . .
twice continuously differentiable nonquadratic functiaith multiplier technique as in [17], the estimating equations
G(0) = 0 and with first and second derivative functiopsind k—1
g'. For more details, see Section II-C Elgr (z)z6)ur = | Ip — ZuJuJT Elgr (zk)st],

To find an estimate, the observed dXaare first whitened Jj=1

with the sample mean vectps(X') and the sample covariance, _
matrix S(X). The second step is to find the rotation matrix
U(X) and the final estimatd¥ (X) = U(X)S~'/?(x). Definition 2. Let U(X) be the solution where, after finding
The so called deflation-based FastICA algorithm for finding1, ..., ux—1, ux is found from a fixed point algorithm with
the rows of U(X) one-by-one is given in [4]. The valuethe steps

U(X) provided by the algorithm however depends on the

,...,p, and we give the following definition.

2L u{mst and

initial value U;nit = (Winit.1,-- -, Winit,p)? Used for the

computation. Depending on where one starts from, the al- 1 i T

gorithm may stop at any critical point instead of the global “* Elgx (21)25] I, - Z“J’“j Elgr. (21) 2],
j=1

maximum. It is then remarkable that extracting the sources

in a different order changes the unmixing matrix estimatnd the initial valueU;,;; is used in the computation. Then
more than just the permutation [17], [15]. To be precise ithe modified deflation-based FastICA estimator is defined as
our notation, we therefore writd’ (U, X; g) for the estimate “1/2

that is provided by the FastICA algorithm for the d&awith Wo(Uinit, X591, ., 9p) = U(X)S™/*(X).

the initial valueU,;; = U and the nonlinearity. Estimates |t js worth noticing that the estimated equations above do
such asW (I, X;g) and W (U ana, X;g) With a random ot fix the order of the independent components in the IC
orthogonalU .nq are often used in practice. Unfortunatelymodel: If U is a solution then so iPU for all permuta-
these estimates are not affine equivariant and thereforOnotijgn matricesP. This also means that the algorithm that is
functionals in the sense of Definition 1. Also, the commoggjely based on the estimating equations extracts the &stim
practise to use the deflation-based approach to extract oghyirces in the order suggested by the initial vdllig,;. Also,

seems in this light highly questionable. permuted.

To obtain an affine equivariant estimator the initial value
must be data-based and affine equivariant as well. A prelimi

nary unmixing matrix estimate may be used here as shown o _ . _ .
the following lemma. The derivative functiony = G’ is called the nonlinearity.

Using the classical kurtosis measure as an optimizingrioite
Lemma 1. Let Wo(X) = Uo(X)S™/*(X) be an IC gives the nonlinearityy(z) = 2* (pow3d, see [4]. Functions
functional satisfyingW,(BX) = Wo(X)B~" for all full- g(z) = tanHaz) (tanh) and g(z) = zexp(—az2/2) (gaud
rank p x p matricesB. ThenW (U (X), X; g) satisfies with tuning parameters were suggested in [5]. The classical
_ skewness measure givegz) = 22 (skew. The FastICA
W(Uy(BX),BX;g) =W (Uy(X),X;9)B™" algorithm thus uses theebsﬁan)w nonlinearity for all companent
with certain general guidelines for its choice. The nordiity
pow3 for example, is considered efficient for sources with
The proof follows from the fact thatU,(BX) = light-tailed distributions, whereaanhandgausare preferable
Uo(X)VT and S~*(BX)BX = VS '/?(X)X with for heavy-tailed sources. The nonlineariskew finds skew
an orthogonalV = §~Y/2(BX)BS'/?(X). Thus the trans- sources but fails in the case of symmetric sources. In pegcti
formation X — BX induces in the algorithm the trans-tanhandgausseem to be common choices. We will later prove
formationsxz; — Va;, ¢ = 1,...,n, andury — Vwug, the well-known fact that, for a component with the density
kE = 1,...,p, and finally U(X) — U(X)V’. Thus function f(z), the function corresponding 16(z) = log f(z)

'y Nonlinearities

for all full-rank p x p matricesB.
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with the nonlinearityy(z) = — f’(2)/ f(z) provides an optimal ~ The asymptotic distribution/n (W (Z)—1I,,) is then easily
choice. obtained if we only know the joint asymptotic distributioh o
In practical data analysis, however, it does not seem likelyn (S(Z) — I,,) and\/n (T(Z) — A), where
that all sources are either light-tailed, heavy-tailed lave or n
. . 1

even that the knowledge about these properties is available (T(Z))j = ~ Z(gk(zik) — ligy k) Zil
Therefore, the use of only a single nonlinearigyfor all n- 3 ’
different components seems questionable. In this paper we g . .
propose a novel algorithm that (i) allows the use of diffe!erer'?mOI A= diag 1o Ak, p). Write (S(Z2))w =

. .- . .. .. Skl (T(Z))kl = t and (W(Z))kl = Wk Under our
nonlinearities for different components and (ii) optingzie .

. ; .assumptions,

order in which the components are extracted. The nonlin-
earities g1,...,gx are selected from a large but finite set/n (S(Z)—I,) =Op(1) and vn(T(Z) — A) = Op(1).
of nonlinearitiesG. In the illustration of our theory, we
later choos&; with the four popular nonlinearities mentione

above, namelypow3 skew tanh andgaus and the functions
o 9(2) = (z+a)2 (left

OlThe following theorem extends Theorem 1 in [15], allowing
different nonlinearity functions for different source cpm
nents. The proof is similar to the proof in [15].

e 9(2) = (z — a)% (right) Theorem 1. Let Z = (zy, ..., z,) be a random sample from
e 9(z) = (2 —a)i — (z+a) (both) a distribution of z satisfying the assumptions stated above.
with different choices of tuning parameter > 0. The Assume also thaWW = W,,(Uinit,Z:g1,---,9p) IS the

functions left and right seem useful for extracting skewedsolution for the estimating equations (2) with a sequence of
sources wherealsoth provides an alternative measure of tailnitial valuesUy;; such thatW’ —p I,. Then
weight (kurt.osis). Note t.hat 'Fhese new functions'are ;?mply Vawn = —vrwm —Vasw+op(l), 1<k,
used to enrich the sé&i with different types of nonlinearities 1
for our new estimator in Section IV but may falil, if used aloneyn (wir, —1) = —=v/n(sgx — 1) +op(1), =k,
. . . 2
in traditional deflation-based FastICA. VIt = Ay /7T S

We end this discussion about the choice of the nonlinearity Viwg = 3 g’“(; +op(1), I > k.
function with a short note on robustness. As the random 9ok T Ogi.k
vector is first standardized by the regular covariance matri In Theorem 1 we thus have to assume that the sequence of
the influence function of the functiona (F') is unbounded estimatorsW (Ui, Z; g1, - .., gp) Can be selected in such a
for any choice of the nonlinearity and, unfortunately, the way thatW —p I,,. Based on extensive simulations, it seems
FastICA functional is not robust in this sense. See [17]. to us that this can be guaranteed if the initial valiig,,

in the algorithm forw,,,(Usnit, Z; 01, - - -, gp) CONVErges in
1. ASYMPTOTICS probability to I,, as well. In the next section IV we propose

canew estimatoW ,,,(U (Z), Z; G) that is using a data-based
consistent initial valudJ(Z) and then finds the components
and nonlinearities in a preassigned, optimal order.

The statistical properties of the deflation-based Fastl
estimator were rigorously discussed only recently in [15§]

and [17]. LetX = (x1,...,x,) be a random sample from a We have the following useful corollaries
distribution of x obeying the IC model. Thug = Az + b v wing usetu 1€s.
where Ez) = 0, Cov(z) = I, and the components,...,z, Corollary 1. Under the assumptions of Theorem 1, the joint

of z are independent. As our unmixing matrix estimate igsymptotic distribution of the elements\gf (T'(Z)—A) and
affine equivariant, we can then assume (wlog) tHat= I,, the elements of/n (S(Z) — I,,) is a (singular) multivariate
and b = 0, that is, X = Z. In the following, for a normal distribution, and also the asymptotic distributiof
sequence of random variabl@s,, we write in a regular way /nvedW — I,) is multivariate normal.
() T\, = Op(1) if, for all € > 0, there exists anV/. > 0 and ) N
N. such thaiIP’)(HTnH > M.) < e for all n > N., and (i) For an affine equivarian® (X), W(X)A = W(Z) and
T, =op(l)if T, —pO. vedW (X)-A ) =(ATeI,)(W(Z)-1,)

For the asymptotic distribution of the extended FastiCA )
estimator satisfying the estimating equations (2) we need tvhich implies that, if\/nvedW(Z) — I,) —a Np2(01, )
following assumption. We assume the existence of fourfien the asymptotic distribution afnveqW (X)) — A™") is

-T -1
momentsE(z{) and the following expected values Np2(0,(A77 @ I_p)E(A ® Ip)).
) The asymptotic variances of the component3¥6tZ) may
tgik = Elgr(2x)], o, , = Varlgr(zx)], then be used to compare the efficiencies of the estimates for

ifferent choi f nonlinearities.
oo = Elgi(z1)2] and different choices of nonlinearities

5 — ElgL(21)] = Elgu(z) g0 (20)] Corollary 2. Under the assumptions of Theorem 1, the
gk Ir\2k i\ 2k ) G0k \2k)1, asymptotic covariance matrix (ASV) of theth row wy, of

where gor, = —f1./ fx is the optimal location score functionW =W ,(Uinit, Z; 91,...,9p) iS

for the densityfy, of 2, k = 1,..., p. We assume thak,, 5 # o1 )

Agi ks _Ic = 1,...,p — 1. Note that, if .thekth component is ASV (wy,) = Z(agj,j+1)ejef+fikeke£+agk,k Z ejejT
gaussian, thedy, , = Ay, , for all choices ofgy. = Paref
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and the sum of the asymptotic variances of the off-diagonal IV. THE NEW ESTIMATOR
elements is The so called reloaded FastICA estimator in [15] optimizes
P . . . . . .
B p(p—1) the extraction order for a single nonlinearity function twé
Z ASV (wij) = 22(1’ —k)ag, .k + 9 data based initial valu&/(X) in the algorithm. In this paper
) =t we introduce a new estimator which allows us to use different
Here e, is a p-vector with thekth element one and othernonlinearities for different components, optimizes theica
elements zero and of nonlinearities as well as the order in which the compoment
o2 =X E(z4) -1 are found. The nonlinearities are chosen from a finite set of
_ g,k gk and _ k . .
Xgik = gt — 0y 1)2 Kk = ’ available functiong.

In Corollary 2, the asymptotic covariance matrices of the
rows of W = W,,(Uinit,Z;91,...,9,) were obtained

For optimal choices of;., we need the following auxiliary and we found that the asymptotic variances of the diagonal
result. elements do not depend on the choice of the nonlinearities
g, k=1,...,p. Therefore, the asymptotic efficiencies of the
estimates are measured using the sum of asymptotic vasiance

k=1,...,p.

Lemma 2. Let z be a random variable withE(z) = 0,

Var(z) = 1 and assume that its density functiof is . .
twice continuously differentiable, the location score diion of the off-diagonal elements, that is,
go(z) = —f'(2)/f(z) is continuously differentiable and P p(p—1)
the Fisher information number for the location problem, ZASV(“W) ZQZ(p_k)aWﬁ 2
I = Var(go(z)), is finite. For a nonlinearityg, write 02 = i#i k=1
Var[g(z)], A = E[g(2)z], 6 = E[¢'(2)] = E[g(2)g0(2)] and This is clearly minimized if first (i)g1,. . ., g, satisfy

g2 — \2 o — mi .

_o-A ok =min{og, : g€ G}
a(g, f) Do g 9

Then, for all nonlinearities, and then (ii) the indices are permuted so that

- < ... < .
alg, f) =[(I - )/)g( )go(z)~z] L ®g1,1 = > Qgyp

where p? 2 () is the squared partial correlation between These findings suggest the following estimation procedure.

9(z) and go( ) given z. Therefore Definiion 3. The deflation-based FastICA estimate
alg, f) = algo, f) = (I - 1)L Wm(UO(X),X;g) with adgptive choices of nonlinearities
is obtained using the following steps.
1) Transform the data using a preliminary affine equivari-
ant estimateW (X) = U,(X)S™"/*(X) and write
Z =Wo(X)(X — p(X)17).
2) UseZ tofindg, forallg e Gandforallk =1,...,p
3) Find g1,..., 9, € G that minimizedy 1, ..., &g p, resp.
4) Permute the rows of/(X), Uo(X ) — PUy(X), so
that, after the permutat|om4g1 1< < by p-
Theorem 2. Under the assumptions of Theorem 1 and 5) The estimate is the modified deflat|on based estimate
Lemma 2, the sum of the asymptotic variances of the off- W,,(PU(X), X;j1,...,dp)-
diagonal elements oW = W ,,(Uinit, Z; 91, - - -, Gp),

The lemma implies that, for an optimal, the nonlin-
earity parts ofg(z) and go(z) should be the same, that is
g9(2)—E[g(2)z]z = go(z) — E[go(2)z]z. Note that the function
g(z) = g(z) — E[g(2)z]z is orthogonal to linear (function)
z in the sense thaF[g(z)z] = 0. The lemma then implies
the following important optimality result for deflation-ed
FastICA estimates.

The estimateW,,,(Uy(X), X;G) is affine equivariant,

p . . .
B p(p—1) see Lemma 1. The following theorem gives the asymptotic
ZASV Wij) = QZ(pf k)ag, i + 9 distribution of the new estimatoW ,,,(Uy(X), X;G). The
# =1 theorem is proved in the Appendix.
is minimized if the components are extracted according to a
decreasing order of Fisher information numbefs > ... > Theorem 3.LetZ = (zi,...,z,) be a random sample from
I, and the optimal location scoregy,, ..., go, are used as @ distribution of z satlsfylng the assumptions of Theorem 1.
nonlinearities. The minimum value then is Assume that the componentszoére ordered so thaty,, 1 <
p . - < ay, p. If the initial estimateW(Z) —p P” for some
2 Z(p — k), — 17+ %, permutation matrixP”, then under general assumptions (see

the Appendix)

One of the implications of Theorem 2 is that the deflation: e )
based FastICA can never be fully efficient: the variance};(Wm(UO(Z)’Z’ 9) = Wn(PUo(2), Zig1;-,9p) = 1
of the components cannot all attain the Cramer-Rao lowBemark 1. The theorem thus shows that the asymptotic
point, see [17]. However, Theorem 2 gives us tools to finoehavior of the deflation-based FastICA with adaptive ob®ic
optimal deflation-based FastICA estimate among all FastlGA nonlinearities is similar to that of the modified deflation
estimates with different extract orders and different chsiof based FastICA with known optimal choices of the nonlinear-

nonlinearities. ities and known optimal extraction order of the components,
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see Theorem 1. Note also that the reloaded deflation-basedetting 4: The distributions (T), (EP3) and (EP6).

FastICA estimator [15] with a single nonlinearity is a Sp&Ci For all settings the distributions are standardized to imagan
case here. value zero and variance one.

Remark 2. The estimateW,,(Uy(X),X;G) is the best ~We usgd numgrical integration to calcu_latt.gjc for gach
possible fastiCA estimate as soon as the optimal margir3@nlinearity functiong € G and for each distribution in our
nonlinearities log fi, ¥ = 1,...,p, are all in the setg. four settings. See Section II-C for our set of nonlineasitie
In practice fi,..., f, are of course unknown, but insteadd- AlSO oy for the optimal nonlinearity functionoptim)
of trying to estimate optimal nonlinearities,, ..., gs, we IS given if only the density function is twice continuously
hope to get a high efficiency with a careful flexible choic@ifferentiable. The values are given in Table I.

of possible candidates. In this way, our estimate is made fas

in computation with a small loss of efficiency (as compared to TABLE |

the estimate with maximum efficiency). THE VALUES 1 FOR ALL NONLINEARITY FUNCTIONS ING AND ALL

V. SIMULATIONS g() LN U EP4 T E C L EP3 EP6 MG
A. The minimum distance index pow3 8.39 0.43 2.70 oo 5 15 6 7.97 1.16 14.53

. . . . .tanh 4.33 0.69 298 4.00 3.14 3213 201 7.73 147 1150
To measure the separation accuracies in our simulati Dis 6.08 071 3.09 432 394 8695 1.82 7.95 153 11.47

studies we use the minimum distance index [11] defined bY,, . 1558 o0 o0 o0 1 25 oo oo oo 16.26
A I It0.6 0.55 1.67 8.89 20.63 0.08 1.23 11.49 24.92 4.05 1475
b= cl%fc ICW(X)A = L 1 0.6 3.28 1.67 8.89 20.63 2.33 5.92 11.49 2492 4.05 8.38

p—1
. . . . . . bto 4.55 0.60 2.82 7.61 3.31 16.85 3.00 7.57 1.35 12.10
with the matrix (Frobenius) nornfj - ||. The index is affine 102 452 058 280 772 326 164 313 758 133 1221

Qva_lr_lﬁnt a_sW(X)gl_ ctjoes n_otddep_end ontthel mr|]X|_ng rfnatnxthA 444 053 2.77 806 311 1525 343 7.63 127 1262
- Ie' m|n|mdgm 'S ‘?‘r?ceh'” e)l( 1S afna ural choice i(;h: Yo6 436 045 272 866 295 1379 387 7.79 120 13.46
simulation studies, as it is the only performance criteriu 0.8 437 037 273 955 287 1245 443 815 113 14.88
known asymptotical behavior. i/nveqW (X)A — I,) has

> oehievl ! btl.0 451 0.29 2.82 10.74 3.04 11.51 513 879 1.09 17.17
asymptotic normal distribution with zero mean, then bil2 485 020 304 1238 347 1115 597 987 1.09 20.68

nD? = —"_|off(W(X)A)| + 0, (1) btl4 541 012 349 1418 3.96 11.52 6.99 11.63 1.18 26.13
p—1 PR btl.6 612 0.05 4.38 1651 452 1272 823 1454 145 34.74
where offA) = A — diagA). The expected value of itsoPtim 050 - 270 4 - 1 - 757 107 3.69

asymptotic distribution is the sum of the asymptotic vecem ) ) _ _
of off(W(Z)). This relates the finite sample efficiencies to Hence, in Setting 1, the adaptive procedure aims to extract
the asymptotic efficiencies considered in Section Il first the uniformly distributed component usibgl.g then the
log-normally distributed one with0.6, before usingpow3for
EP4 distributed component. This yields, as Table Il shows, a
performance value of 16.18 which is about one half of the
For the rest of the paper we assume for demonstratigye obtained usingow3 tanh or gausalone in the reloaded
purposes that the s€t will consist of the functionspow3  efiation-based FastICA procedure. In Setting 2 the optimal
tanhwith o = 1, gauswith a = 1, left with a = 0.6 (It0.6), performance is obtained by first finding the exponentially
right with a = 0.6 (r10.6), andboth with several values o& gjstriputed and chi-squared component (in this order) with
(bt0, bt0.2 bt0.4 bt0.6 bt0.8 btl.Q btl.2 btl.4andbtl.f. |06 and then Laplace distributed component withus The
We will consider the performance of our adaptive deflatioré-xpected value of the asymptotic distributionsefp — 1)D?
based FastiICA method in four different settings of sourGg then 15.04 which is a highly significant improvement as
distributions: compared to the reloaded procedures with traditional nenli
Setting 1: The log-normal distribution with variance paearities. In Setting 3 the separation order is EP6, EP3 and MG
rameter value 0.25 (LN), exponential power disysing bt1.0, bt and rt0.6, respectively. Finally, in Setting 4,
tribution with shape parameter value 4 (EP4pne finds first EP6 and EP3. In the last two settings, the
uniform distribution (U) and;-distribution (T). adaptive procedure again outperforms reloaded procebutes
Setting 2: The exponential distribution (E), the chi-sguaiof course, are not as good as the optimal procedure as the

distribution with 8 degrees of freedom (C), thepptimal nonlinearities are not included éh
Laplace distribution (L) and the gaussian distri-

bution (G). ) .

Setting 3: The gaussian distribution (G), exponential pow&: Simulation study
distribution with shape parameter value 3 (EP3), We next consider the performance of the adaptive FastICA
exponential power distribution with shape paprocedure for finite data sets from the same Settings 1-4 Thi
rameter value 6 (EP6) and the nonsymmetrithen allows us to make comparisons between finite sample and
mixture of two gaussian distributions as definedsymptotic behaviors as well. For the adaptive procedure we
as distribution (l) in [1] (MG). thus need an equivariant and consistent initial ICA est@mat

B. Models and asymptotic behavior
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TABLE Il R o FOBI
THE ASYMPTOTIC VALUES OFn(p — 1) E[D(W, A)2] FOR THE FOUR ° o 2-JADE
SETTINGS OF RELOADED DEFLATIONBASED FASTICA WITH g - A
NONLINEARITIES pow3 tanhAND gauSAND ADAPTIVE DEFLATION-BASED - v Fl-2-JADE
FASTICA WITH G (adaptivg AND G, (optimal). * FI-JADE
g o
3 o
pow3 tanh gaus adaptive optimal % o © °
Setting 1 36.16 30.06 31.26 16.18 ’?T s o °
= o]
Setting 2 90.00 94.88 206.58 15.04 E ; s o o o ©° °
Setting 3 73.91 68.75 69.91 59.57 42.32 s NN o4 ‘
Setting 4 23.59 16.90 17.75 15.37 15.27 3
A ) A T T T T T
W (X). Of course any estimate meeting the requirements 100 500 2000 5000 20000

will do - but in the following we will consider the following
three estimates

n

; i ; ; ; ig. 1. The averages of(p — 1)DA2 from 10 000 repetitions in Setting 1.
1) FOBI[2]is the initial estimate that is easiest to Compméhe horizontal line gives the expected value of the asympthititribution of

For its convergence, the fourth momentszofust exist ,,(, — 1)D2 for the adaptive fastiCA method.
and the kurtosis valueB(z}) —3, k = 1,...,p must be
distinct. A
2) For the convergence of the JADE [3] estimator, fourth The averages ofi(p — 1)D? for all four settings and for
moments must exist with at most one zero kurtosis valudifferent estimates are depicted in Figure 2. Naturallg th
JADE is, however, computationally expensive for largperformance of the new adaptive method is better {han3
dimensionsp. tanh and gausalone and seems to reach the asymptotic level
3) k-JADE [12], k = 1,...,p, may be seen as a com-quite fast. No asymptotic level can be given f@and since
promise between FOBI and JADE where. The smalléis asymptotic distribution is unknown. It is remarkableitth
k the faster is its computation. For the consistencgdaptive FastICA also makes the computations more rejiable
the procedure allows at mostcomponents with equal see Tables II-VI for the number of runs that failed to comgeer
kurtosis values and at most one zero kurtosis value. in 10000 repetitions. While reloadgw3 gausandtanhwith
a data-based initial value are already more stable thad,
Re also [15], the adaptive algorithm has the clearly lowest
failure rates.
All computations were done using our freely available R-
ackage fICA [13], which implements the new deflation-based

For Setting 1, we first consider the performance of adapti
FastICA when different initial estimators are used. Figlire
shows, for different sample sizesand with 10000 repetitions,
the average criterium values for the three initial estimate
thii:’a‘t]:sDEl?Fn gé'J'A:E‘]EAaDSEWae: dasli:cf)zr-\t]r,l\eD%dz\i/\?i:a/ € dﬁfﬁgg astlICA method allowing the user to choose the initial egtim
- . o ttor and to provide the set of nonlineariti@s The computation
initial estimates. The difference between JADE and 2-JADE | . : )

S . : . times for the adaptive estimates (using the default Get
negligible in this Iow-dlrpensmngl case anq th(_ey both dearwere in our simulation studies only 5-10 times longer than
outperform FOBI. Desplte the dlffer_ences in initial ES“E'E.‘ the computation times for the traditional FastiICA estireate
the average behavior of the adaptive FastiCA seems sim L's extra computational load is a very small price to pay
in all cases and it is in accordance with the asymptotic

theory. (The horizontal line yields the expected value & thConSIderIng the efficiency gain of the adaptive method. Iisina

o - notice that, the asymptotic as well as estimated covargacae
asymptotic distribution of.(p—1)D?.) Based on these results ymp

we recommend to use JADE for low-dimensional problembse computed using our R-package BSSasymp [14].

and k-JADE for higher dimensions. In the simulations that
follow we always use JADE as an initial estimate. VI. CONCLUSION

In all four settings, we compare the performance of our In this paper we extend recent theoretical results for
new adaptive FastICA method to the reloaded procedure thigflation-based FastiICA and suggest a novel adaptive
uses only one popular linearity function, namegdpw3 tanh deflation-based FastiICA method that, for each component,
and gaus For the comparison we also include, in Setting picks up the best nonlinearity function among the nonliitgar
and Setting 2, the original deflation-based FastICA wéhh functions specified by the user, and finds the sources in an
and a random initial value (denoted hewnd), which may optimal order. The approach is based on new theoreticaksesu
be the most common version used in practice. In Settingf@ the asymptotic distribution of the FastiICA estimatee th
and Setting 4 all the marginal densities are continuoushgsymptotic efficiency is shown to depend (i) on the marginal
differentiable, and, in adaptive fastiICA, we can compare twdistributions of the sources, (i) on the used nonlinearity
sets of nonlinearity functionsg and G, where the latter functions, and (iii) on the order in which the sources arenfbu
includes the optimal marginal nonlinearities as well as tHeis shown that the best possible set of nonlinearities then
established nonlinearitiepow3 tanh gaus and skew The includes the optimal location scores of the twice diffeianie
adaptive FastICA using is calledoptimal marginal densities. For the optimization step of the athami
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—e— adaptive —o— adaptive
-G- pow3 S -G- pow3
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Fig. 2. The averages of(p — 1)152 from 10 000 repetitions in all four settings (Setting 1 in top left panel, Setting 2 in the top right panel, Setting 3 in
the bottom left panel and Setting 4 in the bottom right pafibk horizontal lines give the expected values of the asyneptistributions ofn(p — 1) D2.

and for the affine equivariance of the procedure, an affiparts then gives

equivariant preliminary ICA estimate such as FOBI, JADE

or k-JADE is needed. With the sparse set of nonlinearities Elgo(2)] =0,

usgd in our simulations, the new estimate cIe.arIy outps'rsﬁor _ Pooran(s) = I 2Elg(2)g0(2)] = I71/25,
estimates that are based on the use of a single nonlinearity
only and is more stable in simulations. We thus think that the
adapted version of FastICA developed in the paper is the best Pao(z)z = 17 /?Elgo(2)2] = 1712,
possible approach available if one wishes to find the sources

one after another using FastiCA method. Hence

Pg(z)- = Elg(2)z] = X and

12 I(1-IH(1 -2
e A S VP
APPENDIXA (1—I"H(1-7%

PROOF OFLEMMA 2 T (I 2A—T1/25)2
_ (1= P 02) (1 = P5))
Sincea(yg, f) = a(ag + b, f) for any nonzero real number = 7-1 — 3
( )(pgo(z)ng(Z)z pg(z)go(z))
a and any real numbel, we may assume that[é&z)] = 0 5 1
andVar[g(z)] = 0% = 1. The assumptions and integration by = [ = 1)pg()90(2)2] -
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TABLE Il
NUMBER OF NON-CONVERGENT RUNS INLOOOORUNS FORSETTING 1.
n=100 200 400 800 1600 > 3200
adaptive 127 12 1 0 0 0
pow3 503 43 0 0 0 0
gaus 981 245 18 0 0 0
tanh 658 98 3 0 0 0
rand 1541 626 164 18 2 0
TABLE IV

NUMBER OF NON-CONVERGENT RUNS INIOOOORUNS IN SETTING 2.

n=100
adaptive 341 73 6 1 0 0 0 0 0
pow3 1698 700 236 37 0 0 0 0 0
gaus 2391 1704 1379 1268 938 433 101 4 0
tanh 1932 1164 848 507 177 14 0 0 0
rand 2739 1957 1477 1002 477 187 79 36 28

TABLE V
NUMBER OF NON-CONVERGENT RUNS INLOOOORUNS FORSETTING 3.

n=100 200 400 800 1600 > 3200

adaptive 1113 722 277 33 1 0

pow3 2140 1371 658 165 15 0

tanh 1579 1016 429 91 6 0

gaus 1463 975 433 100 5 0
optimal 980 560 167 14 0 0

TABLE VI
NUMBER OF NON-CONVERGENT RUNS INLOOOORUNS FORSETTING 4.
n=100 200 400 > 800

adaptive 281 47 1 0

pow3 440 49 3 0

tanh 329 51 0 0

gaus 373 72 0 0
optimal 253 37 0 0

APPENDIXB

PROOF OFTHEOREM 3

It is not a restriction to assume thaW,(Z) =
(woz, ..., wop)T —p I,. The algorithm then uses fah, . =
Elh(zy)] the estimates of the type

. 1 <&
Prje = > h(wzi).
i=1

Recall that, for aly € G andk, we need the estimates fof =

E[(9(2x))*]=(Elg(21)])? A = Elg(zx) 2], § = E[g/(2x)] and,
finally,

0.2 _ )\2
kS o

In the following we therefore assume thatis in

H="{h : h(z) = (9(2))% g(2), g(z)z0rg'(z), g€G}.

First note that, assuming that tiig ;, exist,

- 1 <&
= = h(z; , forall kandh .
B,k - ; (zik) =P Bn.k EH
Then if, for allh € H and all components;, of z, there exists
an integers > 0 such that

sup [h®)(2)] < M and E(||h")(z1.)25]]) < 00, 7 =0,...,s—1,

and thesth moments exist, then, using Taylor expansions,
iE easily follows thatg;, » — Gr.x —p 0 and, consequently,
Bnk —p Bni for all h and k. If, for example,h(z) = 22,

h
200 400 800 1600 3200 6400 12800 25600 thenh”(z) =9

h(wOTkzi) = h(zm) + (’ka — ek)T2zikzi
+  (wor — ex)" (ziz] ) (wor — ex)

and therefore

Bhk — Prr =

2 n
(wor — ek)Tﬁ Z ZikZi
i=1

1 n
_ T(— T _
+  (wor —ey) (n;Zzzz)(WOk er)
—Pp 0.

Note that if the assumption above holds true for/ale H
and for all k, then we obtain also the convergence

Gy —p 0g, forall ge G and for allk.

This implies that the probability for
g€g}

Gugy, k= min{dyg i

and
Qg1 < < Qg,p

goes to one. This further means that, in the algorithm, thesro
of Uy(z) are permuted with a probability going to zero and
therefore 'permutedU,(z) converges in probability td, as
well. The asymptotic distribution is then given in Theorem 1
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