
The Curiously Empty Intersection of Proof
Engineering and Computational Sciences
(Extended Version)

Sampsa Kiiskinen

Abstract Proof engineering tools and techniques have not yet been applied to
computational sciences. We try to explain why and investigate their potential to
advance the field. More conceretely, we formalize elementary group theory in an
interactive theorem prover and discuss how the same technique could be applied
to formalize general computational methods, such as discrete exterior calculus. We
note that such formalizations could reveal interesting insights about the mathematical
structure of the methods and help us implement them with stronger correctness
guarantees. We also postulate that working in this way could dramatically change
the way we study and communicate computational sciences.

Key words: proof engineering, type theory, software engineering, formal verifica-
tion, interactive theorem provers, abstract algebra, functional programming, Coq,
OCaml

1 Introduction

Proof engineering is a subfield of software engineering, where the objective is to
develop theories, techniques and tools for writing proofs of program correctness
[60]. Even though proof engineering has many parallels with traditional software
engineering, there are several concepts that do not translate directly, giving rise to
unique challenges and approaches. Also, despite its practical roots as an engineering
discipline, proof engineering is surprisingly closely associated with the foundations
and philosophy of mathematics.

If you look for domains, where recent advances in proof engineering have yielded
practical applications, you will find various subfields of computer science and math-
ematics. On the engineering side of things, the domains include model checkers [72,

Sampsa Kiiskinen
University of Jyväskylä, Faculty of Information Technology, Finland, e-mail: tuplanolla@iki.fi

1

tuplanolla@iki.fi

2 Sampsa Kiiskinen

13], interactive theorem provers [66], instruction set architectures [2], programming
languages [80], network stacks [12], file systems [17], concurrent and distributed
systems [63, 83], operating system kernels [45], security policies [26] and certified
compilers [48]. On the more mathematical side, the domains span category theory
[41], type theory [21], machine learning [61], homotopy theory [6], group theory
[35], foundations of mathematics [75], geometry [37], graph theory [34], mathemat-
ical logic [56] and abstract algebra [32]. The list goes on, but computational sciences
are nowhere to be found on it. Why?

While we cannot answer the question outright, we can still pose the following
dichotomy: either proof engineering is unfit for computational sciences in some
intricate way, which is interesting, or there is an unexploited opportunity to advance
the field, which is also interesting. Let us investigate these options further!

2 Unfit for Computational Sciences?

There are a few heuristic arguments that spring into mind when you first try to
explain why proof engineering might be unfit for computational sciences. While
these arguments are way too simplistic to offer a satisfying explanation, they are still
worth discussing, because they help us address common misconceptions surrounding
the subject.

Importance Argument In computational sciences, program correctness does not
matter enough to justify formal specification and proof.

Considerable parts of modern infrastructure rely on software packages developed
by computational scientists. Every engineering discipline that involves modeling
real-world phenomena needs tools for solving linear systems of equations, finding
eigenvalues, evaluating integrals or performing Fourier transforms. This is why
foundational numerical libraries, such as BLAS, LAPACK, QUADPACK and FFTW,
in addition to higher-level software packages based on them, such as NumPy [78]
and MATLAB [55], are almost omnipresent in the industry.

To suggest that the correctness of these software packages or programs using
them does not matter is not only patently false, but also paints quite a depressing
picture of the field. If practitioners care so little about the correctness of their work
that they consider stronger guarantees to be unnecessary, there are way more serious
issues to be addressed than the missed opportunities afforded by proof engineering.
We can therefore dismiss this argument as needlessly pessimistic.

Relevance Argument In computational sciences, correctness is better established
by some other method than formal specification and proof.

Testing and debugging are popular and effective ways to improve the correctness of
programs, which is why they are prevalent in the industry. However, as effective as
testing may be, it can only ever show the presence of bugs and never their absence

Intersection of Proof Engineering and Computational Sciences 3

[27]. Formal proofs are the only way to demonstrate the absence of bugs1, given that
the proofs actually cover the whole specification.

Even when total absence of bugs is not important, there are still cases, where
formal proofs are worth considering. As the generality of a program increases, so
does the dimensionality of the space its tests need to cover. If the program keeps
growing, testing will eventually become infeasible, because high-dimensional spaces
simply have too much room for bugs to hide in. Throwing more computational
resources at the problem can offer some relief, but it is not a sustainable solution,
because there is always a limit to how much we can compute. So, while this argument
may apply to some cases, it is not universally true.

Insight Argument In computational sciences, no new insights can be gained from
formal specification or proof.

Even though writing formal proofs involves a decent amount of tedious busywork,
it is not a clerical activity completely devoid of creative insight. Organizing existing
knowledge into a form that is as beautiful and understandable as it deserves to be is
both challenging and valuable. If this was not the case, category theory and reverse
mathematics2 would not exist and detailed formalizations of familiar mathematical
concepts would not frequently yield unexpected insights [70].

It seems dubious that computational sciences could be so well-understood that
its formalizations would be fruitless3. You might personally feel this way if you are
only interested in the immediate results and applications of a particular theory, but
otherwise this argument is needlessly narrow-minded.

Performance Argument In computational sciences, performance matters most
and is at odds with formal specification and proof.

One traditional technique for improving the correctness of programs is to litter
them with assertions. Assertions are logical statements of invariants that should
always hold. They are checked during the execution of a program and, if they are
actually found to not hold, the violation is reported and the program is terminated
immediately4.

Assertions are commonly employed in array libraries, where accessing an element
at some index is preceded by a check ensuring that the index is in bounds. They are
also often used to uphold preconditions of numerical routines, such as checking
the condition number of a matrix before performing linear regression or checking

1 The sole exception is a proof by exhaustion, which is a way to test things conclusively. Aside from
model checking, it is rarely used in practice, because interesting things tend to be infinite or at least
very large.
2 Reverse mathematics refers to the investigation of what assumptions are needed to prove known
theorems. In more poetic terms, it is the study of the necessary and the sufficient.
3 Quantum computing seems like a particularly good candidate for formalization due to its coun-
terintuitive nature and close ties with computer science [51].
4 There are also static assertions that are checked during the compilation of a program, but they are
usually much less flexible.

4 Sampsa Kiiskinen

the Courant–Friedrichs–Lewy condition of a discretization scheme before solving a
partial differential equation.

Another traditional technique for improving the correctness of programs is to write
them in a high-level language with a dedicated runtime system. The motivation for
having a runtime system is to automate some of the most tedious and error-prone
programming tasks, so that you can focus your attention on more important matters.

Functional programming languages typically employ runtime systems with
garbage collectors, whose purpose is to take care of allocating and releasing memory.
Meanwhile, runtime systems of scripting languages almost always incorporate dy-
namic type systems, whose operating principle is to tag every object with a reference
to its type.

Since assertions, garbage collectors and dynamic type systems all incur perfor-
mance penalties, it is easy to assume that any method for improving the correctness
of programs has similar drawbacks, but this is not always the case. There exist
modern programming languages with so-called zero-cost abstractions that have no
negative impact on performance. Typestate analysis [9] and proof erasure [66] are
examples of such abstractions. Not only do they not incur performance penalties,
but sometimes they even help the compiler find new performance optimizations. So,
while this argument may have been true in the past, it is gradually becoming less and
less convincing.

Resource Argument In computational sciences, time and money should be in-
vested on something other than formal specification and proof.

Even though proof engineering tools are constantly becoming more accessible,
writing formal specifications and proofs is still quite difficult and laborious. This is
especially true in domains, where prerequisite definitions and lemmas have not yet
been laid out in full. To give a concrete example, it took several months to establish
enough prerequisites in topology, algebra and geometry before perfectoid spaces
could be defined [15].

Luckily, formalization is not a package deal. There is nothing wrong with formal-
izing only the most salient parts of a theory and leaving the rest for later. If you count
humans as a part of the system, this thought also relates to performance argument.
The less time you and your colleagues spend programming, testing, debugging and
reviewing code, the better the overall performance of the system will be. From the
collective standpoint, this argument could go either way.

Feasibility Argument In computational sciences, it would be too difficult or lim-
iting to incorporate formal specification and proof.

It is a reasonable fear that formalization could increase the barrier of entry and
make adopting new ideas more difficult. However, it has been reported that proof
engineering tools make for excellent teaching aids [59] and that the inflexibility
towards changing definitions can be mitigated through the principle of representation
independence [1].

On the flip side, you could argue that it would be too difficult or limiting to not
incorporate formal specification and proof. Whether or not you subscribe to the

Intersection of Proof Engineering and Computational Sciences 5

intuitionistic philosophy of defining mathematics as a mental process, it is undis-
putable that humans can only hold so much information in their heads at once. As
the generality of a program increases, so does the level of abstraction needed to
keep it manageable. Not everything can or even should be understood as arrays of
floating-point numbers.

In terms of rigor, computational sciences sit somewhere between mathematics
and software engineering, so it seems unlikely that we could not overcome the same
challenges as everyone else. Thus, this argument seems like a pointless worry.

3 Closer Investigation

In terms of tools, proof engineering deals with the development and use of interactive
theorem provers (itps), automated theorem provers (atps), program verifiers and
constraint solvers (css). While all of these tools could be useful in various corners
of computational sciences, we want to focus our attention on itps, because they offer
the highest level of generality. This generality is not only apparent in the problems
itps have been used to solve, but also in the way itps can leverage other atps and css
as their subsystems [25].

3.1 Architecture of Interactive Theorem Provers

In the early days, programming languages, such as FORTRAN5 (from 1957) and C
(from 1972), had very simple type systems. Their primary purpose was to tell the
compiler what storage size, alignment and supported operations any variable was
supposed to have. The compiler tracked this information and ensured it remained
consistent throughout the program [16, 42].

Programming languages have evolved a lot since those days. Nowadays, there
exist languages with type systems that are strong enough to express arbitrarily com-
plicated properties. If arbitrariness does not immediately spark your imagination,
you may consider such properties as “this differential equation has a unique solu-
tion”, “this numerical method never diverges” or “this program always halts”. Indeed,
dependently-typed total languages can express the entirety of constructive mathe-
matics due to a principle known as the Curry–Howard correspondence [76]. The
only caveat is that the compiler cannot necessarily find a proof of a given proposition
or tell if the proposition is meaningful; it can only decide whether a given proof is
correct or not.

Some notable itps include Isabelle (from 1986), Coq (from 1989), Agda (from
2007) and Lean (from 2013). They are classified as itps, because they satisfy the de
Bruijn criterion, which requires being able to produce elaborated proof objects that

5 You can infer the era from the name, as lowercase letters were not invented until FORTRAN 77
was superseded by Fortran 90.

6 Sampsa Kiiskinen

a small proof-checking kernel can verify [60]. The architecture of such itps roughly
follows the diagram in figure 1.

User

Metalanguage

Vernacular

Kernel

Programming Language

Bytecode

Machine Code

Editor

Editor

Interpreter

Type Checker Elaborator

Extractor Small Type Checker

ExtractorOptimizer

Compiler

Compiler

Interpreter

Fig. 1 Architecture of interactive theorem provers, where nodes represent the components of the
system and arrows represent the data flow mechanisms between them.

The vernacular is the surface language of the system and therefore appears in
all itps. Users mostly write their programs in the vernacular, which is why it has
to be quite a rich language. The metalanguage is an additional support language
that only appears in some itps. The purpose of the metalanguage is to help write
more complicated vernacular programs and it often comes with more unprincipled
features, such as nontermination, unhygienic macros and reflection. The kernel, as
the name suggests, is at the core of all itps. Vernacular programs are compiled
into kernel programs through a process called elaboration and then checked for
correctness. The resulting kernel programs tend to be large, uninformative and may
only ever exist ephemerally. Their sole purpose is to be type checked and possibly
compiled into another language. The remaining components are common to most
ordinary programming languages.

We shall use Coq as an example of an itp, because it possibly follows this ar-
chitecture most closely. In Coq, the vernacular is a dependently-typed total purely
functional language called Gallina, which looks a lot like ML. Any program written
in Gallina is guaranteed to terminate, because its only control flow abstractions are
structurally recursive functions6. In Coq, the metalanguage is an untyped imperative
language called Ltac7, which bears some resemblence to Bourne shell scripts. Work-
ing with Ltac is similar to using a reversible debugger, in the sense that you change
the state of your program by repeatedly doing and undoing commands. In Coq, the

6 Even well-founded recursion is not primitive, as it is translated into structural recursion through
a clever use of the accessibility predicate [14].
7 The name is sometimes typeset as 𝐿tac and stands for the obvious “language for tactics”. As you
can see, working in this field takes a lot of imagination.

Intersection of Proof Engineering and Computational Sciences 7

kernel is an implementation of the calculus of inductive constructions with some
small modifications [58, 23]. It is intended to be as small and simple as possible,
so that the risk of having bugs in the kernel is minimized. This is very important,
because all of the correctness guarantees afforded by the system hinge on the kernel
being bug-free.

3.2 Theoretical Background

The kernels of all prominent itps to date are based on some flavors of type theory. In
the more conservative camp, Coq and Lean both implement variations of the calculus
of constructions, which is also occasionally called Coquand–Huet type theory [22].
In the more experimental camp, Agda implements both intuitionistic type theory,
which is frequently referred to as just Martin-Löf type theory [53], and cubical type
theory, which is also known as Cohen–Coquand–Huber–Mörtberg type theory [19].
Each of these type theories has enough expressive power to serve as a constructive
foundation of mathematics, even though they have notable differences in the features
they provide. For example, cubical type theory comes with higher-inductive types
[21, 73], while the predicative calculus of inductive constructions supports a universe
of proof-irrelevant propositions [33].

If you wonder why none of the itps implement Zermelo–Fraenkel set theory,
which is widely considered to be the canonical foundation of mathematics, the
reason is mostly coincidental. Nobody has found success with it and the consensus
in the community seems to be that set theory only works in principle, not in practice.
This attitude is also apparent in statements written by experts.

You may consider the development of 𝑉 to be outside [the] scope of mathematics and logic,
but then do not complain when computer scientist[s] fashion it after their technology.

I have never seen any serious proposals for a vernacular8 based on set theory. Or[,] to
put it another way, as soon as we start expanding and transforming set theory to fit the
requirements for 𝑉 , we end up with a theoretical framework that looks a lot like type theory.

— Andrej Bauer [5]

While understanding type theory in depth is way beyond the scope of this text, it
is still helpful to be familiar with its basic parlance. Type theories are conventionally
presented using inference rules9. Each rule is written□/□with a hole for the premises
and a hole for the conclusion. Rules involve two kinds of judgements that can be
placed in a context. Typing judgements are written □ : □ with a hole for the term
and a hole for its type. Equality judgements are written □ ≡ □ with two holes for
the terms that are supposed to be equal. Contexts are written □,□, . . . ,□ with holes
for judgements or other contexts. Hypothetical judgements are written □ ⊢ □ with a
hole for the context and a hole for the judgement.

8 The variable 𝑉 refers to the formal language used for the vernacular.
9 This presentation uses a proof calculus called natural deduction. It is popular, but far from the
only option.

8 Sampsa Kiiskinen

Even though the typing judgement 𝑥 : 𝐴 resembles the set-theoretical membership
proposition 𝑥 ∈ 𝐴 and the equality judgement 𝑥 ≡ 𝑦 resembles the set-theoretical
equality proposition 𝑥 = 𝑦, they are not semantically equivalent. The first big dif-
ference is that types are not sets. While some types, such as that of the integers Z
and that of infinite bit strings N→ 2, can be shown to form sets, many others, such
as that of types U and that of the circle S1, carry more structure. The second big
difference is that judgements are not propositions. While propositions are internal
to the theory, judgements are not, so it is not possible to do such things as form the
negation of a judgement.

Inference rules are quite an abstract concept, so let us illustrate them through a
concrete example. We shall use natural numbers as an example, because they are
both familiar and ubiquitous.

Natural numbers are a type with the formation rule

Γ ⊢ N : U,

the introduction rules

Γ ⊢ 𝑂 : N
Γ ⊢ 𝑛 : N

Γ ⊢ 𝑆(𝑛) : N,

the elimination rule

Γ, 𝑚 : N ⊢ 𝑃(𝑚) : U Γ ⊢ 𝑥 : 𝑃(𝑂)
Γ, 𝑚 : N, 𝑦 : 𝑃(𝑚) ⊢ 𝑓 (𝑚, 𝑦) : 𝑃(𝑆(𝑚)) Γ ⊢ 𝑛 : N

Γ ⊢ ind𝑃 (𝑥, 𝑓 , 𝑛) : 𝑃(𝑛)

and the computation rules

Γ, 𝑚 : N ⊢ 𝑃(𝑚) : U Γ ⊢ 𝑥 : 𝑃(𝑂)
Γ, 𝑚 : N, 𝑦 : 𝑃(𝑚) ⊢ 𝑓 (𝑚, 𝑦) : 𝑃(𝑆(𝑚))

Γ ⊢ ind𝑃 (𝑥, 𝑓 , 𝑂) ≡ 𝑥

Γ, 𝑚 : N ⊢ 𝑃(𝑚) : U Γ ⊢ 𝑥 : 𝑃(𝑂)
Γ, 𝑚 : N, 𝑦 : 𝑃(𝑚) ⊢ 𝑓 (𝑚, 𝑦) : 𝑃(𝑆(𝑚)) Γ ⊢ 𝑛 : N

Γ ⊢ ind𝑃 (𝑥, 𝑓 , 𝑆(𝑛)) ≡ 𝑓 (𝑛, ind𝑃 (𝑥, 𝑓 , 𝑛)).

The introduction rules represent zero and the successor of another natural number,
so any particular natural number can be constructed by applying them repeatedly.
We have

Γ ⊢ 2 : N

Γ ⊢ 2 ≡ 𝑆(𝑆(𝑂))

Γ ⊢ 4 : N

Γ ⊢ 4 ≡ 𝑆(𝑆(𝑆(𝑆(𝑂))))

and so on.

Intersection of Proof Engineering and Computational Sciences 9

The elimination rule represents mathematical induction, so the addition of natural
numbers can be defined by applying it to either parameter. If we pick the first one,
as is convention, we get

Γ, 𝑛 : N, 𝑝 : N ⊢ 𝑛 + 𝑝 : N

Γ, 𝑛 : N, 𝑝 : N ⊢ 𝑛 + 𝑝 ≡ ind𝑚 ↦→N (𝑝, (𝑚, 𝑞) ↦→ 𝑆(𝑞), 𝑛),

which reduces according to the computation rules10.
Informal presentations are rarely as detailed as we have been so far. It usually

suffices to say that natural numbers are an inductive type freely generated by

𝑂 : N 𝑆 : N→ N,

because everything else can be inferred from these generators [3]. It is also sufficient
to define addition by

□ + □ : N × N→ N
𝑂 + 𝑝 ≡ 𝑝

𝑆(𝑛) + 𝑝 ≡ 𝑆(𝑛 + 𝑝),

because pattern matching over structural recursion is equivalent to induction via
elimination rules [20, 18]. We will follow a more informal style like this from here
on out.

3.3 Role of Elaboration

Now that we know how itps are designed, we can discuss the role of elaboration in
them. The purpose of elaboration is to convert mathematical statements expressed
in the vernacular into equivalent statements that can be handled by the kernel.

As before, we shall illustrate an abstract concept through a concrete example. In
the vein of choosing something that is both familiar and ubiquitous, we shall use
elementary group theory as an example.

Consider the following excerpt from a typical textbook on abstract algebra.

If ℎ : 𝐺 → 𝐻 is a group homomorphism, then ℎ (𝑎 + 2 × 𝑏) = ℎ (𝑎) + 2 × ℎ (𝑏) .

If we have done our homework properly and wish to be as terse as possible11, we can
feed this excerpt into Coq almost exactly as it is stated here. This is possible due to
the following mechanisms supported by its vernacular.

10 It is a good exercise for the reader to follow the given rules to deduce 2 + 2 ≡ 4.
11 Being as terse as possible is generally not a good guideline for writing maintainable code, but
that is beside the point.

10 Sampsa Kiiskinen

Existential Variables The constituents of the groups are not introduced explicitly.
We need to assume the existence of the carriers 𝐴 : U and 𝐵 : U, the relations
𝑋 : 𝐴 × 𝐴 → U and 𝑌 : 𝐵 × 𝐵 → U, the identities 𝑥 : 𝐴 and 𝑦 : 𝐵, the inverses
𝑓 : 𝐴 → 𝐴 and 𝑔 : 𝐵 → 𝐵 and the operations 𝑘 : 𝐴× 𝐴 → 𝐴 and 𝑚 : 𝐵×𝐵 → 𝐵

before we can even talk about the homomorphism ℎ : 𝐺 → 𝐻 between the groups
𝐺 : IsGrp𝐴(𝑋, 𝑥, 𝑓 , 𝑘) and 𝐻 : IsGrp𝐵 (𝑌, 𝑦, 𝑔, 𝑚).

Implicit Coercions The typing judgement ℎ : 𝐺 → 𝐻 does not make sense,
because 𝐺 and 𝐻 are groups instead of types. The function in question
is actually defined between the carriers, as in ℎ : 𝐴 → 𝐵, with the ad-
ditional knowledge that it preserves group structure, as evidenced by 𝑀 :
IsGrpHom𝐴,𝐵 (𝑋, 𝑥, 𝑓 , 𝑘,𝑌 , 𝑦, 𝑔, 𝑚, ℎ). We must insert projections from 𝐺 to
𝐴 and 𝐻 to 𝐵 before we can make sense of the typing judgement.

Type Inference The types of the variables 𝑎 and 𝑏 are not specified. However,
from the presence of ℎ(𝑎) and ℎ(𝑏), we can infer that 𝑎 : 𝐴 and 𝑏 : 𝐴.

Implicit Generalization The variables 𝑎 and 𝑏 are introduced without quanti-
fiers12. We should implicitly generalize the equation as if it was stated under the
universal quantifier

∏
𝑎,𝑏:𝐴□.

Notation Scopes The notation 2 may not refer to any particular number, because
the interpretations of notations depend on their scope. We should interpret 2 as
the iterated sum 1 + (1 + 0), where 0, 1 and □ + □ refer to the constituents of an
arbitrary semiring.

Type Classes The notations referring to the constituents of various algebraic struc-
tures are ambiguous. We employ operational type classes, so that we can reuse
the relation □ = □ for 𝑋 and 𝑌 , the identity 0 for 𝑥, 𝑦 and the zero integer, the
inverse −□ for 𝑓 and 𝑔, the operation □ + □ for 𝑘 , 𝑚 and integer addition, the
identity 1 for the unit integer and the action □ × □ for an integer repetition of the
operation.

Implicit Arguments The operations □ = □, 0, 1, □ + □ and □ × □ are not fully
applied. There are implicit arguments that we can unambiguously infer to be
□ =𝐵 □, 0Z, 1Z, □ +Z □, □ +𝐴 □, □ +𝐵 □, □ ×Z,𝐴 □ and □ ×Z,𝐵 □.

Universe Polymorphism The universe levels of any of the sorts U are not given.
We should be able to choose them in such a way that there will be no inconsis-
tencies, such as Girard’s paradox.

After elaboration, the excerpt will have taken roughly the following form.

Let 𝐴 : U0, 𝐵 : U0, 𝑋 : 𝐴 × 𝐴 → U−1, 𝑌 : 𝐵 × 𝐵 → U−1, 𝑥 : 𝐴, 𝑦 : 𝐵, 𝑓 : 𝐴 → 𝐴,
𝑔 : 𝐵 → 𝐵, 𝑘 : 𝐴 × 𝐴 → 𝐴, 𝑚 : 𝐵 × 𝐵 → 𝐵, 𝐺 : IsGrp𝐴 (𝑋, 𝑥, 𝑓 , 𝑘) , 𝐻 :
IsGrp𝐵 (𝑌, 𝑦, 𝑔, 𝑚) , ℎ : 𝐴 → 𝐵 and 𝑀 : IsGrpHom𝐴,𝐵 (𝑋, 𝑥, 𝑓 , 𝑘, 𝑌 , 𝑦, 𝑔, 𝑚, ℎ) . We
can construct the term 𝑠 :

∏
𝑎,𝑏:𝐴𝑌 (ℎ (𝑘 (𝑎, 𝑘 (𝑏, 𝑘 (𝑏, 𝑥)))) , 𝑚(ℎ (𝑎) , 𝑚(ℎ (𝑏) , 𝑚(ℎ (𝑏) , 𝑦))))

or at least refute its nonexistence13.

12 In type theory, universal and existential quantifiers are proof-relevant, which is why they are
written as sums and products.
13 We make a distinction between being able to construct a witness and being able to derive a
contradiction from the lack of a witness, because there is no inference rule that would unify these
notions in the classical way.

Intersection of Proof Engineering and Computational Sciences 11

This form is quite verbose, but consists entirely of pieces we can understand and the
kernel can check.

3.4 Proof Engineering by Example

To show what proof engineering looks like in practice, we shall formalize enough
elementary group theory to state and prove the previously discussed excerpt and
extract useful computational code from it. Even though groups are an important
concept in mathematics and appear in various corners of computational sciences,
formalizing them is not particularly novel [31, 35]. Instead, the point of this adventure
is to demonstrate a proof engineering technique that could be applied to other
interesting concepts, such as exterior algebras and differential equations.

3.4.1 Type-Theoretical Model

We start by building a type-theoretical model of groups. The model has two levels
that are open to extension and enjoy representation independence principles.

The first level is for abstract specifications, describing what it means to be a group.
If there are many such specifications, they must all be equivalent. The second level
is for concrete representations, exhibiting constructions of particular groups. If any
particular group has several different representations, they must all be isomorphic.
The model and its levels are sketched in figure 2.

The design of the model is motivated by category theory. The first level cor-
responds to the category of type classes [77], which is just a subcategory of the
category of types. The second level corresponds to the category of groups. The
levels are related by the instance resolution relation, which you can imagine to be a
functor, even though it is not14.

On the first level of the model, we have various type classes, including one for
abelian groups, one for commutativity and two for groups. If we start from the type
class for abelian groups15 and fully expand all of its constituents, we get

14 It is not a good exercise for the reader to ponder why the instance resolution relation is not a
functor.
15 In classical mathematics, there is the additional requirement that the carrier must be a set, but we
do not include it here.

12 Sampsa Kiiskinen

Type Class
for Abelian Groups

in Universal Algebra

Type Class
for Groups

in Abstract Algebra

Type Class
for Groups

in Universal Algebra

Type Class
for Commutativity

Instance
for the Free Group

Instance
for Unary Integers

Instance
for Binary Integers

Instance
for the Trivial Group

Implication Implication

Equivalence

Resolution

ResolutionResolution
Resolution

ProjectionProjection

Projection

Isomorphism

Projection

Projection

Fig. 2 A type-theoretical model of groups, where nodes represent types and arrows represent
functions between them.

IsAbGrp :
∏
𝐴:U

(𝐴 × 𝐴 → U) × 𝐴 × (𝐴 → 𝐴) × (𝐴 × 𝐴 → 𝐴) → U

IsAbGrp𝐴(𝑋, 𝑥, 𝑓 , 𝑘) ≡

IsRefl𝐴 (𝑋)︷ ︸︸ ︷(∏
𝑦:𝐴

𝑋 (𝑦, 𝑦)
)
×

IsSym𝐴 (𝑋)︷ ︸︸ ︷(∏
𝑦,𝑧:𝐴

𝑋 (𝑦, 𝑧) → 𝑋 (𝑧, 𝑦)
)
×(∏

𝑦,𝑧,𝑤:𝐴
𝑋 (𝑦, 𝑧) × 𝑋 (𝑧, 𝑤) → 𝑋 (𝑦, 𝑤)

)
×(∏

𝑦,𝑧,𝑤:𝐴
𝑋 (𝑘 (𝑦, 𝑘 (𝑧, 𝑤)), 𝑘 (𝑘 (𝑦, 𝑧), 𝑤))

)
×(∏

𝑦,𝑧:𝐴
𝑋 (𝑦, 𝑧) →

∏
𝑤,𝑣:𝐴

𝑋 (𝑤, 𝑣) → 𝑋 (𝑘 (𝑦, 𝑤), 𝑘 (𝑧, 𝑣))
)
×(∏

𝑦:𝐴
𝑋 (𝑘 (𝑥, 𝑦), 𝑦)

)
×
(∏
𝑦:𝐴

𝑋 (𝑘 (𝑦, 𝑥), 𝑦)
)
×(∏

𝑦:𝐴
𝑋 (𝑘 (𝑓 (𝑦), 𝑦), 𝑥)

)
×
(∏
𝑦:𝐴

𝑋 (𝑘 (𝑦, 𝑓 (𝑦)), 𝑥)
)
×(∏

𝑦,𝑧:𝐴
𝑋 (𝑦, 𝑧) → 𝑋 (𝑓 (𝑦), 𝑓 (𝑧))

)
︸ ︷︷ ︸

IsProper1,𝐴 (𝑋, 𝑓)

×
(∏
𝑦,𝑧:𝐴

𝑋 (𝑘 (𝑦, 𝑧), 𝑘 (𝑧, 𝑦))
)
.︸ ︷︷ ︸

IsComm𝐴 (𝑋,𝑘)

Intersection of Proof Engineering and Computational Sciences 13

As you can see, this type class is just a product of the type class for groups and the
type class for commutativity, so we can project either one out with

fst :
∏

𝐴,𝐵:U
𝐴 × 𝐵 → 𝐴 snd :

∏
𝐴,𝐵:U

𝐴 × 𝐵 → 𝐵.

We have written the type class for groups as it appears in universal algebra, stating
that there exists such a choice function 𝑓 that any element 𝑦 has the unique inverse
𝑓 (𝑦). If instead we wish to write it as it appears in abstract algebra, stating that any
element 𝑦 has the unique inverse 𝑦−1, we can transport the type class along16

choice :
∏

𝐴,𝐵:U

∏
𝑋:𝐴×𝐵→U

(∏
𝑦:𝐴

∑︁
𝑧:𝐵

𝑋 (𝑦, 𝑧)
)
≃
(∑︁
𝑓 :𝐴→𝐵

∏
𝑦:𝐴

𝑋 (𝑦, 𝑓 (𝑦))
)
.

This gives us representation independence with respect to specifications.
On the second level of the model, we have representations for various groups,

including one for the free group, one for the trivial group and two for the group of
integers. One of the integer representations is established over unary integers, which
is an inductive type freely generated by

0 : Z
+□ : P→ Z
−□ : P→ Z

1 : P
1 + □ : P→ P.

The other integer representation is established over binary integers, which is another
inductive type freely generated by

0 : Zb

+□ : Pb → Zb

−□ : Pb → Zb

1 : Pb

2 × □ : Pb → Pb

1 + 2 × □ : Pb → Pb.

The representations are isomorphic, as witnessed by encoding and decoding. If we
have written a group over Z and instead wish to have the equivalent group over Zb,
we can transport the structure along

code : Z ≃ Zb.

This gives us representation independence with respect to carriers.
The trivial group is defined over the unit type, which is an inductive type freely

generated by

0 : 1.

The trivial group is the terminal object in the category of groups, so any group can
be projected into it with a specialization of the constant map

16 Unlike classical choice, which is an axiom, constructive choice is just a theorem.

14 Sampsa Kiiskinen

const(0) :
∏
𝐴:U

𝐴 → 1.

The free group is defined over finite sequences with some restrictions on adjacent
elements, making it a bit more elaborate to construct. We shall use lists as our finite
sequences, because they are the simplest structure that works17. Lists are defined as
an inductive type family freely generated by

∅ :
∏
𝐴:U

𝐴∗ □ ⊳ □ :
∏
𝐴:U

𝐴 × 𝐴∗ → 𝐴∗.

It is also customary to define the functions

fold :
∏
𝐴:U

𝐴 × (𝐴 × 𝐴 → 𝐴) → (𝐴∗ → 𝐴)

map :
∏

𝐴,𝐵:U
(𝐴 → 𝐵) → (𝐴∗ → 𝐵∗)

zip :
∏

𝐴,𝐵:U
𝐴∗ × 𝐵∗ → (𝐴 × 𝐵)∗

app :
∏
𝐴:U

𝐴∗ × 𝐴∗ → 𝐴∗

rev :
∏
𝐴:U

𝐴∗ → 𝐴∗

drop : N→
∏
𝐴:U

𝐴∗ → 𝐴∗

to fold a sequence with a monoid, map a function over a sequence, zip two sequences
together, append two sequences, reverse a sequence and drop a finite number of
elements from a sequence18.

Now, suppose 𝐴 is a discrete type. The free group generated by 𝐴 is the group
defined over 𝐹 (𝐴), which we decree to be

𝜑𝐴 : (2 × 𝐴) × (2 × 𝐴) → 2
𝜑((𝑖, 𝑥), (𝑗 , 𝑦)) ≡ ¬(𝑖 ≠ 𝑗 ∧ 𝑥 = 𝑦)

𝐹 (𝐴) : U
𝐹 (𝐴) ≡

∑︁
𝑠:(2×𝐴)∗

fold(1,□ ∧ □,︸ ︷︷ ︸
and

map(𝜑, zip(𝑠, drop(1) (𝑠)))).

The idea is that (2 × 𝐴)∗ is a finite sequence that is well-formed according to the
adjacency relation 𝜑. Each 2× 𝐴 in the sequence records an element of type 𝐴 with a
flag of type 2 indicating whether the element is inverted. We require 𝐴 to be discrete,
so that we can use Hedberg’s theorem19 to prove that 𝐴 is a set and that 𝐹 (𝐴) is a
trivial subset of (2 × 𝐴)∗.

The free group is the initial object in the category of groups, so it can be projected
into any other group with the appropriate evaluation map. Suppose 𝑓 : 𝐴 → Z

17 Finger trees would have asymptotically better performance characteristics, but they would also
be more complicated to define and reason about [39].
18 It is a good exercise for the reader to write the definitions, because they are standard in literature
on functional programming [54].
19 The theorem states that every discrete type is a set or, in other words, that every type with
decidable equality has unique identity proofs [47]. The converse is not true, as the type of infinite
bit strings N→ 2 forms a set, but does not admit decidable equality.

Intersection of Proof Engineering and Computational Sciences 15

assigns an integer value to every inhabitant of some discrete type 𝐴. The free group
over 𝐴 can be projected into the group over Z with the evaluation map 𝑒(𝑓), which
we deem

Y(𝑓) : 2 × 𝐴 → Z
Y(𝑓) (0, 𝑥) ≡ 𝑓 (𝑥)
Y(𝑓) (1, 𝑥) ≡ − 𝑓 (𝑥)

𝑒(𝑓) : 𝐹 (𝐴) → Z
𝑒(𝑓) (𝑠) ≡ fold(0,□ + □,︸ ︷︷ ︸

sum

map(Y(𝑓), 𝑠)).

This gives us representation independence with respect to structures.

3.4.2 Implementation in an Interactive Theorem Prover

Having built a model of groups, we can implement it in an itp. Our implementation
is written in Coq and inspired by the operative–predicative type class design [65,
67]. We mainly diverge from the original design in the way we decouple operational
classes from predicative ones, export instances and bind notations.

While it would be nice to paint an honest picture of the implementation by
showing every little detail, we can only fit so much on this napkin. Despite our best
efforts to be terse, we have to omit some parts, as indicated by the discontinuous line
numbers and admitted proofs. The curious reader can find the full implementation
in the project repository [44].

As we saw on the first level of the model, groups are just monoids with inverses
that are proper with respect to the underlying equivalence relation. We can formalize
this notion of groups by combining IsMon, IsInvLR and IsProper.

16 Class IsGrp (A : Type) (X : A -> A -> Prop)

17 (x : A) (f : A -> A) (k : A -> A -> A) : Prop := {

18 grp_is_mon :> IsMon X x k;

19 grp_is_inv_l_r :> IsInvLR X x f k;

20 grp_is_proper :> IsProper (X ==> X) f;

21 }.

We could further formalize the notion of abelian groups by combining IsGrp and
IsComm.

23 Class IsComm (A : Type) (X : A -> A -> Prop) (k : A -> A -> A) : Prop :=

24 comm (x y : A) : X (k x y) (k y x).

25

26 Class IsAbGrp (A : Type) (X : A -> A -> Prop)

27 (x : A) (f : A -> A) (k : A -> A -> A) : Prop := {

28 ab_grp_is_grp :> IsGrp X x f k;

29 ab_grp_is_comm :> IsComm X k;

30 }.

These type classes make up the predicative part of the design, because they map
types and terms into propositions with no computational content. Other type classes
that map types and terms into other types make up the operative part.

16 Sampsa Kiiskinen

Groups have several other properties, each of which can be proven by instantiating
the appropriate type class. We set up a context, where the group structure and the
notations for its constituents are established through operational classes20.

32 Section Context.

33

34 Context (A : Type)

35 (X : A -> A -> Prop) (x : A) (f : A -> A) (k : A -> A -> A)

36 ‘{!IsGrp X x f k}.

37

38 #[local] Instance has_eq_rel : HasEqRel A := X.

39 #[local] Instance has_null_op : HasNullOp A := x.

40 #[local] Instance has_un_op : HasUnOp A := f.

41 #[local] Instance has_bin_op : HasBinOp A := k.

In this context, we can use the tactic facilities of the metalanguage to show that −□
is injective.

49 #[export] Instance is_inj : IsInj X f.

50 Proof.

51 note. intros y z a.

52 rewrite <- (unl_l z). rewrite <- (inv_r y).

53 rewrite a. rewrite <- (assoc y (- z) z).

54 rewrite (inv_l z). rewrite (unl_r y).

55 reflexivity. Qed.

56

57 End Context.

We could similarly show that 0 is a fixed point of −□, −□ is an involution, □ + □ is
cancellative on both sides and −□ antidistributes over □ + □.

The tactics tell the interpreter what reasoning steps it should take in order to prove
the goal. After line 52, the proof is still in an incomplete state, which is presented to
the user as follows.

1 A : Type

2 X : A -> A -> Prop

3 x : A

4 f : A -> A

5 k : A -> A -> A

6 H : IsGrp _==_ 0 -_ _+_

7 y, z : A

8 a : - y == - z

9 --------------------------------------

10 y == (y + (- y)) + z

Much like inference rules, the proof state is written□/□with a hole for the hypotheses
and a hole for the goal. It may look daunting, but that is just an illusion caused by
its verbosity. We do not need to care about the hypotheses before H, because they
are contextual information we can access through the operational classes. We cannot

20 The expert reader might wonder why we go through the extra ceremony to declare the operational
instances local. We do this, because it makes the parameters of predicative classes independent of
operational classes and makes the distinction between projected and derived instances of predicative
classes almost opaque to the user.

Intersection of Proof Engineering and Computational Sciences 17

refer to H itself either, because we introduced it without a name on line 36. We could
also infer y and z ourselves, because they are mentioned in the next hypothesis. Thus,
the hypothesis a and the goal are the only things that really matter.

Moving on, group homomorphisms are functions between groups that preserve
their operations and equivalences. We can formalize this notion of group homomor-
phisms by combining IsGrp, IsBinPres and IsProper.

59 Class IsGrpHom (A B : Type)

60 (X : A -> A -> Prop) (x : A) (f : A -> A) (k : A -> A -> A)

61 (Y : B -> B -> Prop) (y : B) (g : B -> B) (m : B -> B -> B)

62 (h : A -> B) : Prop := {

63 grp_hom_dom_is_grp : IsGrp X x f k;

64 grp_hom_codom_is_grp : IsGrp Y y g m;

65 grp_hom_hom_is_bin_pres :> IsBinPres Y k m h;

66 grp_hom_hom_is_proper :> IsProper (X ==> Y) h;

67 }.

We could once again set up a context and show that the function preserves both 0
and −□.

Before turning our attention to the second level of the model, we define a tactic
called ecrush, which repeatedly tries to solve a goal using artificial intelligence21

or to split the remaining goals into smaller subgoals that can be dispatched using
simple case analyses or known arithmetic lemmas.

84 Ltac ecrush :=

85 repeat (try typeclasses eauto; esplit);

86 hnf in *; repeat match goal with

87 | |- exists _ : unit, _ => exists tt

88 | |- forall _ : unit, _ => intros ?

89 | x : unit |- _ => destruct x

90 end; eauto with zarith.

This tactic can automatically construct the group of integers from the appropriate
constituents.

148 Module BinaryIntegers.

149

150 Module Additive.

151

152 #[export] Instance has_eq_rel : HasEqRel Z := eq.

153 #[export] Instance has_null_op : HasNullOp Z := Z.zero.

154 #[export] Instance has_un_op : HasUnOp Z := Z.opp.

155 #[export] Instance has_bin_op : HasBinOp Z := Z.add.

156

157 #[export] Instance is_grp : IsGrp eq Z.zero Z.opp Z.add.

158 Proof. ecrush. Qed.

159

160 End Additive.

161

162 End BinaryIntegers.

21 When we say artificial intelligence, we mean logic programming, although machine learning can
also be used to guide proof search.

18 Sampsa Kiiskinen

The same applies to the trivial group.
194 Module Trivial.

195

196 Equations tt1 (x : unit) : unit :=

197 tt1 _ := tt.

198

199 Equations tt2 (x y : unit) : unit :=

200 tt2 _ _ := tt.

201

202 #[export] Instance has_eq_rel : HasEqRel unit := eq.

203 #[export] Instance has_null_op : HasNullOp unit := tt.

204 #[export] Instance has_un_op : HasUnOp unit := tt1.

205 #[export] Instance has_bin_op : HasBinOp unit := tt2.

206

207 #[export] Instance is_grp : IsGrp eq tt tt1 tt2.

208 Proof. ecrush. Qed.

209

210 End Trivial.

While formalizing the trivial group is completely straightforward, doing the same
to the group of integers comes with one notable design consideration. We need to
put the operational instances into their own little module, so that we can avoid the
ambiguity between the additive monoid making up the group and the multiplicative
monoid that could be defined otherwise. With this module structure, either monoid
can be imported into a context or both can be brought together to form a semiring.

Besides forming a group, integers can act on other groups through repetition.
These repetitions appear in additive structures as multiples and in multiplicative
structures as powers. We can formalize this notion of repetition as rep.

164 Section Context.

165

166 Context (A : Type)

167 {X : HasEqRel A} {x : HasNullOp A} {f : HasUnOp A} {k : HasBinOp A}

168 ‘{!IsGrp X x f k}.

169

170 Equations rep (n : Z) (y : A) : A :=

171 rep Z0 y := 0;

172 rep (Zpos n) y := Pos.iter_op _+_ n y;

173 rep (Zneg n) y := - Pos.iter_op _+_ n y.

174

175 End Context.

Even though we use additive structures as a motif for the notations, the resulting
definition is actually more general, because the notations are forgotten at the end
of the context. Now, while repetition is not a group action, its fibers are group
homomorphisms, so we could set up a context and show that 𝑛×□ is indeed a group
homomorphism for every 𝑛 : Z.

177 Section Context.

178

179 Context (A : Type)

180 (X : A -> A -> Prop) (x : A) (f : A -> A) (k : A -> A -> A)

Intersection of Proof Engineering and Computational Sciences 19

181 ‘{!IsGrp X x f k}.

182

183 #[local] Instance has_eq_rel : HasEqRel A := X.

184 #[local] Instance has_null_op : HasNullOp A := x.

185 #[local] Instance has_un_op : HasUnOp A := f.

186 #[local] Instance has_bin_op : HasBinOp A := k.

187

188 #[local] Instance is_grp_hom (y : A) :

189 IsGrpHom eq Z.zero Z.opp Z.add X x f k (flip rep y).

190 Proof. Admitted.

191

192 End Context.

The free group is constructed in three steps. First, we define the carrier and prove
that it behaves as expected. Then, we implement the operations and verify that they
preserve the expected behavior. Finally, we show that the carrier and the operations
form a group. On every step, we employ an equational reasoning plugin [64] to
simplify dealing with partial and recursive definitions.

We can formalize the carrier of the free group as the dependent pair free.
92 Module Free.

93

94 Section Context.

95

96 Context (A : Type) {e : HasEqDec A}.

97

98 Equations wfb_def (a b : bool * A) : bool :=

99 wfb_def (i, x) (j, y) := decide (˜ (i <> j /\ x = y)).

100

101 Equations wfb (s : list (bool * A)) : bool :=

102 wfb s := decide (Forall (prod_uncurry wfb_def) (combine s (skipn 1 s))).

103

104 Equations free : Type :=

105 free := {s : list (bool * A) | wfb s}.

These definitions relate to the model in that Forall is the composition of and and
map, prod_uncurry wfb_def is 𝜑, combine is zip and skipn is drop. It follows
from uip that A is a set and that free is a trivial subset of list (bool * A).

107 Lemma free_iff (x y : free) : x = y <-> proj1_sig x = proj1_sig y.

108 Proof.

109 destruct x as [s a], y as [t b]. unfold proj1_sig. split.

110 - intros c. inversion c as [d]. subst t. reflexivity.

111 - intros d. subst t. f_equal. apply uip. Qed.

We can further formalize the operations as the functions null, un and bin.
113 Equations null : free :=

114 null := ([]; _).

115 Next Obligation. ecrush. Qed.

116

117 Equations un (x : free) : free :=

118 un (s; _) := (map (prod_bimap negb id) (rev s); _).

119 Next Obligation. Admitted.

120

20 Sampsa Kiiskinen

121 Equations bin_fix (s t : list (bool * A)) :

122 list (bool * A) * list (bool * A) by struct t :=

123 bin_fix [] t := ([], t);

124 bin_fix s [] := (s, []);

125 bin_fix (a :: s) (b :: t) with wfb_def a b :=

126 | true => (a :: s, b :: t)

127 | false => bin_fix s t.

128

129 Equations bin (x y : free) : free :=

130 bin (s; _) (t; _) with bin_fix (rev s) t :=

131 | (u, v) => (app (rev u) v; _).

132 Next Obligation. Admitted.

These definitions relate to the model in that [] is∅, _ :: _ is□⊳□ and prod_bimap
is another variation of map. The only thing left to do is to show that we have a group
on our hands.

134 #[export] Instance has_eq_rel : HasEqRel free := eq.

135 #[export] Instance has_null_op : HasNullOp free := null.

136 #[export] Instance has_un_op : HasUnOp free := un.

137 #[export] Instance has_bin_op : HasBinOp free := bin.

138

139 #[export] Instance is_grp : IsGrp eq null un bin.

140 Proof. Admitted.

141

142 End Context.

145

146 End Free.

Except, we cheat a little bit and admit the proofs on lines 119, 132 and 140 due to their
length. Even though the admissions are ordinary proofs by induction, they cannot be
automatically discovered by the compiler and, thus, require user interaction. If we
wanted to show them here, we would have to expend anything from ten to a hundred
lines to write each one22.

We can now define the projections between our groups and show that they are truly
structure-preserving. This is perhaps the most important part of the implementation
in terms of practical applications, because it gives us the tools to embed meaningful
concepts into meaningless data structures. We can formalize the evaluation map
from the free group into the group of integers as eval_Z_add.

212 Module Initial.

213

214 Export Free BinaryIntegers.Additive.

215

216 Section Context.

217

22 If you really wanted to prove the obligation on line 132, you would have to restate the definition
using the inspect pattern, because otherwise your hypotheses would be too weak.

130 bin (s; _) (t; _) with (bin_fix (rev s) t; eq_refl) :=

131 | ((u, v); _) => (app (rev u) v; _).

Intersection of Proof Engineering and Computational Sciences 21

218 Context (A : Type) {e : HasEqDec A} (f : A -> Z).

219

220 Equations eval_Z_add_def (a : bool * A) : Z :=

221 eval_Z_add_def (false, x) := f x;

222 eval_Z_add_def (true, x) := - f x.

223

224 Equations eval_Z_add (x : free A) : Z :=

225 eval_Z_add (s; _) := fold_right _+_ 0 (map eval_Z_add_def s).

These definitions relate to the model in that e witnesses that 𝐴 is discrete,
eval_Z_add_def is Y(𝑓) and eval_Z_add is 𝑒(𝑓). We can finally prove that
the evaluation map is truly a group homomorphism.

227 #[local] Instance is_grp_hom :

228 IsGrpHom eq null un bin eq Z.zero Z.opp Z.add eval_Z_add.

229 Proof. Admitted.

230

231 End Context.

232

233 End Initial.

Except, we admit the proof on line 229 for the same reason as before. If we wanted
to give the same treatment to the trivial group, we would not have to admit anything.
We could simply formalize the constant map from any group into the trivial group
as const tt and prove its properties with ecrush.

235 Module Terminal.

236

237 Export Trivial.

238

239 Section Context.

240

241 Context (A : Type)

242 (X : A -> A -> Prop) (x : A) (f : A -> A) (k : A -> A -> A)

243 ‘{!IsGrp X x f k}.

244

245 #[local] Instance is_grp_hom :

246 IsGrpHom X x f k eq tt tt1 tt2 (const tt).

247 Proof. ecrush. Qed.

248

249 End Context.

250

251 End Terminal.

This concludes our implementation of the model. Without any of its dependencies,
it is 256 lines long with about as much reserved for the admitted proofs. At this point,
we could easily prove the previously discussed excerpt in a just a few lines by setting
up the appropriate context and invoking four well-chosen tactics23.

23 It is a good exercise for the reader to daydream about the way to prove the excerpt.

22 Sampsa Kiiskinen

3.4.3 Extraction and Compilation into Machine Code

Once the implementation has passed type checking, we can carry on to extract code
from it. The purpose of extraction is to erase all the proofs and translate the remaining
pieces into a computationally usable form. This form is typically a module in another
programming language, which can be interpreted or compiled into machine code.

We can ask Coq to extract an OCaml module from our implementation by using
the rules listed in ExtrOcamlBasic and ExtrOcamlZBigInt.

255 From Coq Require Import Extraction ExtrOcamlBasic ExtrOcamlZBigInt.

256

257 Extraction "groupTheory.ml" Groups.

We choose OCaml as the extraction language, because Coq itself is implemented in it
and, being a dialect of ML, it is familiar and has pleasantly predictable performance
characteristics. The extracted module comes with the following interface.

1 module Groups : sig

2 module Free : sig

3 val wfb_def : ’a eqDec -> (bool * ’a) -> (bool * ’a) -> bool

4 val wfb : ’a eqDec -> (bool * ’a) list -> bool

5 type ’a free = (bool * ’a) list

6 val null : ’a eqDec -> ’a free

7 val un : ’a eqDec -> ’a free -> ’a free

8 val bin_fix :

9 ’a eqDec -> (bool * ’a) list -> (bool * ’a) list ->

10 (bool * ’a) list * (bool * ’a) list

11 val bin : ’a eqDec -> ’a free -> ’a free -> ’a free

12 val has_null_op : ’a eqDec -> ’a free hasNullOp

13 val has_un_op : ’a eqDec -> ’a free hasUnOp

14 val has_bin_op : ’a eqDec -> ’a free hasBinOp

15 end

16 module BinaryIntegers : sig

17 module Additive : sig

18 val has_null_op : Big.big_int hasNullOp

19 val has_un_op : Big.big_int hasUnOp

20 val has_bin_op : Big.big_int hasBinOp

21 end

22 val rep : ’a hasNullOp -> ’a hasUnOp -> ’a hasBinOp ->

23 Big.big_int -> ’a -> ’a

24 end

25 module Trivial : sig

26 val tt1 : unit -> unit

27 val tt2 : unit -> unit -> unit

28 val unit_has_null_op : unit hasNullOp

29 val unit_has_un_op : unit hasUnOp

30 val unit_has_bin_op : unit hasBinOp

31 end

32 module Initial : sig

33 val eval_Z_add_def : (’a -> Big.big_int) ->

34 (bool * ’a) -> Big.big_int

35 val eval_Z_add : ’a eqDec -> (’a -> Big.big_int) ->

36 ’a Free.free -> Big.big_int

Intersection of Proof Engineering and Computational Sciences 23

37 end

38 module Terminal : sig

39 end

40 end

We can further compile the extracted module into less than 28 kiB of machine code
and link it with the standard library to produce an executable less than 1.2 MiB in
size. While the size itself is not indicative of good performance, it at least suggests
that the result is not bloated.

As a case study, consider taking the abstract group expression ((𝑥 × 𝑦) × 1) ×
(𝑦 × 𝑦)−1, simplifying it into 𝑥 × 𝑦−1, projecting it into the group of integers and
evaluating it in a context, where 𝑥 ≡ 42 and 𝑦 ≡ 13. We can leverage the extracted
module to do this as follows.

3 let main () =

4 let open Groups in

5 let e = Free.bin (=)

6 (Free.bin (=) [(false, ’x’); (false, ’y’)] (Free.null (=)))

7 (Free.un (=) [(false, ’y’); (false, ’y’)]) in

8 let g = function

9 | ’x’ -> Big.of_int 42

10 | ’y’ -> Big.of_int 13

11 | _ -> raise Not_found in

12 Printf.printf "%s\n" (Big.to_string (Initial.eval_Z_add (=) g e))

This program prints 29 and exits, just as you would expect.
It should not surprise anybody that we can do simple arithmetic on small inte-

gers, but it might raise some eyebrows that we can bring symbolic manipulation
and numerical computation together in such an elegant way. We can simultaneously
minimize the burden of numerical computations by doing as many symbolic manip-
ulations as possible and guarantee that the result is correct by writing proofs that are
erased during compilation.

Even though the result is guaranteed to be correct, the old adage “garbage in,
garbage out” still applies. Since extraction erases all the proofs and we did not
explicitly add any assertions, the user is solely responsible for providing valid inputs
to the extracted module. In our case study of the most roundabout way to print 29, the
expressions 𝑥 × 𝑦 and 𝑦 × 𝑦 given by the user had to be well-formed or the behavior
of the program would have been undefined24. While it would have been possible
to validate inputs before using them, we deliberately avoided doing so, because it
would have been unnecessary and potentially detrimental to performance.

4 Unexploited Opportunities?

We believe proof engineering tools and techniques could truly change the way
computational sciences are studied and communicated. In order to explore what this

24 Undefined behavior is bad, because it means that the program could do literally anything,
including quietly producing a wrong result, crashing and setting a nearby printer on fire.

24 Sampsa Kiiskinen

change could look like, we shall compare a traditional way to conduct a research
project with a new way we consider worth trying. The comparison is, of course,
exaggerated, but that is unavoidable, because nuance would only serve to make it
incomprehensible.

If you want to bake a traditional research project in computational sciences, you
can follow this recipe.

1. Choose an interesting problem.
2. Use pen and paper to derive an algorithm for solving your problem.
3. Write a FORTRAN or C program25 that implements your algorithm efficiently.
4. Test your program thoroughly.
5. If defects are found, fix them and go back to step 2 or 3. Otherwise, assume that

no significant defects remain.
6. Run your program and gather the results.
7. Publish your results and hopefully the source code of your program as well.
8. If your publication is not conclusive, go back to step 2. Otherwise, move on to

the next problem.

However, if you want to be more radical, we suggest trying this new recipe instead.

1. Choose an interesting problem.
2. Use Coq to specify an algorithm for solving your problem.
3. Write proofs in Coq to implement and verify the correctness of your algorithm.
4. Mechanically extract OCaml code26 from your implementation and choose one

of the following options.

a. Tune the extraction mechanism of Coq and the optimizer of the OCaml com-
piler until you can do all your computations using the extracted code.

b. Link the extracted code with a C or FORTRAN program that can handle the
most demanding computations, but do the rest of your computations using the
extracted code.

c. Use the extracted code as a testing oracle [68] for another C or FORTRAN
program that can do all your computations.

5. Run your program and gather the results.
6. Publish your results and the source code of your program, because you cannot

meaningfully separate them anymore.
7. If your publication is not conclusive, go back to step 2. Otherwise, move on to

the next problem.

There are good reasons for and against the new recipe, just like there once were about
the traditional one.

25 When we say FORTRAN or C, we refer to any of their dialects, derivatives or wrappers, such as
Fortran 95, C++, Julia or Python.
26 We use Coq to produce OCaml, but you could just as well use Isabelle to produce Scala, Agda
to produce Haskell or what have you.

Intersection of Proof Engineering and Computational Sciences 25

4.1 Reasons to Get Excited

Consider formalizing a general computational method, such as discrete exterior
calculus (dec) [40], finite element method (fem) [71] or discrete element method
(dem) [82]. At best, such a formalization could allow us to state a boundary value
problem as it is written on paper, simplify the statement in a way that is guaranteed
to be correct and solve the simplified form either by realizing it through extraction or
by feeding it into an existing numerical solver. Any assumptions about the method
would be explicit in its specification and proven to be upheld by its implementation,
making accidental misuse of the method nearly impossible27.

Besides giving us more correctness guarantees, formalizing a general method
would also help us develop it further. The foundations and possible generalizations
of dec are still vague and poorly understood [43], while fem and dem have so
many variations that it is difficult to keep track of them all [7]. With luck, a proper
formalization could unify some of these methods by revealing them to be special
cases of a more general theory.

Beauty and elegance are not the only reasons to pursue the unification of theories.
It is a recurring problem in mathematics that seemingly novel ideas are found to be
recastings of old ideas [69] or even plain wrong [74]. To make matters worse, these
problems become progressively harder to notice as the level of abstraction increases
or the clarity of communication deteriorates. Formalization helps us avoid these
problems by forcing everyone to uphold a certain standard of rigor and openness
in their communications. The emphasis on constructive foundations also pushes
everyone towards being explicit about the computational content of their proofs.
This philosophy is known to annoy some mathematicians [10], but fits computational
scientists like a glove.

If you are still unconvinced that formalizing anything could be a good idea,
consider the personal anecdote that, in our experience, it is really fun. Getting an itp
to accept your proof feels like playing a game and truly caresses your sensibilities if
you enjoy logic puzzles and functional programming.

4.2 Reasons to Remain Skeptical

Since all prominent itps have constructive foundations and it is only possible to
extract code from definitions that do not use classical axioms, learning to work
with them can be difficult for people who are used to classical objects, such as real
numbers or smooth manifolds. It is almost a rite of passage for newcomers to realize
how useless real analysis is for computing anything. Computational methods always
deal with rational approximations, while real analysis can only tell us about the limit.

27 Unlike people working in software security, we do not need to worry about deliberate misuse,
because our only adversary is reality.

26 Sampsa Kiiskinen

Books [11] and theses [24] have been written on constructive analysis, but they are
much more intricate and less popular than their classical counterparts.

Even in the realm of constructive mathematics, some things can be tricky to
define inside type theory. Equality is one of them [70] and this issue also came
up in our investigation of groups. We defined groups with respect to an arbitrary
equivalence relation, which made the definition twice as large as it really needed
to be, because we had to explicitly establish that −□ and □ + □ indeed preserve
equivalences. The proliferation of these kinds of properties eventually leads to a
problem that is colloquially known as setoid hell [4]; it is a place, where you have to
manually witness the respectfulness of every operation with respect to every other
relation. Univalent type theories, such as homotopy type theory and cubical type
theory, alleviate the setoid problem by strengthening the concept of equality, but
they are still otherwise quite immature.

Regardless of the type theory that is used, writing formal proofs in an itp is hard
work. While this is unlikely to change in the foreseeable future, more and more
common tasks can be automated as time goes on. There are decision procedures
for intuitionistic propositional calculus [28, 29] and quantifier-free fragments of
integer arithmetics [8] as well as integrated atps for boolean satisfiability problems
[25]. Artificial intelligence also plays a dual role: logic programming can already
be used to guide heuristic reasoning [62] and the use of machine learning is being
investigated for more intelligent proof search [46].

While performance is not a theoretical obstacle for formalizing computational
methods, it is not a trivial concern either. It can be challenging to keep the perfor-
mance of an itp at a usable level, as the ambitions of its users and the scale of their
developments grow [36]. Attempts to solve differential equations without relying on
code extraction have not been able to reach satisfactory precision [52]. Extraction is
not a silver bullet either, as it takes skill to manage the performance characteristics
of extracted code [57, 49, 50]. However, as difficult as software engineering may
be, it has been demonstrated that deeply-embedded domain-specific languages are
excellent tools for abstract computational problems, such as performing automatic
differentiation [30] or designing electronic circuits [81]. Even in general, these dif-
ficulties do not seem to be stopping people from bringing functional programming
into computational sciences [79, 38].

5 Conclusions

Proof engineering does not seem to be unfit for computational sciences in any out-
standing way. On the contrary, their intersection could actually be quite fruitful.
Computational scientists would get new tools and techniques for improving the
quality of their programs and proof engineers would benefit from testing their de-
velopments in a domain that aligns so well with their philosophy. Collectively, we
could get improved confidence in our results, reducing anxiety and shifting some of
the burden from reviewers to computers.

Intersection of Proof Engineering and Computational Sciences 27

There are challenges to be overcome, but they all seem to be tractable with the
current state of the art. Ideally, we want to see a world, where the computer is not
just a worker, but a companion.

Acknowledgements

I would like to thank my friends and colleagues Paolo Giarrusso, Suvi Lahtinen
and Fabi Prezja for encouragement and minor feedback on this text. I must also
acknowledge Pekka Neittaanmäki for showing interest in my research and letting me
crash his parties.

References

[1] Carlo Angiuli et al. “Internalizing Representation Independence with Univa-
lence”. In: Proceedings of the ACM on Programming Languages (Jan. 2021).
Ed. by ACM. Vol. 5. POPL. ACM, 2021, pp. 12/1–30.

[2] Alasdair Armstrong et al. “ISA Semantics for ARMv8-a, RISC-v, and CHERI-
MIPS”. In: Proceedings of the ACM on Programming Languages (Jan. 2019).
Ed. by ACM. Vol. 3. POPL. ACM, 2019, pp. 71/1–31.

[3] Steve Awodey, Nicola Gambino, and Kristina Sojakova. “Inductive Types in
Homotopy Type Theory”. In: 2012 27th Annual IEEE Symposium on Logic
in Computer Science (June 2012). Ed. by IEEE. Dubrovnik, Croatia: IEEE,
2012, pp. 95–104.

[4] Gilles Barthe, Venanzio Capretta, and Olivier Pons. “Setoids in Type Theory”.
In: Journal of Functional Programming 13.2 (2003). Special Issue on “Logical
Frameworks and Metalanguages”, pp. 261–293.

[5] Andrej Bauer. What makes dependent type theory more suitable than set
theory for proof assistants? Nov. 20, 2020. eprint: 376973. url: https:
//mathoverflow.net/q/376973.

[6] Andrej Bauer et al. “The HoTT Library: A Formalization of Homotopy Type
Theory in Coq”. In: Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs (Jan. 2017). Ed. by ACM. Paris, France: ACM,
2017, pp. 164–172.

[7] Ted Belytschko, Robert Gracie, and Giulio Ventura. “A Review of Extended/-
Generalized Finite Element Methods for Material Modeling”. In: Modelling
and Simulation in Materials Science and Engineering 17.4 (2009), p. 043001.

[8] Frédéric Besson. “Fast Reflexive Arithmetic Tactics the Linear Case and
Beyond”. In: Types for Proofs and Programs (Apr. 2006). Ed. by Thorsten Al-
tenkirch and Conor McBride. Vol. 4502. Lecture Notes in Computer Science.
Nottingham, UK: Springer, 2006, pp. 48–62.

376973
https://mathoverflow.net/q/376973
https://mathoverflow.net/q/376973

28 Sampsa Kiiskinen

[9] Kevin Bierhoff and Jonathan Aldrich. “Modular Typestate Checking of
Aliased Objects”. In: ACM SIGPLAN Notices 42.10 (2007), pp. 301–320.

[10] Errett Bishop. “The Crisis in Contemporary Mathematics”. In: Historia Math-
ematica 2.4 (1975), pp. 507–517.

[11] Errett Bishop and Douglas Bridges. Constructive Analysis. Springer, 1985.
[12] Steve Bishop et al. “Engineering with Logic: Rigorous Test-Oracle Specifica-

tion and Validation for TCP/IP and the Sockets API”. In: Journal of the ACM
66.1 (2018), pp. 1–77.

[13] Jasmin Blanchette et al. “A Verified SAT Solver Framework with Learn,
Forget, Restart, and Incrementality”. In: 61 (2018), pp. 333–365.

[14] Ana Bove and Venanzio Capretta. “Modelling General Recursion in Type The-
ory”. In: Mathematical Structures in Computer Science 15.4 (2005), pp. 671–
708.

[15] Kevin Buzzard, Johan Commelin, and Patrick Massot. “Formalising Perfec-
toid Spaces”. In: Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (Jan. 2020). Ed. by ACM. New
Orleans, Los Angeles, USA: ACM, 2020, pp. 299–312.

[16] Lloyd Campbell et al. “Fortran 77”. In: Communications of the ACM 21.10
(1978). Ed. by Walt Brainerd, pp. 806–820.

[17] Haogang Chen et al. “Verifying a High-Performance Crash-Safe File System
Using a Tree Specification”. In: Proceedings of the 26th Symposium on Oper-
ating Systems Principles (Oct. 2017). Ed. by ACM. Shanghai, China: ACM,
2017, pp. 270–286.

[18] Jesper Cockx and Andreas Abel. “Elaborating Dependent (Co)pattern Match-
ing”. In: Proceedings of the ACM on Programming Languages (Sept. 2018).
Ed. by ACM. Vol. 2. ICFP. ACM, 2018, pp. 75/1–30.

[19] Cyril Cohen et al. Cubical Type Theory: A Constructive Interpretation of the
Univalence Axiom. 2016. eprint: 1611.02108. url: https://arxiv.org/
abs/1611.02108.

[20] Thierry Coquand. “Pattern Matching with Dependent Types”. In: Proceedings
of the Workshop on Types for Proofs and Programs (June 1992). Ed. by Bengt
Nordström, Kent Petersson, and Gordon Plotkin. Båstad, Sweden: Springer,
1992, pp. 71–84.

[21] Thierry Coquand, Simon Huber, and Anders Mörtberg. “On Higher Induc-
tive Types in Cubical Type Theory”. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (July 2018). Ed. by
ACM. Oxford, UK: ACM, 2018, pp. 255–264.

[22] Thierry Coquand and Gérard Huet. “The Calculus of Constructions”. In:
Information and Computation 76.2-3 (1988), pp. 95–120.

[23] Thierry Coquand and Christine Paulin. “Inductively Defined Types”. In:
COLOG-88 (Dec. 1988). Ed. by Per Martin-Löf and Grigori Mints. Vol. 417.
Lecture Notes in Computer Science. Tallinn, USSR: Springer, 1990, pp. 50–
66.

[24] Luı́s Cruz-Filipe. “Constructive Real Analysis: A Type-Theoretical Formal-
ization and Applications”. PhD thesis. University of Nijmegen, 2004.

1611.02108
https://arxiv.org/abs/1611.02108
https://arxiv.org/abs/1611.02108

Intersection of Proof Engineering and Computational Sciences 29

[25] Lukasz Czajka and Cezary Kaliszyk. “Hammer for Coq: Automation for
Dependent Type Theory”. In: Journal of Automated Reasoning 61.1 (2018),
pp. 423–453.

[26] Mads Dam et al. “Formal Verification of Information Flow Security for a
Simple ARM-Based Separation Kernel”. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security (Nov. 2013).
Ed. by ACM. Berlin, Germany: ACM, 2013, pp. 223–234.

[27] Edsger Wybe Dijkstra. On the Reliability of Programs. EWD 303. 1971.
[28] Roy Dyckhoff. “Contraction-Free Sequent Calculi for Intuitionistic Logic”.

In: The Journal of Symbolic Logic 57.3 (1992), pp. 795–807.
[29] Roy Dyckhoff. “Contraction-Free Sequent Calculi for Intuitionistic Logic: A

Correction”. In: The Journal of Symbolic Logic 83.4 (2018), pp. 1680–1682.
[30] Conal Elliott. “The Simple Essence of Automatic Differentiation”. In: Pro-

ceedings of the ACM on Programming Languages (Sept. 2018). Ed. by ACM.
Vol. 2. ICFP. ACM, 2018, pp. 70/1–29.

[31] François Garillot. “Generic Proof Tools and Finite Group Theory”. PhD thesis.
Ecole Polytechnique X, 2011.

[32] Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. “A Constructive Proof
of the Fundamental Theorem of Algebra without Using the Rationals”. In:
Types for Proofs and Programs (Dec. 2000). Ed. by Paul Callaghan et al.
Vol. 2277. Lecture Notes in Computer Science. Durham, UK: Springer, 2002,
pp. 96–111.

[33] Gaëtan Gilbert et al. “Definitional Proof-Irrelevance without K”. In: Pro-
ceedings of the ACM on Programming Languages (Jan. 2019). Ed. by ACM.
Vol. 3. POPL. ACM, 2019, pp. 3/1–28.

[34] Georges Gonthier. “Formal Proof — The Four-Color Theorem”. In: Notices
of the ACM 55.11 (2008), pp. 1382–1393.

[35] Georges Gonthier et al. “A Machine-Checked Proof of the Odd Order The-
orem”. In: Interactive Theorem Proving (July 2013). Ed. by Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie. Vol. 7998. Lecture Notes in
Computer Science. Rennes, France: Springer, 2013, pp. 163–179.

[36] Jason Gross. “Performance Engineering of Proof-Based Software Systems at
Scale”. PhD thesis. Massachusetts Institute of Technology, 2021.

[37] Thomas Hales et al. “A Revision of the Proof of the Kepler Conjecture”. In:
The Kepler Conjecture. Ed. by Jeffrey Lagarias. Springer, 2011, pp. 341–376.

[38] Troels Henriksen et al. “Futhark: Purely Functional GPU-Programming with
Nested Parallelism and In-Place Array Updates”. In: Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (June 2017). Ed. by ACM. Barcelona, Spain: ACM, 2017, pp. 556–
571.

[39] Ralf Hinze and Ross Paterson. “Finger Trees: A Simple General-Purpose Data
Structure”. In: Journal of Functional Programming 16.2 (2006), pp. 197–217.

[40] Anil Hirani. “Discrete Exterior Calculus”. PhD thesis. California Institute of
Technology, 2003.

30 Sampsa Kiiskinen

[41] Jason Hu and Jacques Carette. “Formalizing Category Theory in Agda”. In:
Proceedings of the 10th ACM SIGPLAN Conference on Certified Programs
and Proofs (Jan. 2021). Ed. by ACM. Denmark: ACM, 2021, pp. 327–342.

[42] Brian Kernighan and Dennis Ritchie. The C Programming Language. 2nd ed.
Prentice Hall, 1988.

[43] Lauri Kettunen et al. “Generalized Finite Difference Schemes with Higher
Order Whitney Forms”. In: ESAIM: Mathematical Modelling and Numerical
Analysis 55.4 (2021), pp. 1439–1460.

[44] Sampsa Kiiskinen. Discrete Exterior Zoo. Jan. 7, 2022. url: https://
github.com/Tuplanolla/dez.

[45] Gerwin Klein et al. “Comprehensive Formal Verification of an OS Microker-
nel”. In: ACM Transactions on Computer Systems 32.1 (2014), pp. 1–70.

[46] Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. “Machine
Learning in Proof General: Interfacing Interfaces”. In: Proceedings 10th Inter-
national Workshop on User Interfaces for Theorem Provers (July 2012). Ed.
by Cezary Kaliszyk and Christoph Lüth. Vol. 7941. Electronic Proceedings
in Theoretical Computer Science. Bremen, Germany: OPA, 2012, pp. 15–41.

[47] Nicolai Kraus et al. “Generalizations of Hedberg’s Theorem”. In: Typed
Lambda Calculi and Applications (June 2013). Ed. by Masahito Hasegawa.
Vol. 7941. Lecture Notes in Computer Science. Eindhoven, Netherlands:
Springer, 2013, pp. 173–188.

[48] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Communi-
cations of the ACM 52.7 (2009), pp. 107–115.

[49] Pierre Letouzey. “A New Extraction for Coq”. In: Types for Proofs and Pro-
grams (Apr. 2002). Ed. by Herman Geuvers and Freek Wiedijk. Vol. 2646.
Lecture Notes in Computer Science. Berg en Dal, Netherlands: Springer,
2002, pp. 200–219.

[50] Pierre Letouzey. “Extraction in Coq: An Overview”. In: Logic and Theory of
Algorithms (June 2008). Ed. by Arnold Beckmann, Costas Dimitracopoulos,
and Benedikt Löwe. Vol. 5028. Lecture Notes in Computer Science. Athens,
Greece: Springer, 2008, pp. 359–369.

[51] Junyi Liu et al. “Formal Verification of Quantum Algorithms Using Quantum
Hoare Logic”. In: Computer Aided Verification (July 2019). Ed. by Isil Dillig
and Serdar Tasiran. Vol. 11562. Lecture Notes in Computer Science. New
York City, New York, USA: Springer, 2019, pp. 187–207.

[52] Evgeny Makarov and Bas Spitters. “The Picard Algorithm for Ordinary Differ-
ential Equations in Coq”. In: Interactive Theorem Proving (July 2013). Ed. by
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie. Vol. 7998.
Lecture Notes in Computer Science. Rennes, France: Springer, 2013, pp. 463–
468.

[53] Per Martin-Löf. “An Intuitionistic Theory of Types”. In: Twenty-Five Years
of Constructive Type Theory 36 (1998), pp. 127–172.

[54] Erik Meijer, Maarten Fokkinga, and Ross Paterson. “Functional Programming
with Bananas, Lenses, Envelopes and Barbed Wire”. In: Conference on Func-
tional Programming Languages and Computer Architecture (Aug. 1991). Ed.

https://github.com/Tuplanolla/dez
https://github.com/Tuplanolla/dez

Intersection of Proof Engineering and Computational Sciences 31

by John Hughes. Vol. 523. Lecture Notes in Computer Science. Cambridge,
Massachusetts, USA: Springer, 1991, pp. 124–144.

[55] Cleve Moler. MATLAB Incorporates LAPACK. 2000.
[56] Russell O’Connor. “Essential Incompleteness of Arithmetic Verified by Coq”.

In: Theorem Proving in Higher Order Logics (Aug. 2005). Ed. by Joe Hurd
and Tom Melham. Vol. 3603. Lecture Notes in Computer Science. Oxford,
UK: Springer, 2005, pp. 245–260.

[57] Christine Paulin-Mohring and Benjamin Werner. “Synthesis of ML Programs
in the System Coq”. In: Journal of Symbolic Computation 15 (1993), pp. 607–
640.

[58] Frank Pfenning and Christine Paulin-Mohring. “Inductively Defined Types
in the Calculus of Constructions”. In: Proceedings of the 5th Conference
on Mathematical Foundations of Programming Semantics (Mar. 1989). Ed.
by Michael Main et al. Vol. 442. Lecture Notes in Computer Science. New
Orleans, Louisiana, USA: Springer, 1990, pp. 209–228.

[59] Benjamin Pierce. “Lambda, the Ultimate TA: Using a Proof Assistant to
Teach Programming Language Foundations”. In: ACM SIGPLAN Notices
44.9 (2009), pp. 121–122.

[60] Talia Ringer et al. “QED at Large: A Survey of Engineering of Formally
Verified Software”. In: Foundations and Trends in Programming Languages
5.2-3 (2019), pp. 102–281.

[61] Daniel Selsam, Percy Liang, and David Dill. “Developing Bug-Free Machine
Learning Systems with Formal Mathematics”. In: Proceedings of the 34th
International Conference on Machine Learning (Aug. 2017). Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Re-
search. Sydney, Australia: PMLR, 2017, pp. 3047–3056.

[62] Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled Typeclass
Resolution. 2018. eprint: 2001.04301. url: https://arxiv.org/abs/
2001.04301.

[63] Ilya Sergey, James Wilcox, and Zachary Tatlock. “Programming and Proving
with Distributed Protocols”. In: Proceedings of the ACM on Programming
Languages (Jan. 2018). Ed. by ACM. Vol. 2. POPL. ACM, pp. 28/1–30.

[64] Matthieu Sozeau and Cyprien Mangin. “Equations Reloaded: High-Level
Dependently-Typed Functional Programming and Proving in Coq”. In: Pro-
ceedings of the ACM on Programming Languages (Aug. 2019). Ed. by ACM.
Vol. 3. ICFP. ACM, 2019, pp. 86/1–29.

[65] Matthieu Sozeau and Nicolas Oury. “First-Class Type Classes”. In: Theorem
Proving in Higher Order Logics (Aug. 2008). Ed. by Otmane Ait Mohamed,
César Munoz, and Sofiène Tahar. Vol. 5170. Lecture Notes in Computer
Science. Montreal, Canada: Springer, 2008, pp. 278–293.

[66] Matthieu Sozeau et al. “Coq Coq Correct! Verification of Type Checking
and Erasure for Coq, in Coq”. In: Proceedings of the ACM on Programming
Languages (Jan. 2020). Ed. by ACM. Vol. 4. POPL. ACM, 2020, pp. 8/1–28.

2001.04301
https://arxiv.org/abs/2001.04301
https://arxiv.org/abs/2001.04301

32 Sampsa Kiiskinen

[67] Bas Spitters and Eelis van der Weegen. “Type Classes for Mathematics in
Type Theory”. In: Mathematical Structures in Computer Science 21.4 (2011),
pp. 795–825.

[68] Matt Staats, Michael Whalen, and Mats Heimdahl. “Programs, Tests, and
Oracles: The Foundations of Testing Revisited”. In: 2011 33rd International
Conference on Software Engineering (May 2011). Ed. by IEEE. Honolulu,
Hawaii, USA: IEEE, 2011, pp. 391–400.

[69] Mary Tai. “A Mathematical Model for the Determination of Total Area Under
Glucose Tolerance and Other Metabolic Curves”. In: Diabetes Care 17.2
(1994), pp. 152–154.

[70] The Univalent Foundations Program. Homotopy Type Theory. Univalent
Foundations of Mathematics. Institute for Advanced Study, June 19, 2013.

[71] Vidar Thomée. “From Finite Differences to Finite Elements: A Short His-
tory of Numerical Analysis of Partial Differential Equations”. In: Journal of
Computational and Applied Mathematics 128.1-2 (2001), pp. 1–54.

[72] Sophie Tourret and Jasmin Blanchette. “A Modular Isabelle Framework for
Verifying Saturation Provers”. In: Proceedings of the 10th ACM SIGPLAN
Conference on Certified Programs and Proofs (Jan. 2021). Ed. by ACM.
Denmark: ACM, 2021, pp. 224–237.

[73] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. “Cubical Agda: A
Dependently Typed Programming Language with Univalence and Higher In-
ductive Types”. In: Journal of Functional Programming 31 (2021), p. 87.

[74] Vladimir Voevodsky. The Origins and Motivations of Univalent Foundations.
A Personal Mission to Develop Computer Proof Verification to Avoid Mathe-
matical Mistakes. Summer. 2014, pp. 8–9.

[75] Vladimir Voevodsky. “Univalent Foundations of Mathematics”. In: Logic,
Language, Information and Computation (May 2011). Ed. by Lev Beklem-
ishev and Ruy de Queiroz. Vol. 6642. Lecture Notes in Computer Science.
Philadelphia, Pennsylvania, USA: Springer, 2011, p. 4.

[76] Philip Wadler. “Propositions as Types”. In: Communications of the ACM
58.12 (2015), pp. 75–84.

[77] Philip Wadler and Stephen Blott. “How to Make Ad-Hoc Polymorphism Less
Ad Hoc”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Jan. 1989). Ed. by ACM. Austin,
Texas, USA: ACM, 1989, pp. 60–76.

[78] Stefan van der Walt, Chris Colbert, and Gael Varoquaux. “The NumPy Array:
A Structure for Efficient Numerical Computation”. In: Computing in Science
& Engineering 13.2 (2011), pp. 22–30.

[79] Liang Wang and Jianxin Zhao. “OCaml Scientific Computing. Functional
Programming Meets Data Science”. In Progress. Jan. 1, 2022.

[80] Conrad Watt. “Mechanising and Verifying the WebAssembly Specification”.
In: Proceedings of the 7th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs (Jan. 2018). Ed. by ACM. Los Angeles, California,
USA: ACM, 2018, pp. 53–65.

Intersection of Proof Engineering and Computational Sciences 33

[81] Rinse Wester. “A Transformation-Based Approach to Hardware Design Using
Higher-Order Functions”. PhD thesis. Universiteit Twente, 2015.

[82] John Williams, Grant Hocking, and Graham Mustoe. “The Theoretical Basis
of the Discrete Element Method”. In: Proceedings of the NUMETA ’85 Con-
ference (Jan. 1985). Ed. by Gyanendra Pande and John Middleton. Swansea,
UK: August Aimé Balkema, 1985, pp. 897–906.

[83] Doug Woos et al. “Planning for Change in a Formal Verification of the Raft
Consensus Protocol”. In: Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs (Nov. 2013). Ed. by ACM. Saint Petersburg,
Florida, USA: ACM, 2016, pp. 154–165.

	The Curiously Empty Intersection of Proof Engineering and Computational Sciences (Extended Version)
	Sampsa Kiiskinen
	Introduction
	Unfit for Computational Sciences?
	Closer Investigation
	Architecture of Interactive Theorem Provers
	Theoretical Background
	Role of Elaboration
	Proof Engineering by Example

	Unexploited Opportunities?
	Reasons to Get Excited
	Reasons to Remain Skeptical

	Conclusions
	Acknowledgements
	References

