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Abstract
• Causal effect identification considers whether an interventional probabil-
ity distribution can be uniquely determined from a passively observed
distribution in a given causal structure.

• If the generating system induces context-specific independence (CSI) re-
lations, the existing identification procedures and criteria based on do-
calculus are inherently incomplete.

• We design a calculus and an automated search procedure for identifying
causal effects in the presence of CSIs.

• We demonstrate that a small number of CSI-relations may be sufficient
to turn a previously non-identifiable instance to identifiable.

Context-specific Independence and Labeled DAGs
CSIs arise from local causal mechanisms. For a single example consider an
antibiotic (A) that normally has a dose–response effect on the number of
bacteria (H). A genetic mutation (M) makes the bacteria resistant to the
antibiotic meaning that in the context of this mutation the dose and the
number of bacteria are independent:

P (H |A, M = 1) = P (H |M = 1) denoted as H ⊥⊥ A |M = 1
P (H |A, M = 0) 6= P (H |M = 0) (possibly)

Labeled Directed Acyclic Graphs (LDAG) offer a simple and intuitive way
to represent the causal structure and local CSIs. Interventional distribution
P (Y | do(X)) can be modeled as P (Y |X, IX = 1), where IX is an inter-
vention node, hence do-operation is not needed explicitly.
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Notation
• Label ` on X → Y is an assignment to

L = pa(Y ) \X (other parents of Y )
encoding a local CSI X ⊥⊥ Y |L = `

• Symbol * denotes any assignment
• Square nodes are unobserved

In the example case, we mark label M = 1 on the edge A → H to show
that antibiotic A can have a dose-response effect on the number of bacteria
H only if a genetic mutation M has not taken place.

Problem Formulation
Input: An LDAG G over a set of nodes V , a probability distribution P (W ) for

W ⊂ V and a query P (Y | do(X), Z) such that X, Y , Z ⊂ V .
Task: Output a formula for P (Y | do(X), Z) over P (W ) or decide that it is

non-identifiable.
Computational Complexity

Theorem 1. Deciding non-identifiability of a causal effect in an LDAG over V
and a passively observed distribution over W ⊂ V is NP-hard.

CSI-calculus for Determining Identifiability

Rule 1 (Insertion/Deletion of observations):

P (Y 1, y2 |Z1, z2, X1, x2) = P (Y 1, y2 |X1, x2) if Y 1, Y 2⊥⊥Z1, Z2 |X1, x2
Rule 2 (Marginalization/Sum-rule):

P (Y 1, y2 |X1, x2) =
∑

ZP (Y 1, y2, Z |X1, x2)
Rule 3 (Conditioning):

P (Y 1 |Z1, z2, X1, x2) = P (Y 1, Z1, z2 |X1, x2)∑
Y 1

P (Y 1, Z1, z2 |X1, x2)Rule 4 (Product-rule):

P (Y 1, y2, Z1, z2 |X1, x2) = P (Y 1, y2 |Z1, z2, X1, x2)P (Z1, z2 |X1, x2)
Rule 5 (General-by-case reasoning):

P (Y 1, y2, 1− z |X1, x2) = P (Y 1, y2 |X1, x2)− P (Y 1, y2, z |X1, x2)
Rule 6 (Case-by-case reasoning):

P (Y 1, y2, Z |X1, x2) =
{

P (Y 1, y2, Z = 0 |X1, x2) if Z = 0
P (Y 1, y2, Z = 1 |X1, x2) if Z = 1

Rule 7 (Case-by-general reasoning (a)):

P (Y 1, y2, z |X1, x2) = P (Y 1, y2, Z |X1, x2)
∣∣
Z=z

Rule 8 (Case-by-general reasoning (b)):

P (Y 1, y2 |X1, x2, z) = P (Y 1, y2 |X1, x2, Z)
∣∣
Z=z

Theorem 2. Do-calculus is a special case of CSI-calculus.

A Search over the Rules of CSI-calculus
A forward search algorithm over the rules of CSI-calculus is used to obtain
identifying formulas and derivations. Starting from the input P (W ), only
identifiable terms are derived. During the search, a novel separation criterion
is applied to verify non-local CSIs. Contexts are combined and redundant
contexts are eliminated to avoid unnecessary computation.

New Identifiability Results Unobtainable via do-calculus
With the search we are able to identify P (Y | do(X)) in the following LDAGs.
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P (Y | do(X)) =
P (Y |Z = 0, X)P (Z = 0) + P (Y |Z = 1)P (Z = 1)
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AM =0∗ P (Y | do(X)) =∑
ZP (Z |A = 0)P (Y |X, Z, A)
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P (Y | do(X)) =
P (A = 1)

∑
WP (Y |X, W, A = 1)P (W |A = 1)

+ P (A = 0)
(∑

ZP (Z |X, A = 0)∑
X ′P (Y |X ′, Z, A = 0)P (X ′ |A = 0)

)


