
SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen1

SW
Development
Testing
Jari Tahvanainen

Testing Specialist

Nokia/Maemo Devices

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen2

Content

• Agile stages – Fragile stages

• Agile practices

• Development testing
• ET

• TDD

• ATDD

• CI

• Confirmation

• Evolution of Agile Testing

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen3

Test levels (and “engineering” domains)

Validation &
Verification

Product &
Technology

management

Design &
Engineering

Construction

Component testing

(unit + module testing)

System testing

Acceptance testing

D
e
v
e
lo

p
m

e
n
t T

e
stin

g

Problem Domain

Solution Domain

Functional Domain

Technical Domain

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen4

Fragile Stages
 http://www.cooper.com/journal/agile2008/

• “And the two outer stages are the fragile
stages.”

• “The first is utterly unpredictable and magical.
It can come from anyone, anywhere, at any
time. You cannot really seek it out, but only
cherish it when it happens.”

• “And do remember that is almost always
completed before we get there, and we rarely
encounter it in any project.”

• “The last stage is fragile because it is so big,
so lengthy, so delicate, so difficult, and so
critical to the success of the whole, that
disturbing it in any way is foolishly, hellishly
expensive.”

• “In these two stages, there is simply no
advantage to putting lots of people in a room
together to work openly and collaboratively,
regardless of how intelligent or well-
intentioned they are. The construction stage
in particular demands quiet, uninterrupted,
solitude: programming time.”

• “As you can clearly see, each stage is
different, and each stage requires different
skills, tools, and temperament.”

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen5

Agile Stages
 http://www.cooper.com/journal/agile2008/

• “I’m sure you can see that the two
middle stages, the design stages, are
agile.”

• “They are about investigation,
problem-solving, openness,
teamwork, collaboration, iteration,
incrementing, explaining, and
sharing, all in an effort to achieve the
right answer.”

• “These two stages can really benefit
from the open, collaborative,
democratic, iterative nature of the
Agile process. This is true regardless
of which people or what craft is
involved.”

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen6

Agile - Software Development Life-Cycle
Support VTT Publications 478

http://www.inf.vtt.fi/pdf/

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen7

Faults injected in different development
phases

Coding 51%

Specification 16%

Integration 10%

Testing 1%

Other 22%

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen8

Development Testing

• Development Testing (a.k.a. Developer Testing) by definition is [ISTQB Glossary]
"Formal or informal testing conducted during the implementation of a component or
system, usually in the development environment by developers". Depending the
competences of the developer one can include to this things from component testing
(unit, module and component integration testing put together) to feature tests (giving
confirmation for the user story) (Test Levels).

• Unit tests are so named because they each test one unit of code. These type of tests are
usually written by developers as they work on code (white-box style), to ensure that the specific
function is working as expected. Whether a module of code has hundreds of unit tests or only
five is irrelevant. One function might have multiple tests, to catch corner cases or other
branches in the code. A test suite of unit tests should never cross process boundaries in a
program, let alone network connections. Doing so introduces delays that make tests run slowly
and discourage developers from running the whole suite.

• Module test tests a module of code similar way than unit tests - the difference is that test are
generated black-box style (without reference to the internal structure of the module).

• (Component) Integration test - Introducing dependencies on external modules or data also
turns unit tests into integration tests. If one module misbehaves in a chain of interrelated
modules, it is not so immediately clear where to look for the cause of the failure. Tests are
checking ready made part of the developer's product (implemented tasks and user stories) with
simulators (stubs, test drivers) for missing external dependencies.

• Feature test is checking whole developer's product (features and user stories done) by
pretending to be a user.

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen9

Development Testing Intent

• Development testing is part of agile software development
• In agile development, a product is developed in short cycles (sprints), typically

1-4 weeks. After every cycle, the customer is provided with a potentially
shippable product which provides him business value. The quality of the
released product is assured with adequate testing by the whole team, not
just testers.

• Development testing has to adapt to the short release cycle of agile
development. Test automation has a strong role - it is recommended that
unit and module tests, component integration tests and even
feature/application "acceptance“ tests are automated.

• Exploratory testing with minimal documentation should be used to
complement automated tests.

• In agile environment tester has the possibility to apply the traditional testing
techniques and skills in more innovative ways than before. In addition, he
must possess new skills, most importantly, he must have an agile mindset.

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen10

Development Testing – Practices (1/3)

• Exploratory Testing (ET)
• Is an approach in software testing that is concisely described as simultaneous

learning, test design and test execution.
• Seeks to find out how the software actually works, and to ask questions about how

it will handle difficult and easy cases. The testing is dependent on the tester's skill
of inventing test cases and finding defects. The more the tester knows about the
product and different test methods, the better the testing will be.

• When performing exploratory testing, there are no exact expected results; it is the
tester that decides what will be verified, critically investigating the correctness of
the result.

• Test Driven Development (TDD)
• Is a development practice in which test cases are implemented before the actual

program code.
• Test cases are implemented by developers, usually with some test framework.
• The implemented unit tests answer to the question: "Does the code function as how

the programmer intended it to work?"
• TDD is implemented in code level - each test is verifying one small unit of code in

isolation
• Cycle: Write the test, make it green, make it clean!

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen11

Development Testing – Practices (2/3)

• Acceptance Test Driven Development (ATDD)
• Acceptance Test Driven Development is testing oriented development practice in which

"acceptance" test cases are implemented before the implementation of the User Story
starts

• The main goal of the tests is to answer to the question: "Does the system do what the
Customer wants?"

• Tests are result of collaboration between developers, testers and business stakeholders
• Test cases are implemented before the implementation of the User Story starts (similar as in TDD)

• Tests should be end-to-end tests that drive the system through public interfaces (gui, cmd)
• It is recommended that most test is conducted below the GUI using "Business Layer", as GUI is the

most volatile layer in any application.

• Writing acceptance tests make the team to use the application and see it from the end-
users perspective. That helps the team

• find any peculiar work flows
• understand how the end-users sees the application (end-user experience)

• Remember to address all applicable quality aspects (functionality, performance, reliability,
security/robustness, usability)

• Cycle:
• Discuss: Understand what Business Stakeholder needs from any particular feature
• Distill: Collaborate with Business Stakeholders to distill the needs into a set of acceptance tests
• Develop: Write code to implement the requested features using TDD
• Demonstrate: Show the Business Stakeholder the new feature and request feedback

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen12

Development Testing – Practices (3/3)

• Continuous Integration (CI) “is a software development practice where
members of a team integrate their work frequently, usually each person
integrates at least daily - leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to detect
integration errors as quickly as possible.“ [Martin Fowler]

• Everyone Commits Every Day

• Make your build self-testing

• Everyone can see what's happening

• Automate the Build

• Keep the Build Fast

• Make it Easy for Anyone to Get the Latest Executable

• Test in a Clone of the Production Environment
• The point of testing is to flush out, under controlled conditions, any problem that the

system will have in production. A significant part of this is the environment within
which the production system will run. If you test in a different environment, every
difference results in a risk that what happens under test won't happen in production.

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen13

Development Testing – Flow and Levels
Example

• Unit tests - test individual classes in isolation
• Focus on component logic – TDD approach recommended

• Module tests - test user story with simulations (stubs, test drivers) for external dependencies
• Focus on class interaction – TDD & ATDD approaches recommended

• Component integration tests - test ready made part of the team's product (implemented tasks
and user stories) with simulators (stubs, test drivers) for missing external dependencies

• Focus on feature interaction - TDD & ATDD & ET approaches recommended

• Application/Feature tests - Test whole team's product (features and user stories done) by
pretending to be a user

• Focus on mostly happy paths – ATDD & ET approaches recommended

S
p

rin
t P

la
n

n
in

g

User Story x TDD & ATDD

User Story y TDD & ATDD

User Story y TDD & ATDD

Bug
fix

ET

Bug
fix

ET

Feature
a

ET Bug
fix

ETBug
fix

ET

S
p

rin
t R

e
v
ie

w

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen14

Confirmation Testing

• Confirmation Testing – “Acceptance criteria” (a.k.a. conditions of
satisfaction) – user story test objective:

• By default user story is having three Cs - Card defining the story itself "As a <user
role>, I want to <goal> so that <benefit>",and promise about the Conversation and
Confirmation (these are essentially acceptance tests confirming that the story was
coded correctly).

• Confirmation - Acceptance criteria - should include quality aspects (or characteristics
e.g. functionality, efficiency, reliability, usability, portability and maintainability)
important for this particular development item. Aspects could have relative
importance defined from which one can define test objective (or goal) telling what is
tested and how well it is tested, e.g.:

• Functionality - thorough testing (including security, localization, pre-certification, etc.)
• Performance - light testing (e.g. Application opening and closing times, number of data

queries the database per minute, etc.)
• Reliability - average testing (e.g. Robustness testing, valgrind in use while executing

functionality tests)
• Usability – light testing
• Portability - light testing (e.g. testing of the component in two different configurations, etc.)
• Maintainability –light testing

• Definition of these aims from testing point of view to have a test basis, agreed with
the client of the test, of adequate quality to design the test cases.

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen15

Fault could have been avoided in
“Coding”

Development testing 45%

Careful coding 13%

Tester within team 10%

Other 30%

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen16

Evolution of agile testing

• Evolution of agile testing
• Unit testing for all new code
• Before re-factoring legacy code write unit tests first. To enable re-factoring, improvements etc.
• As side effect of re-factoring you start to have better unit test coverage
• Start to measure code coverage on unit testing. Try to improve: complex areas, low coverage

areas
• Go for CI and keep it green
• Start evaluating test tools for automated functional tests
• Try to keep up with current sprint goals. Write automated functional test, API tests etc.
• Go for CI and keep it green
• While dealing with reported bugs:

• Ensure that there are automated unit tests in place which reproduce the bug.
• Ensure that there is an automated functional acceptance test case in place for verifying the bug.

• What else? Can we do more?
• Do exploratory testing meanwhile you run your automation to find more bugs. So far we

talked about regression only...
• Learn test design techniques (Equivalence Partitioning, Boundary Value Analysis, All-Pairs,

Cause Effect Graphing, State Machine etc.)
• Model based testing

http://en.wikipedia.org/wiki/Exploratory_testing
http://en.wikipedia.org/wiki/Model_based_testing

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen17

References

• TDD – Test Driven Development -
http://en.wikipedia.org/wiki/Test-driven_development

• ATDD – Acceptance Test Driven Development -
http://testobsessed.com/2008/12/08/acceptance-test-driven-development-atdd-an-overview/

• BDD – Behavior Driven Development http://
en.wikipedia.org/wiki/Behavior_Driven_Development and
http://behaviour-driven.org/

• Terminology
• http://www.istqb.org/downloads/glossary-current.pdf

• http://eng.tmap.net/Home/TMap/Glossary.jsp

• http://en.wikipedia.org/wiki/Software_testing

http://en.wikipedia.org/wiki/Test-driven_development
http://testobsessed.com/2008/12/08/acceptance-test-driven-development-atdd-an-overview/
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://en.wikipedia.org/wiki/Behavior_Driven_Development
http://behaviour-driven.org/
http://behaviour-driven.org/
http://www.istqb.org/downloads/glossary-current.pdf
http://eng.tmap.net/Home/TMap/Glossary.jsp
http://en.wikipedia.org/wiki/Software_testing

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen18

Agile Software development methods (1/4)
From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT
Publications 2002)

• Scrum
• Adaptive, quick, self-organizing product development process
• Each sprint includes analysis, design, evolution, testing, delivery

• 1st sprint Product Backlog (Business functionality/features and technology requirements) -> goal
“demonstrate a key peace of user functionality on the selected technology”.

• Suitable for small teams of less than 10 engineers
• XP and scrum can be implemented together

• eXtreme Programming
• Iterations to release phase consists continuous integration and test
• Testing

• Tester help customer write functional tests.
• Tester run functional tests regularly, broadcast test results and maintain testing tools
• Software development is test driven. Unit tests are implemented before the code and are run

continuously. Customer write the functional tests (with help from tester).
• Idea: Schedule projects based on customer stories (use cases), evolutional delivery (adapted

from Gilb)

Gives procedure frame

Gives process and
“activities”

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen19

Agile Software development methods (2/4)
From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT
Publications 2002)

• Feature driven development
• Focuses on design and building phases
• Testing

• Toolsmith builds small tools for development, test and data conversion
• Tester verify that the system being produced will meet the requirements of the customer.

May be an independent of a part of the project team.
• Inspections, regular builds, configuration management, progress reporting …
• “worthy of serious consideration by any software development organization that needs to

deliver quality, business critical software systems on time”

• Rational Unified Process
• Iterative approach for object orienting systems, and it strongly embraces use cases

for modeling requirements
• Develop software iteratively, Manage requirements, use component-based

architectures, visually model software, verify software quality, control changes to
software

• Not agile as such but can be used in an agile manner (Agile modeling, etc.)

Not agile as such

Very short iterations: from hours to 2 weeks

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen20

Agile Software development methods (3/4)
From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT
Publications 2002)

• Dynamic Systems Development Method
• Framework for Rapid Application Development
• Idea: Fix time and resources, and then adjust the amount of the functionality accordingly
• …
• The focus is frequent delivery of the products
• Testing is integrated throughout the lifecycle

• Every system component should be tested by the developers and users as they are developed. Testing is
also incremental, and the tests builds more comprehensive throughout the project. Regression testing is
particularly emphasized because of the evolutionary development style

• Adaptive Software Development
• Focuses mainly on problems developing complex, large systems
• Project postmortems are seen as critically in high-speed and high-change projects, where agile

development takes place
• Mission-driven, component-based, iterative, time-boxed, change-tolerant, risk-driven
• Does not enforce the use of co-located teams

Mission and risk driven, adaptive

1st truly agile software development method

SW_Development_Testing.ppt / 2010-02-08 / Jari Tahvanainen21

Agile Software development methods (4/4)
From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT
Publications 2002)

• Open Source Software development
• Is collaborative way of widely dispersed individuals to produce software with small

and frequent increments.

• Is not a compilation of well defined and published software development practices
constituting a written eloquent method.

• There is no explicit system-level design, or even detailed design

• There is no project plan, schedule, or list of deliveries

• Tester
• Other individual who, in course of using software, perform testing, identify bugs and

deliver software problem reports.

• Agile Modeling
• Idea is to encourage developers to produce advanced enough models to support

accurate design problems and documentation purposes, while still keeping the
amount of models and documentation as low as possible

Volunteer based

Newest comer

	SW Development Testing
	Content
	Test levels (and “engineering” domains)
	Fragile Stages http://www.cooper.com/journal/agile2008/
	Agile Stages http://www.cooper.com/journal/agile2008/
	Agile - Software Development Life-Cycle Support
	Faults injected in different development phases
	Development Testing
	Development Testing Intent
	Development Testing – Practices (1/3)
	Development Testing – Practices (2/3)
	Development Testing – Practices (3/3)
	Development Testing – Flow and Levels Example
	Confirmation Testing
	Fault could have been avoided in “Coding”
	Evolution of agile testing
	References
	Agile Software development methods (1/4) From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT Publications 2002)
	Agile Software development methods (2/4) From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT Publications 2002)
	Agile Software development methods (3/4) From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT Publications 2002)
	Agile Software development methods (4/4) From “Agile software development methods, review and analysis” by Pekka Abrahamsson et.al. (VTT Publications 2002)

