Pur pose;
How to train an MLP neural network in MATLAB
environment!

that is

For good computations,
we need good formulae
for good algorithms;
and good visualization
for good illustration
and proper testing
of good methods
and succesfull applications!

Basic Applicationsfor MLP (I):

e time-series prediction

Time series of variable X, Time series of variable X,
1 T T T T T T T 1
0.5 +’+\\ : 1 0.5 ’+\ :
’ + ;|¢ +\
14 \ +/ \
4 \
of 4 % of 4~ *
N \\
N 3+
-+
-0.5 -0.5
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
t t
Time series of variable Xg Time series of variable X,
1 T 1
0.5 : 1 0.5 +
PR RN
A+ AR
o + -+ \
0 +_ +_ +f 0 \+¢ +
+¢
’
+
-0.5 -0.5
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

t t

Derivation of learning data:

x; = [z1(—=1) 22(—1) z3(—1) z4(-1) z4(-2)] y1 = [24(0)]
X9 = [21(—2) 22(—2) 23(-2) z4(-2) z4(-3)] , y2 = [z4(-1)]

I.e., in general:

x; = [z1(—t) 22(—t) z3(—t) z4(—t) z4(—(t+1))]
yt = [z4(—t+1)]

In Theory: According to Takens' theorem (F. TAKENS, Detecting strange attractors

in turbulence, Dynamical Systems and Turbulence, 898: 336-381, 1981) there ex-

ists, for deterministic (= funtional) systems, a diffeomorphism between a sufficiently
large time window and underlying state of the dynamical system:

z(t)=g(z(t—1),z(t—2),...,z(t=T)).

Basic Applicationsfor MLP (11):

e time-series prediction (cont.)
introduction of higher-order computing (sigma-pi) units:

x; = [z1(—t) z1(—t)® 22(—t) 22(—t)* z1(—t)*22(—t) ...]

— basic problem: size of learning problem increased significantly!

e classification

Actual classifier after training the MLP:

X € c;, Where k = argmax o;,
J
I.e., for the above example x € ¢; if y; > .
More cautious approach: for suitable 0 < 6 < 1

"Class 17, ifor > 09+ 0,
"Class 27, if oy > 01 + 0,
’Unclassified’, otherwise.

., 11

Basic Applicationsfor MLP (I11):

e data compression (i.e., nonlinear PCA)
— We try to construct coder XC and decoder D according to basic principle
x; ~ D(K(x;))
for all data vectorsx;, i =1,..., N.
— Multilayered Perceptron approach:
X; ~ W f‘2(W3 V/\\72 f‘l(Wl X)),
where si ze(W2, 1) << size(X 2).

— yields very large learning problem

— quality of coding&decoding can be evaluated from the residual of cost function
— a way to control the choice of si ze(W2, 1)

e other applications (! = exists, ? = worth testing)

— autopilots for moving vehicles(!)

— functional algorithms(?): sort, scheduleetc.

— automatic differentiation of an optimization problem(!)
— data inputation(?!)

— ...

| mproving the performance of MLP:

Preprocessing: rescaling, PCA, normalization,.. .

Restricting the generality:

basic principle: try to keep the unknown weights in the neighborhood of zero, i.e.
around the linear region of the activation fuctions

realization: penalization of weight values

({Wl QNZHN {Wl (X@ YzH + = Z Z ‘Wl,g|2

(5.7)€Il

where I; is defined as

po {6 1<i<m 0 <ma}, U<
{(6,7) 1 1<e<n, 1 <j<m_}, =L

e easily added into sensitivity analysis of learning problem

e choise of new free (hyper)parameter 5 > 0 creates new problem, but already
a decent value can be helpful

Combination of MLP and RBFN:

e RBFN (Radial-Basis Function Network) approximates (uniformly) input-output
mapping using local basis functions, most commonly Gaussian kernels:

[— paa|®
T) “ .

2
X — My
exp(—”TH) ce

i

2
X = Um
o= W [exp(— GXP(—H(S—QMH)]T
assuming that centroids {u; }/*, and standard deviations {d; }*, are given.

e SQUARE-MLP (sguare unit augmented, radially extended, multilayer percep-
tron, FLAKE) tries to combines good properties of MLP (global approximation)
and RBFN (local representation) simply by (cf. sigma-pi units):

x; = [(xi)1 (%)} .. Xk (Xi)E .. (X (%3)2] i=1,...,N,

= [(x)1 - e - (Ki)ne (x0T -0 (x0)E ... (%0)3,]-

