
Purpose:
How to train an MLP neural network in MATLAB

environment!

that is

For good computations,
we need good formulae

for good algorithms;
and good visualization

for good illustration
and proper testing
of good methods

and succesfull applications!



Learning/Training the MLP:

1. Learning data: given set of input-output vector-pairs���������	��

������ �
�����������
and

�����������
� to enhance the next step prescaling into the range of the activation functions

2. Learning problem: optimization problem to train the network according to data:
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where (LMS = least-mean squares)
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� tradional perspective: chain-rule in an index jungle!� our approach: layer-wise treatment according to network structure!

3. Training method: a way to solve the optimization problem

� tradional perspective: backprop, quickprop, rpprop, J prop etc.� our approach: efficient optimization algorithm that solves problem (1)



Layerwise calculus for sensitivity analysis:

Every local solution -0/ ��� � / 1 � 2 for minimization problem (1) characterized by the con-
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� assume that activation functions are differentiable
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Layerwise optimality conditions for MLP (I):

Theorem 1. Derivative-matrices
� # � + -0/ � � / 1 2 and

� # % + -0/ � � / 1 2 for the cost
functional (2) are of the form

(i)
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In (ii), / 1 � is the submatrix obtained from / 1 by removing the first column / 1� contain-
ing the bias nodes.

In MATLAB:

for i=1:N
[o,o1,d1] = mlp_out(x(:,i),w1,w2);
e = o - y(:,i);
f = f + e’*e/(2*N);
o1_ext = [1; o1];
dw1 = dw1 + diag(d1)*w2(:,2:n1+1)’*e*[1 x(:,i)’]/N;
dw2 = dw2 + e*o1_ext’/N;

end
OR
[o,o1,d1] = mlp_out2(x’,w1,w2);
e = o - y’;
f = sum(sum(e.^2))/(2*N);
dw1 = ( d1.*(w2(:,2:n1+1)’*e) )*[ones(N,1) x]/N;
dw2 = e*[ ones(N,1) o1’ ]/N;



Layerwise optimality conditions for MLP (II):

For more-than-two-layers problem
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we have the general result

Theorem 2. Derivative-matrices
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Where’s the beef?

� efficient (and correct) implementation

– computation of �
��
’s in forward loop

– overwritten by
� ��

’s in backward loop

– realization of (7) in single loop (for sigmoidal activation)

� possibilites for analysis opened up



What does the MLP actually learn?

Corollary 1. -�� 2 The average error
�
��� ������

�
��

made by the locally optimal MLP-network
satisfying the conditions in Theorem 2 is zero.

-���� 2 The correlation between the error-vectors and the action of layer
� @ 7

is zero.

Some consequences:

� just having final bias yields Cor. 1 (i)� valid for all (linear or nonlinear) transformations having such structure

� Cor. 1 (i) shows that
every > - � / ��� 
 2 treats optimally Gaussian noise with zero mean
for the regression model

� � 5
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 � 	
� final layer activation does not give Cor. 1 (i) (unless zero-residual case)

Note: sensitivity analysis also for this case follows� backprop does not give Cor. 1� (most likely on-line mode does not give Cor 1 (i))� early stopping does not give Cor. 1 (i)� all these can work better than the rigorous LMS-MLP for non-Gaussian
(and/or non-functional) learning datas� BUT: learning rate, number of epocs, stopping criterion, etc.
cannot be explicitly controlled for this purpose!
(termination due to algorithm or data?)

� Cor. 1 (i) explains how and why explicit change of prior frequency of different
samples effects the trained MLP



Practical Difficulties with MLP:

� lots of local minima in optimization problem� single local optimization not enough!

� large variation on number of iterations� backprop and early stopping give what?

� How to choose the best MLP from local minima and from different configurations (e.g.,
size of hidden layer(s) and large set of activation functions) rigorously?
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Possible remedy: regularization

Underlying idea: augment the LMS-cost with a penalization term that smooths the MLP-
transformation (cf. Bayesian statistics):
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Note: other possibilities for single weight penalization exist, but very often nonconvex and
nonsmooth

in light of Cor. 1 (i): final bias should be excluded from regularization� different possibilities (cf. Cor. 1 (ii)):

I: regularize all other components except the bias-terms / 1� in / 1
II: exclude all components of / 1 from regularization

III: exclude all bias-terms of -0/ � � / 1 2 from regularization (cf. Holmström et al.,
1997).

IV: exclude all components of / 1 and bias-terms of / �
from regularization

Without further ado:

� less (but still plenty of) local minima for I and III than for II, IV, and
� 5��

� numerical confirmation that Cor. 1 (i) valid for all methods

� by means of number of iterations and CPU time I and III improved the performance,
whereas II and IV made it worse compared to unregularized approach

� 5��
� all regularization approaches (I and III in more stable way than II and IV) improved

the generalization in simple nonlinear regression problem by preventing unnecessary
oscillation

� Conclusions: I and III are more preferable than II and IV in every respect; between I
and III no difference found



Effect of regularization III for � � ������� :
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