Pur pose;
How to train an MLP neural network in MATLAB
environment!

that is

For good computations,
we need good formulae
for good algorithms;
and good visualization
for good illustration
and proper testing
of good methods
and succesfull applications!




Learning/Training the MLP:

1. Learning data: given set of input-output vector-pairs
{Xi7 y%}fil , X € R™ and yi € R™

e to enhance the next step prescaling into the range of the activation functions

2. Learning problem: optimization problem to train the network according to data:

: 1 2 1
(W?%Q)j(w , W), 1)

where (LMS = |east-mean squares)
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e tradional perspective: chain-rule in an index jungle!
e our approach: layer-wise treatment according to network structure!

3. Training method: a way to solve the optimization problem

e tradional perspective: backprop, quickprop, rpprop, xprop etc.
e our approach: efficient optimization algorithm that solves problem (1)




Layerwise calculus for sensitivity analysis:

Every local solution (W**, W2") for minimization problem (1) characterized by the con-
ditions W W)

A 1* 2ty | VwirJ (W, W _ 10

V(Wl)WZ)j(W ,W ) — vw2j(wl*’w2*) — O .

e assume that activation functions are differentiable

Lemma 1. Let v. € R™ and y € R™: be given vectors. The derivative-matrix
Vw J(W) € R™>*™ for the functional

1
J(W) =3 [Wv -y’
is of the form

VwJ(W) = [Wv —y]v’.

Lemma 2. Let W € R™2*"™ pe a given matrix, y € R™2 a given vector, and F =
Diag{ fi(-)}:2, a given diagonal function-matrix. The gradient V,J(u) € R™ for the
functional .
J(w) =5 [WEF(u) -y 3)
reads as
V(1) = Diag{F'(u)} W7 [W F(u) - y].

Lemma 3. Let W € R™>™ pe a given matrix, F = Diag{f;(-)}/~, a given diag-
onal function-matrix, and v.€ R™ y &€ R™2 given vectors. The derivative-matrix
VwdJ (W) € R™*™ for the functional

1
J(W) = 5 [WE(Wv) -y’ *)
is of the form

VwJ(W) = Diag{F (Wv)} WI [W F(Wv) — y] v7.




Layerwise optimality conditions for MLP (1):

Theorem 1. Derivative-matrices Vw7 (W1, W?) and Vw: J (W', W?) for the cost
functional (2) are of the form

VT (W', W?) = Z[WQ F(W' ) - yi] [F(W'%,)]
(i)
= N Z:ZI e; [F(Wl )A(Z)]T
Vwi J (W, W) = ZDlag{F (W's)} (WD) [WF(W' %) — yi] ]
(if)

=+ Z Diag{F (W'%,)} (W) ¢; %7
1=1

In (i), W# is the submatrix obtained from W2 by removing the first column W2 contain-
ing the bias nodes.

In MATLAB:

[0,01,d1l] = mMp_ out(x(:,1),wl,w2);
e =0 - vy(:,1);

f =1 + e *el (2*N);

ol ext =1[1; ol];

dwl = dwl + diag(dl)*w2(:,2:nl1+1)’ *e*[1 x(:,1)"]/N,
dw2 = dw2 + e*ol ext’'/N;

end

OR

[0,01,d1l] = mp out2(x’,wl, Ww2);

e =0-Y,;

f = sum(sun({e.”2))/(2*N);

( di.*(wW2(:,2:n1l+1)’*e) )*[ones(N, 1) x]/N
e*[ ones(N,1) ol ]/N,

g




Layerwise optimality conditions for MLP (11):

For more-than-two-layers problem
1 N
~(L—1
TAWHED) = 53 2 W =yl (5)
=1
where 0f = x; and ol = F(W! ™Y for1=1,..., L —1

we have the general result

Theorem 2. Derivative-matrices Vw: J({W'}-), I = L, ..., 1, for the cost functional
(5) are of the form
N
1 (-1
Vw I (W) = 3 3 dl oy 1",

where

df = e, =W\ " —y, (6)

df = Diag{(F")(W'6] ")} (W{™")Ta{"*". (7)

Where’s the beef?

e efficient (and correct) implementation

— computation of o!’s in forward loop
— overwritten by d!’s in backward loop
— realization of (7) in single loop (for sigmoidal activation)

e possibilites for analysis opened up




What does the MLP actually learn?

Corollary 1. (z) The average error Zf\il e’ made by the locally optimal MLP-network
satisfying the conditions in Theorem 2 is zero.

(¢2) The correlation between the error-vectors and the action of layer L — 1 is zero.

Some consequences.

e just having final bias yields Cor. 1 (i)
= valid for all (linear or nonlinear) transformations having such structure

e Cor. 1 (i) shows that
every N ({W"}) treats optimally Gaussian noise with zero mean
for the regression model y; = ¢(x;) + €;.

e final layer activation does not give Cor. 1 (i) (unless zero-residual case)
Note: sensitivity analysis also for this case follows
e backprop does not give Cor. 1
e (most likely on-line mode does not give Cor 1 (i))
e early stopping does not give Cor. 1 (i)
= all these can work better than the rigorous LMS-MLP for non-Gaussian
(and/or non-functional) learning datas
= BUT: learning rate, number of epocs, stopping criterion, etc.
cannot be explicitly controlled for this purpose!
(termination due to algorithm or data?)

e Cor. 1 (i) explains how and why explicit change of prior frequency of different
samples effects the trained MLP




e How to choose the best MLP from local minima and from different configurations (e.g.,
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Practical Difficulties with MLP:

lots of local minima in optimization problem
= single local optimization not enough!

large variation on number of iterations
= backprop and early stopping give what?

size of hidden layer(s) and large set of activation functions) rigorously?
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Possible remedy: regularization

Underlying idea: augment the LMS-cost with a penalization term that smooths the MLP-
transformation (cf. Bayesian statistics):

T (W', W) = NZHNXZ il S WP

Lyi,j

Note: other possibilities for single weight penalization exist, but very often nonconvex and
nonsmooth

in light of Cor. 1 (i): final bias should be excluded from regularization
= different possibilities (cf. Cor. 1 (ii)):
I: regularize all other components except the bias-terms W2 in W2
I1: exclude all components of W? from regularization

I11: exclude all bias-terms of (W', W?) from regularization (cf. Holmstrom et al.,
1997).

IV: exclude all components of W2 and bias-terms of W from regularization

Without further ado:

e less (but still plenty of) local minima for | and 11 than for Il, IV, and 8 = 0
e numerical confirmation that Cor. 1 (i) valid for all methods

e by means of number of iterations and CPU time | and Ill improved the performance,
whereas Il and IV made it worse compared to unregularized approach 5 = 0

e all regularization approaches (I and Ill in more stable way than Il and 1V) improved
the generalization in simple nonlinear regression problem by preventing unnecessary
oscillation

e Conclusions: | and Il are more preferable than Il and 1V in every respect; between |
and 111 no difference found




Effect of regularization 111 for 8 = 1073:
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ny = 15 : minimum of 7* (left) and maximum of 7 * (right).




