
Purpose:
How to train an MLP neural network in MATLAB

environment!

that is

For good computations,
we need good formulae

for good algorithms;
and good visualization

for good illustration
and proper testing
of good methods

and succesfull applications!

Learning/Training the MLP:

1. Learning data: given set of input-output vector-pairs���������	��

������ �
�����������
and

�����������
� to enhance the next step prescaling into the range of the activation functions

2. Learning problem: optimization problem to train the network according to data:

���! "$#&%�'(# �*),+.-0/ � � / 132 � (1)

where (LMS = least-mean squares)

+.-0/ � � / 14265 7
8:9

�; �����=<?> - ��� 2A@ �	� < 1B5
7
8:9

�; �����C< / 1EDF -*/ �HG��� 2I@ �	� < 1 (2)

� tradional perspective: chain-rule in an index jungle!� our approach: layer-wise treatment according to network structure!

3. Training method: a way to solve the optimization problem

� tradional perspective: backprop, quickprop, rpprop, J prop etc.� our approach: efficient optimization algorithm that solves problem (1)

Layerwise calculus for sensitivity analysis:

Every local solution -0/ ��� � / 1 � 2 for minimization problem (1) characterized by the con-
ditions � " # % ' # �) +.-0/ � � � / 1 � 265 � � #&% + -0/ ��� � / 1 � 2� # � + -0/ � � � / 1 � 2�� 5

���� �
	
� assume that activation functions are differentiable

Lemma 1. Let � � �
� %
and

� � ��� �
be given vectors. The derivative-matrix� # � -0/ 2 � � � ��� � %

for the functional� -0/ 2H5 7
8 < / � @ � < 1

is of the form � #�� -0/ 2 5 � / � @ ��� ��� 	
Lemma 2. Let / � ��� � � � %

be a given matrix,
� � �
� �

a given vector, and
F 5� ����� ��� � - � 2
 � %�(��� a given diagonal function-matrix. The gradient

�
! � -#" 2 � � � %
for the

functional � -#" 2 5 7
8 < / F -$" 2 @ � < 1 (3)

reads as �%! � -#" 2 5 � �&��� � F(' -#" 2
 / � � / F -#" 2 @ ��� 	
Lemma 3. Let)/ � � � � � � %

be a given matrix,
F 5 � ����� ��� � -*� 2
 � %�(��� a given diag-

onal function-matrix, and � � �+� � ��� � ��� �
given vectors. The derivative-matrix� #,� -0/ 2 � � � % � � �

for the functional� -0/ 2 5 7
8 <)/ F -*/ � 2 @ � < 1 (4)

is of the form � #�� -0/ 2 5 � ����� � F ' -*/ � 2
)/ �-�.)/ F -0/ � 2�@ ��� � � 	

Layerwise optimality conditions for MLP (I):

Theorem 1. Derivative-matrices
� # � + -0/ � � / 1 2 and

� # % + -0/ � � / 1 2 for the cost
functional (2) are of the form

(i)

� # � +.-0/ � � / 14265 7
9

�; �(��� � / 1 DF -0/ � G� � 2A@ � � � � DF -*/ � G� � 2 � �
5 7

9
�; �(����� � � DF -0/ � G� � 2 � � �

(ii)

� #&% + -0/ � � / 14265 7
9

�; �(��� � �&� � � F ' -0/ � G� � 2
 -0/ 1 � 2�� � / 1 DF -0/ � G� � 2I@ � � � G� ��
5 7

9
�; �(��� � �&� � � F ' -0/ � G� � 2
 -0/ 1 � 2�� � � G� �� 	

In (ii), / 1 � is the submatrix obtained from / 1 by removing the first column / 1� contain-
ing the bias nodes.

In MATLAB:

for i=1:N
[o,o1,d1] = mlp_out(x(:,i),w1,w2);
e = o - y(:,i);
f = f + e’*e/(2*N);
o1_ext = [1; o1];
dw1 = dw1 + diag(d1)*w2(:,2:n1+1)’*e*[1 x(:,i)’]/N;
dw2 = dw2 + e*o1_ext’/N;

end
OR
[o,o1,d1] = mlp_out2(x’,w1,w2);
e = o - y’;
f = sum(sum(e.^2))/(2*N);
dw1 = (d1.*(w2(:,2:n1+1)’*e))*[ones(N,1) x]/N;
dw2 = e*[ones(N,1) o1’]/N;

Layerwise optimality conditions for MLP (II):

For more-than-two-layers problem

+ - � / �
��
� ��� 265

7
8 9

�; �(��� < / �
G
�
" ��� �)� @ �	� < 1 � (5)

where � �� 5 � �
and � �� 5 F � -0/ �

G
�
" � � �)� 2 for

� 5 7 � 	 	 	 ��� @ 7

we have the general result

Theorem 2. Derivative-matrices
� #
	 +.- � / �
 �

� ��� 2 � � 5 � � 	 	 	 � 7 � for the cost functional
(5) are of the form � #
	 + - � / �
��

� ��� 265
7
9

�; �(��� � �� � G� " � � �)� � � �
where

� �� 5 �
� 5 / �

G
�
" ��� �)� @ � � �

(6)
� �� 5 � �&��� � - F � 2 ' -0/ � G

�
" � � �)� 2
 -*/ " �
� �)� 2 � � " �
� �)� 	 (7)

Where’s the beef?

� efficient (and correct) implementation

– computation of �
��
’s in forward loop

– overwritten by
� ��

’s in backward loop

– realization of (7) in single loop (for sigmoidal activation)

� possibilites for analysis opened up

What does the MLP actually learn?

Corollary 1. -�� 2 The average error
�
��� ������

�
��

made by the locally optimal MLP-network
satisfying the conditions in Theorem 2 is zero.

-���� 2 The correlation between the error-vectors and the action of layer
� @ 7

is zero.

Some consequences:

� just having final bias yields Cor. 1 (i)� valid for all (linear or nonlinear) transformations having such structure

� Cor. 1 (i) shows that
every > - � / ���
 2 treats optimally Gaussian noise with zero mean
for the regression model

� � 5
	 - � � 2���
 � 	
� final layer activation does not give Cor. 1 (i) (unless zero-residual case)

Note: sensitivity analysis also for this case follows� backprop does not give Cor. 1� (most likely on-line mode does not give Cor 1 (i))� early stopping does not give Cor. 1 (i)� all these can work better than the rigorous LMS-MLP for non-Gaussian
(and/or non-functional) learning datas� BUT: learning rate, number of epocs, stopping criterion, etc.
cannot be explicitly controlled for this purpose!
(termination due to algorithm or data?)

� Cor. 1 (i) explains how and why explicit change of prior frequency of different
samples effects the trained MLP

Practical Difficulties with MLP:

� lots of local minima in optimization problem� single local optimization not enough!

� large variation on number of iterations� backprop and early stopping give what?

� How to choose the best MLP from local minima and from different configurations (e.g.,
size of hidden layer(s) and large set of activation functions) rigorously?

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

� � 5 8��
minimum of + �

(left) and maximum of + �
(right).

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

� � 5 � � minimum of + �
(left) and maximum of + �

(right).

Possible remedy: regularization

Underlying idea: augment the LMS-cost with a penalization term that smooths the MLP-
transformation (cf. Bayesian statistics):

+�� -0/ � � / 1 265
7
8:9

�; ����� <?> - ��� 2 @ �	� < 1 �
�
8 ;
� ' � ' �
� / �� � � 1

Note: other possibilities for single weight penalization exist, but very often nonconvex and
nonsmooth

in light of Cor. 1 (i): final bias should be excluded from regularization� different possibilities (cf. Cor. 1 (ii)):

I: regularize all other components except the bias-terms / 1� in / 1
II: exclude all components of / 1 from regularization

III: exclude all bias-terms of -0/ � � / 1 2 from regularization (cf. Holmström et al.,
1997).

IV: exclude all components of / 1 and bias-terms of / �
from regularization

Without further ado:

� less (but still plenty of) local minima for I and III than for II, IV, and
� 5��

� numerical confirmation that Cor. 1 (i) valid for all methods

� by means of number of iterations and CPU time I and III improved the performance,
whereas II and IV made it worse compared to unregularized approach

� 5��
� all regularization approaches (I and III in more stable way than II and IV) improved

the generalization in simple nonlinear regression problem by preventing unnecessary
oscillation

� Conclusions: I and III are more preferable than II and IV in every respect; between I
and III no difference found

Effect of regularization III for � � ������� :

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

� � 5 � � minimum of + �
(left) and maximum of + �

(right).

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

 y
 f
 N (x)

� � 5 7
	 �
minimum of + �

(left) and maximum of + �
(right).

