Pur pose;
How to train an MLP neural network in MATLAB
environment!

that is

For good computations,
we need good formulae
for good algorithms;
and good visualization
for good illustration
and proper testing
of good methods
and succesfull applications!

About Neural Networks

e supervised learning of NN: nonlinear regression approximation based on given input-
output -vector pairs {x;,yi},,, X; € R™ and y; € R™

¢ here, instead of backpropagation, i.e.

i) applying the chain-rule for sensitivity analysis
i1) applying basic gradient method -type training algorithm

e we utilize

i) layered-wise representation of network architecture and corresponding calculus
i1) more advanced optimization methods for training

What isMLP?

For activation:

1. architecture: how to present the network (compactly)
2. Learning data: given set of input-output -pairs
3. Learning problem: optimization problem for deriving unknown weights

4. Training method: a way to solve the optimization problem

L earning Data

e input-output vectors:

o
X, ~*x=|:]| eR™
wno
and o
n
yiry=|:i| €R®
ynz
forall: =1,..., N, where N is the number of given vectors N
e components (x;);,7 = 1,...,ny, of input-vectors {x; } are called features

(cf. pattern recognition)

e Whole data can be stored - surprise, surprise - to the following matrices:

X{ (Xl)l .. (Xl)no
X=|:|=| : . + | eRNxm
xjjc, (xn)1 -+ (XN)ng
and
yi (yi)r oo (Y1)n
Y=|:|=| : . i |eR¥V™
Yy (yn)1 - (YN)n,

For succesfull application:

1. learning data representing stationary function and having suitable error distribution

2. proper architecture of MLP by means of complexity of unknown function

25 T

151

051

-0.5 L

Example:

25 T

-0.5 L

I I I
0.5 1 15

Economics:

Softwar e Engineering:

Neural Networks:

Optimization:

“Are we building the right product?”
“Are we building the product right?”

“Are we building the right software?”
“Are we building the software right?”

“Are we training the right network?”
“Are we training the network right?”

“Are we minimizing the right functional?”
“Are we minimizing the functional right?”

L ayerwise description of ML P-mapping:

1. from line to surface to hypersurface

a(x) = wo + w1 + -+ + Wp_1Ty_1 + WnTy = W' X,
where o .
wy 1
W = Ufl and x = :17.1
wn _.’,Un_
wy the so-called bias-term shifting the origin (a (0) = wy)
2. Linear transformation (= linear perceptron):
[wly+whz ot wle,] [wiTR]
wig + W11 - w, T, | = w}.’ch = Wik
\wp o+ w14 wy]| [WETR]
3. Nonlinear activation with diagonal function-matrix:
(A() 0 ... 0]
0N
0 .. 0 fal)

= o' = F(Wx).
Note: MLP could be generalized by using nondiagonal F

4. One layer not enough for proper nonlinearity. To quarantee (simplified) nonlinear
action we introduce second layer:

N(x) = W25! = W2F(W')

About activation functions:;

¢ originally step-function was used, but its nondifferentiability prevents efficient training
e mathematical properties non-polynomiality and monotonicity (i.e., squashing function)

e most popular choices

s(a) = T exp(—a) logistic sigmoid
1 7 H 7
sk(a) = I exp(—Fa)’ k=1,2,... ’k-sig

te(a) = exp(ka) —exp(—ka) 2
’ exp(ka) + exp(—ka) 1+ exp(—2ka)
for which t;(—a) = —tx(a) Va > 0.

—1=2s,(2a)—1 ’k-tanh’

e ... with derivatives
(@) = k exp(ka)/(1 + exp(ka))? = k si(a) (1 — 54(a))
t}g(a) =4k exp(2ka)/(14+exp(2ka))® = k(1 +tp(a)) (1 —tr(a)) = k (1 —tp(a)?)

About approximation capability:

Theorem1. Let ¢(-) be a nonconstant, bounded, and monotone-increasing continuous func-
tion. Let 7, denote the my-dimensional unit hypercube [0, 1]™0. The space of continuous
functions on I,,,, is denoted by C(I,,,). Then, given any function f > C(I,,,) and ¢ > 0,
there exists an integer m, and sets of real constants o, 8;, and w;;, wheres = 1,...,m; and
j =1,...,mgsuch that we may define

mi mo
F(z1,...,Zm,) = Z (e% QO(Z Wi T + b;)
=1 j=1

as an approximate realization of function f(-); that is,

|F (21, Tmg) — f(T1,- -, Tm)| < €

forall z4,..., x,, that lie in the input space.

e merely about existence, nothing about how to fix unknown coefficients

M L P-transformation using MATL AB:

%

n0 = 3;, nl =4 n2 =2, k = 1;

X = zeros(1,n0); wl = zeros(nl,n0+1l); w2 = zeros(n2, nl+l);
% . ..

ol = wi*[1; x'];

ol = 2./(1 + exp(-2*k*ol)) - 1;

o = wW2*[1; ol];

%

%lsn't it sinple?!

%

