
Purpose:
How to train an MLP neural network in MATLAB

environment!

that is

For good computations,
we need good formulae

for good algorithms;
and good visualization

for good illustration
and proper testing
of good methods

and succesfull applications!



About Neural Networks

� supervised learning of NN: nonlinear regression approximation based on given input-
output -vector pairs
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y = N(x)?
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� here, instead of backpropagation, i.e.
 "!

applying the chain-rule for sensitivity analysis
 � "!

applying basic gradient method -type training algorithm

� we utilize
 "!

layered-wise representation of network architecture and corresponding calculus
 � "!

more advanced optimization methods for training



What is MLP?
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For activation:

1. architecture: how to present the network (compactly)

2. Learning data: given set of input-output -pairs

3. Learning problem: optimization problem for deriving unknown weights

4. Training method: a way to solve the optimization problem



Learning Data

� input-output vectors:
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�

� components � � � !�� ����� � ������� ����� �
of input-vectors
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are called features

(cf. pattern recognition)

� Whole data can be stored - surprise, surprise - to the following matrices:
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For succesfull application:

1. learning data representing stationary function and having suitable error distribution

2. proper architecture of MLP by means of complexity of unknown function



Example:

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

Economics: “Are we building the right product?”
“Are we building the product right?”

Software Engineering: “Are we building the right software?”
“Are we building the software right?”

Neural Networks: “Are we training the right network?”
“Are we training the network right?”

Optimization: “Are we minimizing the right functional?”
“Are we minimizing the functional right?”





Layerwise description of MLP-mapping:

1. from line to surface to hypersurface
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the so-called bias-term shifting the origin ( � ��� ! ��� �

)

2. Linear transformation (= linear perceptron):������
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3. Nonlinear activation with diagonal function-matrix:
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Note: MLP could be generalized by using nondiagonal

�

4. One layer not enough for proper nonlinearity. To quarantee (simplified) nonlinear
action we introduce second layer:
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About activation functions:
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� originally step-function was used, but its nondifferentiability prevents efficient training

� mathematical properties non-polynomiality and monotonicity (i.e., squashing function)

� most popular choices

� � � ! � �� ������� ��� � ! logistic sigmoid
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About approximation capability:

Theorem 1. Let �#� � ! be a nonconstant, bounded, and monotone-increasing continuous func-
tion. Let � � denote the � �

-dimensional unit hypercube � � � ��� � � � The space of continuous
functions on � � � is denoted by � ��� � � ! � Then, given any function
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as an approximate realization of function
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� � � that lie in the input space.

� merely about existence, nothing about how to fix unknown coefficients

MLP-transformation using MATLAB:

%
n0 = 3; n1 = 4; n2 = 2; k = 1;
x = zeros(1,n0); w1 = zeros(n1,n0+1); w2 = zeros(n2,n1+1);
% ...
o1 = w1*[1; x’];
o1 = 2./(1 + exp(-2*k*o1)) - 1;
o = w2*[1; o1];
%
% Isn’t it simple?!
%


