
Purpose:
How to train an MLP neural network in MATLAB

environment!

that is

For good computations,
we need good formulae

for good algorithms;
and good visualization

for good illustration
and proper testing
of good methods

and succesfull applications!

About Neural Networks

� supervised learning of NN: nonlinear regression approximation based on given input-
output -vector pairs

�������	�
����
����� �������������
and

�����������

y = N(x)?

Input Output

y1

y2

y3

y4

y5

y6
x6

x4 x5

x3

x2

x1

� here, instead of backpropagation, i.e.
 "!

applying the chain-rule for sensitivity analysis
 � "!

applying basic gradient method -type training algorithm

� we utilize
 "!

layered-wise representation of network architecture and corresponding calculus
 � "!

more advanced optimization methods for training

What is MLP?

n
2

2
W

2

W10
1

W1
n 1

1

W1
n 2

1

W
1
n n

01

W
1

1
n 0

11W
1

W
1
1n

0

1
nn

2
W

1
n1

2

W10
2

11W
2

W2
n 1

2

W2
n 2

2

i,n2

W

i,2

i,1O

O

O

0 .

.

.

.

().

(). ().

().

().().

i,1X

X i,2

Xi,n
0

.

.

1

1

1
1

2

2

2

2

1n

2

1

n

2

f

f

f

f

f

f

.

.

..

1 1

For activation:

1. architecture: how to present the network (compactly)

2. Learning data: given set of input-output -pairs

3. Learning problem: optimization problem for deriving unknown weights

4. Training method: a way to solve the optimization problem

Learning Data

� input-output vectors:

� ��� ��� ��
���

�
...

� � �
	�

� ��� ���

and

� �
� ��� ��
���

�
...

� � �
	�

� ��� ���

for all
 � � ����������� �

where
�

is the number of given vectors
�

� components � � � !�� ����� � ������� ����� �
of input-vectors

��� � �
are called features

(cf. pattern recognition)

� Whole data can be stored - surprise, surprise - to the following matrices:

 � ��
�
�
! �
...� !

	�

� � ��

� �
� � ! � ����� � � � ! ���

...� �
 ! � ����� � �
 ! � �
	�

� ���
#" � �

and $ � ��
�
�%! �
...�&!

	�

� � ��

� �
� � ! � ����� � � � ! ���

...� �
 ! � ����� � �
 ! � �
	�

� ���
#" ��� �

For succesfull application:

1. learning data representing stationary function and having suitable error distribution

2. proper architecture of MLP by means of complexity of unknown function

Example:

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

Economics: “Are we building the right product?”
“Are we building the product right?”

Software Engineering: “Are we building the right software?”
“Are we building the software right?”

Neural Networks: “Are we training the right network?”
“Are we training the network right?”

Optimization: “Are we minimizing the right functional?”
“Are we minimizing the functional right?”

Layerwise description of MLP-mapping:

1. from line to surface to hypersurface

� � � ! ��� ��� � �
�
���������	� � ��
 � � ��

��� � � � �
��� !�
� �

where

� �
����
�
� �
� �
...� �

	�

� and

���
����
�
�
�
�

...

� �
	�

�

� �
the so-called bias-term shifting the origin (� ��� ! ��� �

)

2. Linear transformation (= linear perceptron):������
�

� ���� � � �� � �
� �������	� � ���� � � �...� ���� � � � ���� � �
� �������	� � ���� � � �...� ���� � � � � ���� � � �
� �������	� � ���� � � � �

	�

� �

������
�
� ��� !�
�

...� ��� !�
�

...� ��� !�
�

	�

� ��� �
�

3. Nonlinear activation with diagonal function-matrix:

� � � ! �
����
�
� � � � ! � ����� �
� ��� � � ! ����� �
...
� ����� � � � � � !

	

�

� � � � � � � �
� ! �
Note: MLP could be generalized by using nondiagonal

�

4. One layer not enough for proper nonlinearity. To quarantee (simplified) nonlinear
action we introduce second layer:

� � � ! ��� �! " � ��� � � � � �
� !

About activation functions:

−3 −1 1 3

−1

1

3

5

k = 1

k = 5

� originally step-function was used, but its nondifferentiability prevents efficient training

� mathematical properties non-polynomiality and monotonicity (i.e., squashing function)

� most popular choices

� � � ! � �� ������� ��� � ! logistic sigmoid

�
	 � � ! � �� ������� ����� � ! � � � � ��
 �������
’k-sig’

� 	 � � ! � ����� ��� � ! � ����� ����� � !����� ��� � ! ������� ����� � ! �
� ������� ���
 � � ! � � ��
 � 	 �
 � ! � �
’k-tanh’

for which
� 	 ��� � ! � � � 	 � � !�� ��� � �

� . . . with derivatives

���	 � � ! � � ����� ��� � !�� � � ������� ��� � ! ! � � � � 	 � � ! � � � � 	 � � !	!
� � 	 � � ! � � � ����� �
 � � !�� � � �!����� �
 � � ! ! � � � � � � � 	 � � ! ! � � � � 	 � � ! ! � � � � � � 	 � � ! � !

About approximation capability:

Theorem 1. Let �#� � ! be a nonconstant, bounded, and monotone-increasing continuous func-
tion. Let � � denote the � �

-dimensional unit hypercube � � � ��� � � � The space of continuous
functions on � � � is denoted by � ��� � � ! � Then, given any function

�	� � ��� � � ! and
�� � �
there exists an integer � �

and sets of real constants
 � ��� � � and
� � � �

where
 � � ��������� � �

and��� � ��������� � � such that we may define

� � �
� ���������

� � � !
� � ��

�����

� �#� � �� � ��� � � � � �

��� � !

as an approximate realization of function
� � � !�� that is,

� � � �
� ������� �

� � � ! � � � �
� ���������

� � � !
���

for all �
� ���������

� � � that lie in the input space.

� merely about existence, nothing about how to fix unknown coefficients

MLP-transformation using MATLAB:

%
n0 = 3; n1 = 4; n2 = 2; k = 1;
x = zeros(1,n0); w1 = zeros(n1,n0+1); w2 = zeros(n2,n1+1);
% ...
o1 = w1*[1; x’];
o1 = 2./(1 + exp(-2*k*o1)) - 1;
o = w2*[1; o1];
%
% Isn’t it simple?!
%

