Scattering theory
Solutions to Exercises #7, 16.11.2007

. See proof of Lemma 2.2.4 in the lectures.

. Let u = do be the surface measure of S2. Since u is a compactly supported
distribution, the Fourier transform is defined pointwise for all £ € R? and

) = (e = [

Here £ = £/|€|. We choose a positive orthonormal basis {;, 72, £} of R3,
and introduce spherical coordinates

w - M =sin¢ cos?,
w1y =sin¢ siné,
w-ézcosqﬁ,

where 0 < ¢ <1 and 0 < 6 < 27. Then
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. Let u = do be the surface measure of S"~!1. We have

u(§) = / e~ du = / el E gy,
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Let {é, M2, ...,Mn} be a positive orthonormal basis of R*. We let ST =
{we SV w-n, >0} Ifw=x.6+x2m + ... + 1,1, is identified with
r=(z1,...,7,) € S"!, then

St ={(", h(a"); '] < 1}
where h(z') = /1 — |2/|2. Then we have dS(z') = /1 + |Vh(z')|?da’ =

(1 —|2'>)~1/2da’, and
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Here 2" = (x3,...,2,_1). One has

(1_33%_'33//‘2)—1/2 de" = (1_33%)’?3 / (1—|:l?”|2)_1/2 dr"
la"|<1
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by the definition of surface measure on S"~2. We use that
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since (1 —¢*)"2 is even in ¢. From Abramowitz and Stegun, Handbook
of Mathematical Functions, formula 9.1.20,
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Therefore

a(€) = (2m)"/21g[ "% Tz (J8)).

. The claim is easy to prove if M is a hyperplane. In the case where M
is a general hypersurface, we want to reduce to the hyperplane case by
"flattening” M. This can be done as follows. Let xy € M, and choose
Cartesian coordinates so that xg = 0 and M is given near 0 as the graph
of a C? function h, with VA(0) = 0. Then for some 6 > 0 one has

M N B(0,0) = {(/, h(z")); |2'| < d}.
We identify &’ with (z’, h(2")). The normal is
v(z') = (14 |Vh()))"V2(=Vh(2), 1).
Consider the map

F(y yn) = (v, h(y)) + ynr(v/).



Near 0, F is C! since h is C%. If v(y') = (V' (y),va(v')), the Jacobian
matrix DF' = (0 Fj)} -, is given by

DF(y',yn) = ( L+ ynDV'(y) V(YY) )

VAY) + yaVun(y') valy')

One has F'(0) = 0 and DF(0) = I, so the inverse function theorem shows
that F': U — V is a diffeomorphism from some ball U centered at 0 onto
some neighborhood V' of 0.

If x € C§°(V) then changing coordinates © = F(y) gives

1 = 1

(xf)(x) dx (X/)(E(y))|det DF(y)|dy.
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Since F~1 (VN M.) = UN{|y,| < &} for e small * | and since supp(x o F')
is contained in the open ball U, the last integral may be written as
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where g(yn) = fi (XF)(F(Y' yn))|det DF(y', yn)| dy', Uy = U N {y, = 0}.
Then since g is continuous,

lim / () dyn = 9(0) = / (x/) () [det DF(y.0)| dy.
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The determinant is (1 + [Vh(y')|?)¥/2, which shows that

lim—/ME(Xf)(:v)dxz/fodS-

The claim follows by choosing a suitable partition of unity and applying
the preceding argument in each coordinate patch.

Ty e Un{|yn| < e} then (v, h(y')) +ynv(y') € M., soy € F~1H(V N M,.). Conversely,
let z € U and F(z) € M.. Let yo = (v, h(y’)) be a point on M N B(0,¢) closest to F(z).
If v is any C? curve on M with v(0) = yg, then 7(t) = |y(t) — F(z)|? has a local minimum
at t = 0, hence 7/(0) = 2(yop — F(2)) - 4(0) = 0. This implies that yo — F(z) is orthogonal
to any tangent vector of M at yo, so F(z) = yo + ynv(yo) = F(y',yn) for some y,. Then

lyn| = |F(2) — yo| = dist(F(2), M N B(0,2)) < e.

It follows that z =y € U N {|yn| < €}.



