
Scattering theory
Solutions to Exercises #5, 19.10.2007

1. Let λ ∈ σess(A) and let K be compact and self-adjoint. Assuming Weyl’s
criterion, there is a sequence (uj) ⊂ D(A), ‖uj‖ = 1, with uj → 0 weakly
and ‖(A − λ)uj‖ → 0. Any weakly convergent sequence is bounded, and
therefore (Kuj) converges to some ũ ∈ H after taking a subsequence if
necessary. But (Kuj, v) = (uj, Kv) → 0 for any v ∈ H, so ũ = 0 and
so ‖(A + K − λ)uj‖ → 0. The new sequence (uj) is a Weyl sequence for
A + K, so λ ∈ σess(A + K). The other direction, σess(A + K) ⊂ σess(A),
follows by writing A = (A+K)−K and using the first part.

2. Let λ ∈ σess(A) and dim ker(A − λ) = ∞. Choose an orthonormal set
{uj}∞j=1 in ker(A − λ). Then (uj) ⊂ D(A), ‖uj‖ = 1, and (A − λ)uj = 0
for all j. One has

∞∑
j=1

|(uj, v)|2 ≤ ‖v‖2, v ∈ H,

and therefore (uj, v) → 0 for all v ∈ H. This shows that (uj) is a Weyl
sequence.

3. Let λ ∈ σess(A) and dim ker(A− λ) <∞. Consider the map

Aλ := A− λ : D(Aλ)→ ker(A− λ)⊥,

where D(Aλ) = D(A) ∩ ker(A − λ)⊥. By Ex. 4, Problem 4, Aλ is self-
adjoint and 0 ∈ σ(Aλ). Since ker(Aλ) = {0} and Aλ has no residual
spectrum, the range R(Aλ) is dense.

We have that A−1
λ : R(Aλ) → D(Aλ) is unbounded. If 0 < dim ker(A −

λ) < ∞ this follows from Ex. 4, Problem 4. If ker(A − λ) = {0} this is
true since otherwise one would have ‖u‖ = ‖A−1

λ Aλu‖ ≤ C‖(A− λ)u‖ for
u ∈ D(A), which is a contradiction by Ex. 2, Problem 1.

Since A−1
λ is unbounded, there is a sequence (vj) ⊂ R(Aλ) with ‖vj‖ = 1

and ‖A−1
λ vj‖ → ∞. Define

uj =
A−1
λ vj

‖A−1
λ vj‖

.

Then uj ∈ D(A) ∩ ker(A− λ)⊥, ‖uj‖ = 1, and ‖(A− λ)uj‖ → ∞.



It remains to show that (uj, v)→ 0 for all v ∈ H. In fact, it is enough to
show this for v in a dense set. If v ∈ D((A−1

λ )∗) then

(uj, v) =
1

‖A−1
λ vj‖

(A−1
λ vj, v) =

1

‖A−1
λ vj‖

(vj, (A
−1
λ )∗v)→ 0.

Also, D((A−1
λ )∗) is dense in H since R(Aλ) ⊂ D((A−1

λ )∗), which follows
because (A−1

λ u,Aλf) = (u, f) for u ∈ D(A−1
λ ). The proof is finished.

4. Let A be self-adjoint in H and let (uj) ⊂ D(A), ‖uj‖ = 1, with uj → 0
weakly and ‖(A − λ)uj‖ → 0. Then λ is an approximate eigenvalue, so
λ ∈ σ(A) by Ex. 3, Problem 2. If dim ker(A − λ) = ∞ then λ ∈ σess(A)
by definition.

Assume that ker(A−λ) is finite dimensional, so it has an orthonormal basis
φ1, . . . , φN . Let P : u 7→

∑N
m=1(u, φm)φm be the orthogonal projection

onto ker(A − λ), and let P⊥ = I − P be the orthogonal projection onto
ker(A− λ)⊥. Since uj → 0 weakly,

‖Puj‖2 =
N∑
m=1

|(uj, φm)|2 → 0 as j →∞,

and so ‖P⊥uj‖ → 1. Then for j sufficiently large we may define

vj =
1

‖P⊥uj‖
P⊥uj.

Since uj ∈ D(A), one has P⊥uj ∈ D(A) and so vj ∈ D(A) ∩ ker(A− λ)⊥.
Also, ‖vj‖ = 1, and

‖(A− λ)vj‖ =
1

‖P⊥uj‖
‖(A− λ)uj‖ → 0.

This shows that A−1
λ is unbounded, since otherwise one would have 1 =

‖vj‖ = ‖A−1
λ Aλvj‖ ≤ C‖(A− λ)vj‖ → 0, contradiction.

Since we know that λ ∈ σ(A), dim ker(A−λ) <∞ and A−1
λ is unbounded,

by Ex. 4, Problem 4 it must be true that λ ∈ σess(A).


