MATS315 - Fourier Analysis

Exercises #3, 04.10.2024

(return by 24.10.2024)

Each exercise is graded 0/1/2 points. The exercises can be returned to Mikko during the lectures, to Hjørdis during the exercise sessions, or by email (hjordis.a.schluter@jyu.fi).

1. Let $f \in \mathscr{S}(\mathbb{R}^2)$. The X-ray transform of f is the function $Xf : [0, 2\pi) \times \mathbb{R} \to \mathbb{C}$, defined as follows. For $\theta \in [0, 2\pi)$ and $t \in \mathbb{R}$, write $e_{\theta} := (\cos \theta, \sin \theta)$, and let

$$\ell_{\theta}(t) := \{ x \in \mathbb{R}^2 : x \cdot e_{\theta} = t \}$$

be the line perpendicular to e_{θ} at "height t". Define $[Xf](\theta, t)$ to be the line integral of f over $\ell_{\theta}(t)$:

$$[Xf](\theta,t) := \int_{\ell_{\theta}(t)} f(s) \, \mathrm{d}s, \quad (\theta,t) \in [0,2\pi) \times \mathbb{R}.$$

The function $t \mapsto [Xf](\theta, t) =: [Xf]_{\theta}(t)$ represents an X-ray image of the density function f.

- (a) Show that $[Xf]_{\theta} \in \mathscr{S}$ for every $\theta \in [0, 2\pi)$, and $\widehat{[Xf]_{\theta}}(\xi) = \widehat{f}(\xi e_{\theta})$ for all $\xi \in \mathbb{R}$.
- (b) Use the formula from (a) and the Fourier inversion theorem, to find the following *inversion formula for the X-ray transform*:

$$f(x) = \frac{1}{2} \int_0^{2\pi} \widehat{F_{\theta}}(x \cdot e_{\theta}) \,\mathrm{d}\theta, \quad x \in \mathbb{R}^2.$$
(1)

Here $F_{\theta} \in L^{1}(\mathbb{R})$ is defined by $F_{\theta}(\xi) := |\xi| \cdot \widehat{[Xf]_{\theta}}(\xi)$. (Hint: Integrate using polar coordinates $\int_{\mathbb{R}^{2}} g(x) \, \mathrm{d}x = \int_{0}^{2\pi} \int_{0}^{\infty} r \cdot g(re_{\theta}) \, \mathrm{d}r \, \mathrm{d}\theta$)

The point of the formula (1) is that it allows you to reconstruct f if you only know the values of Xf. This is the mathematical theorem behind CT-scanners.

- 2. Below, $T \in \mathscr{S}'$ is a tempered distribution.
 - (a) Let $x \in \mathbb{R}^d$, write $e_x(y) = e^{ix \cdot y}$, and define the linear maps $e_x T$, $\tau_x T : \mathscr{S} \to \mathbb{C}$ by

$$[e_x T](\phi) := T(e_x \phi)$$
 and $[\tau_x T](\phi) := T(\tau_{-x} \phi), \quad \phi \in \mathscr{S}.$

where $(\tau_x \phi)(y) := \phi(y - x)$. Show that $e_x T, \tau_x T \in \mathscr{S}', \widehat{\tau_x T} = e_{-x} \hat{T}$, and $\widehat{e_x T} = \tau_x \hat{T}$.

- (b) Let $P(x) = \sum_{n=-N}^{N} c_n e^{inx}$ be a trigonometric polynomial on \mathbb{R} , $N \ge 0, c_n \in \mathbb{C}$. Check that T_P is a tempered distribution, and compute the Fourier transform $\widehat{T_P} \in \mathscr{S}'$.
- 3. Let $\{\psi_{\delta}\}_{\delta>0}$ be an approximate identity of the form $\psi_{\delta} := \delta^{-d}\psi(x/d)$, where $\psi \in C^{\infty}(\mathbb{R}^d)$ is a fixed, non-negative, compactly supported function with $\int \psi(x) \, dx = 1$. Prove that if $\phi \in \mathscr{S}$, then $\phi * \psi_{\delta} \to \phi$ in (\mathscr{S}, d) . (Hint: It may be more comfortable to prove the convergence of Fourier transforms in (\mathscr{S}, d) . Why is this good enough?)
- 4. Let $T \in \mathscr{S}'$, and $\phi, \psi \in \mathscr{S}$.
 - (a) Show that $(T * \phi)(\psi) = T(\tilde{\phi} * \psi)$, where $\tilde{\phi}(x) = \phi(-x)$.
 - (b) Show that $(T * \phi) * \psi = T * (\phi * \psi)$.
 - (c) Show that if $\{\psi_{\delta}\}_{\delta>0}$ is an approximate identity as in the previous exercise, and $T_{\delta} := T * \psi_{\delta} \in C^{\infty}(\mathbb{R}^d)$, then $T_{\delta}(\phi) \to T(\phi)$ for all $\phi \in \mathscr{S}$.

The convergence encountered in exercise 3(c) is called *weak*^{*} convergence of tempered distributions. To be precise, a sequence $\{T_j\}_{j\in\mathbb{N}} \subset \mathscr{S}'$ weak^{*} converges to $T \in \mathscr{S}'$ in \mathscr{S}' if

$$\lim_{j \to \infty} T_j(\phi) = T(\phi), \quad \phi \in \mathscr{S}.$$

Weak* convergence is denoted by $T_i \rightarrow T$.

5. (a) Prove that weak* convergence is weaker than L^p -convergence for any $1 \leq p \leq \infty$: If $f_j \in L^p(\mathbb{R}^d)$, and $f_j \to f \in L^p$ in the L^p -norm, then $T_{f_j} \rightharpoonup T_f$.

- (b) Prove by example that weak^{*} convergence is strictly weaker than convergence in the L^p -norm: Find a diverging sequence $\{f_j\}_{j\in\mathbb{N}} \subset L^p(\mathbb{R}^d)$ such that $T_{f_j} \to 0$.
- (c) Prove that $T_j \rightharpoonup T$ if and only if $\widehat{T}_j \rightharpoonup \widehat{T}$.
- 6. Let $f \in L^p(\mathbb{R}^d), 1 \leq p \leq \infty$, and consider the functions $g_R : \mathbb{R}^d \to \mathbb{C}$,

$$g_R(\xi) := \int_{B(0,R)} f(x) e^{-ix \cdot \xi} \, \mathrm{d}x, \quad \xi \in \mathbb{R}^d.$$

Show that $T_R := T_{g_R} \in \mathscr{S}'$, and $T_R \rightharpoonup \widehat{T_f}$ as $R \to \infty$.

- 7. Find the Fourier transform of the tempered distribution $T(f) = (\frac{d^n}{dx^n}\delta)(f)$.
- 8. Let a > 0. With H(t) denoting the Heaviside function, show that

$$\mathscr{F}\left[H(t)e^{-at}\right] = \frac{1}{a+i\xi}.$$

What is $\mathscr{F}[H(-t)e^{at}]$?

9. (a) Show that for $\xi \in \mathbb{R}$,

$$\mathscr{F}^{-1}\left[\frac{1}{1+\xi^2}\right] = c e^{-|x|};$$

determine c. (One can use the previous exercise).

(b) Show that for $\xi \in \mathbb{R}^3$

$$\mathscr{F}^{-1}\left[\frac{1}{1+|\xi|^2}\right] = \frac{c}{|x|}e^{-|x|};$$

with $c = \frac{1}{4\pi}$. (One may observe that the function is the unique solution v in \mathscr{S}' of $(1 - \Delta)v = \delta$).

10. Let $a \in \mathbb{C}$ and show that the distribution $u = e^{-ax}H(x)$ is a solution of the differential equation

$$(\partial_x + a)u = \delta$$
 in $\mathscr{D}'(\mathbb{R})$.

Can we show this by Fourier transformation?