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CHAPTER 1

Introduction

Joseph Fourier laid the foundations of the mathematical field now

known as Fourier analysis in his 1822 treatise on heat flow, although re-

lated ideas were used before by Bernoulli, Euler, Gauss and Lagrange.

The basic question is to represent periodic functions as sums of ele-

mentary pieces. If f : R → C has period 2π and the elementary pieces

are sine and cosine functions, then the desired representation would be

a Fourier series

(1.1) f(x) =
∞∑
k=0

(ak cos(kx) + bk sin(kx)).

Since eikx = cos(kx)+i sin(kx), we may alternatively consider the series

(1.2) f(x) =
∞∑

k=−∞

cke
ikx.

The bold claim of Fourier was that every function has such a represen-

tation. It turns out that this is true in a sense not just for functions,

but even for a large class of generalized functions or distributions (this

includes all reasonable measures and more).

Integrating (1.21.2) against e−ilx (assuming this is justified), we see

that the coefficients cl should be given by cl = f̂(l) where

(1.3) f̂(k) =
1

2π

∫ π

−π

f(x)e−ikx dx.

Then (1.21.2) can be rewritten as

(1.4) f(x) =
∞∑

k=−∞

f̂(k)eikx.

These formulas can be thought of as an analysis – synthesis pair: (1.41.4)

synthesizes f as a sum of exponentials eikx, whereas (1.31.3) analyzes f to

obtain the coefficients f̂(k) that describe how much of the exponential

eikx is contained in f .

1



2 1. INTRODUCTION

Fourier analysis can also be performed in nonperiodic settings, re-

placing the 2π-periodic functions {eikx}k∈Z by exponentials {eiωt}ω∈R.
Suppose that f : R → C is a reasonably nice function. The Fourier

transform of f is the function

(1.5) f̂(ω) =

∫ ∞

−∞
f(t)e−iωt dt,

and the function f then has the Fourier representation

(1.6) f(t) =
1

2π

∫ ∞

−∞
f̂(ω)eiωt dω.

Thus, f may be recovered from its Fourier transform f̂ by taking the

inverse Fourier transform as in (1.61.6). This is a similar analysis –

synthesis pair as for Fourier series, and if f(t) is an audio signal (for

instance a music clip), then (1.61.6) gives the frequency representation

of the signal: f is written as the integral (=continuous sum) of the

exponentials eiωt vibrating at frequency ω, and f̂(ω) describes how

much of the frequency ω is contained in the signal.

The extension of the above ideas to higher dimensional cases is

straightforward. The Fourier transform and inverse Fourier transform

formulas for functions f : Rn → C are given by

f̂(ξ) =

∫
Rn

f(x)e−ix·ξ dx, ξ ∈ Rn,

f(x) = (2π)−n

∫
Rn

f̂(ξ)eix·ξ dξ, x ∈ Rn.

Like in the case of Fourier series, also the Fourier transform can be

defined on a large class of generalized functions (the space of tempered

distributions), which gives rise to the very useful weak theory of the

Fourier transform.

Remark. There are many conventions on where to put the factors

of 2π in the definition of Fourier transform, and they all have their

benefits and disadvantages. In this course we will follow the conventions

given above. This will be useful in applications to partial differential

equations, since no factors of 2π appear when taking Fourier transforms

of derivatives.

Let us next give some elementary examples of the above concepts.

More substantial applications of Fourier analysis to different parts of

mathematics will be covered later in the course.
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Example 1. (Heat equation) Consider a homogeneous circular

metal ring {(cos(x), sin(x)) ; x ∈ [−π, π]}, which we identify with the

interval [−π, π] on the real line. Denote by u(x, t) the temperature of

the ring at point x at time t. If the initial temperature is f(x), then

the temperature at time t is obtained by solving the heat equation

∂tu(x, t)− ∂2xu(x, t) = 0 in [−π, π]× {t > 0},
u(x, 0) = f(x) for x ∈ [−π, π].

Since the medium is a ring, the equation actually includes the boundary

conditions u(−π, t) = u(π, t) and ∂xu(−π, t) = ∂xu(π, t) for t > 0. We

write f as the Fourier series (1.21.2), and try to find a solution in the form

u(x, t) =
∞∑

k=−∞

uk(t)e
ikx.

Inserting these expressions in the equation (and assuming that every-

thing converges nicely), we get
∞∑

k=−∞

(u′k(t) + k2uk(t))e
ikx = 0,

∞∑
k=−∞

uk(0)e
ikx =

∞∑
k=−∞

cke
ikx.

Equating the eikx parts leads to the ODEs

u′k(t) + k2uk(t) = 0,

uk(0) = ck.

Solving these gives uk(t) = cke
−k2t, so the temperature distribution

u(x, t) of the metal ring is given by

u(x, t) =
∞∑

k=−∞

cke
−k2teikx.

Example 2. (Audio filtering) The 2010 FIFA World Cup in foot-

ball took place in South Africa and introduced TV viewers around the

world to the vuvuzela, a traditional musical horn that was played by

thousands of spectators at the games. This sometimes drowned out

the voices of TV commentators, which prompted the development of

vuvuzela filters. The main frequency components of vuvuzela noise are

at ∼ 235 Hz and ∼ 470 Hz, and in principle the noise could be removed
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by replacing the original audio signal f(t), with Fourier representation

(1.61.6), by its filtered version

ffiltered(t) =
1

2π

∫ ∞

−∞
ψ(ω)f̂(ω)eiωt dt

where ψ : R → R is a cutoff function that vanishes around 235 and 470

Hz and is equal to one elsewhere.

Example 3. (Measuring temperature) Suppose that u(x) is the

temperature at point x in a room, and one wants to measure the tem-

perature by a thermometer. The bulb of the thermometer is not a

single point but rather has cylindrical shape, and one can think that

the thermometer measures a weighted average of the temperature near

the bulb. Thus, one measures∫
u(x)φ(x) dx

where φ is a function determined by the shape and properties of the

thermometer and φ is concentrated near the bulb. If one has two

different thermometers, the measured temperatures could be given by∫
u(x)φ1(x) dx,

∫
u(x)φ2(x) dx.

Thus, temperature measurements can be thought to arise from “test-

ing” the temperature distribution u(x) by different functions φ(x).

This is the main idea behind distribution theory : instead of think-

ing of functions in terms of pointwise values, one thinks of functions as

objects that are tested against test functions. The same idea makes it

possible to consider objects that are much more general than functions.

In this course we mostly concern ourselves with the weak and L2

theory of Fourier series and transforms, together with the relevant dis-

tribution spaces, with an emphasis on aspects related to partial dif-

ferential equations. We also give a number of applications. There are

many other possible topics for a course on Fourier analysis, including

the following:

Lp harmonic analysis. The terms Fourier analysis and harmonic

analysis may be considered roughly synonymous. Harmonic analysis is

concerned with expansions of functions in terms of “harmonics”, which

can be complex exponentials or other similar objects (like spherical

harmonics on the sphere, or eigenfunctions of the Laplace operator
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on Riemannian manifolds). One is often interested in estimates for

related operators in Lp norms. A representative question is the Fourier

restriction conjecture (posed by Stein in the 1960’s): one version asks

whether for any q > 2n
n−1

there is C > 0 such that

∥f̂ dS∥Lq(Rn) ≤ C∥f∥L∞(Sn−1), f ∈ L∞(Sn−1),

where

f̂ dS(ξ) =

∫
Sn−1

f(x)e−ix·ξ dS(x), ξ ∈ Rn.

The theory of singular integrals and Calderón-Zygmund operators are

closely related topics.

Time-frequency analysis. The usual Fourier transform on the

real line is not optimal for many signal processing purposes: while

it provides perfect frequency localization (the number f̂(ω) describes

how much of the exponential eiωt vibrating exactly at frequency ω is

contained in the signal), there is no time localization (the evaluation of

f̂(ω) requires integrating f over all times). Often one is interested in

the content of the signal over short time periods, and then it is more

appropriate to use windowed Fourier transforms that involve a cutoff

function in time and represent a tradeoff between time and frequency

localization.

A closely related concept is the continuous wavelet transform, which

decomposes a signal f(t) as

f(t) =

∫ ∞

−∞

∫ ∞

−∞
Tf(a, b)ψa,b(t) db

da

a2
,

where the wavelet coefficients are given by

Tf(a, b) =

∫ ∞

−∞
f(t)ψa,b(t) dt.

Here ψa,b is a function living near time b at scale a,

ψa,b(t) = |a|−1/2ψ(
t− b

a
),

and ψ is a suitable compactly supported function (so called mother

wavelet) whose graph might look like a Mexican hat. Transforms of

this type are central in signal and image processing (for instance JPEG

compression) and they are of great theoretical value as well, providing

characterizations of many function spaces.
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Another related topic ismicrolocal analysis, where one tries to study

functions in space and frequency variables simultaneously. This view-

point, together with the machinery of pseudodifferential and Fourier

integral operators, is central in the modern theory of partial differen-

tial equations and constitutes a kind of “variable coefficient” Fourier

analysis.

Abstract harmonic analysis. Fourier analysis can be performed

on locally compact topological groups. The theory is the most complete

on locally compact abelian groups. If G is such a group, there is a

unique (up to scalar multiple) translation invariant measure called Haar

measure, and a corresponding space L1(G). The Fourier transform of

f ∈ L1(G) is a function acting on Ĝ, the Pontryagin dual group of G.

This is the set of characters of G, that is, continuous homomorphisms

χ : G→ S1, χ(x+ y) = χ(x)χ(y).

If G = Rn the continuous homomorphisms are given by χ(x) = eix·ξ

for ξ ∈ Rn, whereas if G = R/2πZ they are given by χ(x) = eik·x for

k ∈ Z. There is also an L2 theory for the Fourier transform, and some

aspects extend to compact non-abelian groups.

References. As references for Fourier analysis and distribution

theory, the following textbooks are useful (some parts of the course

will follow parts of these books). They are roughly in ascending order

of difficulty:

• E. Stein and R. Sharkarchi: Fourier analysis.

• R. Strichartz: A guide to distribution theory.

• W. Rudin: Functional analysis.

• L. Schwartz: Théorie des distributions.

• J. Duoandikoetxea: Fourier analysis.

• L. Hörmander: The analysis of linear partial differential oper-

ators, vol. I.



Notation

We will write R, C, and Z for the real numbers, complex numbers,

and the integers, respectively. R+ will be the set of positive real num-

bers and Z+ the set of positive integers, with N = Z+ ∪ {0} the set of

natural numbers. For vectors x in Rn the expression |x| denotes the

Euclidean length, while for vectors k in Zn we write |k| =
∑n

i=1|ki|.
We will also use the notation ⟨x⟩ = (1 + |x|2)1/2.

To facilitate discussion of functions in several variables the multi-

index notation is used. The set of multi-indices is denoted by Nn and it

consists of all n-tuples α = (α1, . . . , αn) where the αi are nonnegative

integers. We write |α| = α1 + . . .+ αn and xα = xα1
1 · · ·xαn

n .

For partial derivatives, the notation

∂α =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

will be used. We will also write Dj =
1
i

∂
∂xj

, and correspondingly

Dα = Dα1
1 · · ·Dαn

n .

The Laplacian in Rn is defined as

∆ =
n∑

j=1

∂2

∂x2j
.

If Ω is an open set in Rn then Ck(Ω) will be the space of those

complex functions f in Ω for which ∂αf is continuous for |α| ≤ k. Of

course C∞(Ω) is the space of infinitely differentiable functions on Ω.

7





CHAPTER 2

Fourier series

We wish to represent functions of n variables as Fourier series. If f

is a function in Rn which is 2π-periodic in each variable, then a natural

multidimensional analogue of (1.21.2) would be

f(x) =
∑
k∈Zn

cke
ik·x.

This is the form of Fourier series which we will study. Note that the

terms on the right-hand side are 2π-periodic in each variable.

There are many subtle issues related to various modes of conver-

gence for the series above. We will discuss L2 convergence and point-

wise convergence. In the end of the chapter we will consider a number

of applications of Fourier series.

2.1. Fourier series in L2

The convergence in L2 norm for Fourier series of L2 functions is

a straightforward consequence of Hilbert space theory. Consider the

cube Q = [−π, π]n, and define an inner product on L2(Q) by

(f, g) = (2π)−n

∫
Q

fḡ dx, f, g ∈ L2(Q).

With this inner product, L2(Q) is a separable infinite-dimensional Hilbert

space. Recall that this means that

• ( · , · ) is an inner product on L2(Q) with norm ∥u∥ = (u, u)1/2,

• all Cauchy sequences converge (Riesz-Fischer theorem),

• there is a countable dense subset (this follows by looking at

simple functions with rational coefficients, or from Lemma

2.1.22.1.2 below).

The space of functions which are locally square integrable and 2π-

periodic in each variable may be identified with L2(Q). Therefore, we

will consider Fourier series of functions in L2(Q).

Lemma 2.1.1. The set {eik·x}k∈Zn is an orthonormal subset of L2(Q).

9
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Proof. A direct computation: if k, l ∈ Zn then

(eik·x, eil·x) = (2π)−n

∫
Q

ei(k−l)·x dx

= (2π)−n

∫ π

−π

· · ·
∫ π

−π

ei(k1−l1)x1 · · · ei(kn−ln)xn dxn · · · dx1

=

{
1, k = l,

0, k ̸= l.
□

We recall a Hilbert space fact. If {ej}∞j=1 is an orthonormal subset

of a separable Hilbert space H, then the following are equivalent:

(1) {ej}∞j=1 is an orthonormal basis, in the sense that any f ∈ H

may be written as the series

f =
∞∑
j=1

(f, ej)ej

with convergence in H,

(2) for any f ∈ H one has

∥f∥2 =
∞∑
j=1

|(f, ej)|2,

(3) if f ∈ H and (f, ej) = 0 for all j, then f ≡ 0.

If any of these conditions is satisfied, the orthonormal system {ej}
is called complete. The main point is that {eik·x}k∈Zn is complete in

L2(Q).

Lemma 2.1.2. If f ∈ L2(Q) satisfies (f, eik·x) = 0 for all k ∈ Zn,

then f ≡ 0.

The proof is given below. The main result on Fourier series of L2

functions is now immediate. Below we denote by ℓ2(Zn) the space of

complex sequences c = (ck)k∈Zn with norm

∥c∥ℓ2(Zn) =
( ∑

k∈Zn

|ck|2
)1/2

.

Theorem 2.1.3. (Fourier series of L2 functions) If f ∈ L2(Q),

then one has the Fourier series

f(x) =
∑
k∈Zn

f̂(k)eik·x
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with convergence in L2(Q), where the Fourier coefficients are given by

f̂(k) = (f, eik·x) = (2π)−n

∫
Q

f(x)e−ik·x dx.

One has the Parseval identity

∥f∥2L2(Q) =
∑
k∈Zn

|f̂(k)|2.

Conversely, if c = (ck) ∈ ℓ2(Zn), then the series

f(x) =
∑
k∈Zn

cke
ik·x

converges in L2(Q) to a function f satisfying f̂(k) = ck.

Proof. The facts on the Fourier series of f ∈ L2(Q) follow directly

from the discussion above, since {eik·x}k∈Zn is a complete orthonormal

system in L2(Q). For the converse, if (ck) ∈ ℓ2(Zn), then

∥
∑
k∈Zn

M≤|k|≤N

cke
ik·x∥2L2(Q) =

∑
k∈Zn

M≤|k|≤N

|ck|2

by orthogonality. Since the right hand side can be made arbitrarily

small by choosing M and N large, we see that fN =
∑

k∈Zn,|k|≤N cke
ik·x

is a Cauchy sequence in L2(Q), and converges to f ∈ L2(Q). One

obtains f̂(k) = (f, eik·x) = ck again by orthogonality. □

It remains to prove Lemma 2.1.22.1.2. We begin with the most familiar

case, n = 1. It is useful to introduce the following notion.

Definition. A sequence (KN(x))
∞
N=1 of 2π-periodic continuous

functions on the real line is called an approximate identity if

(1) KN ≥ 0 for all N ,

(2) 1
2π

∫ π

−π
KN(x) dx = 1 for all N , and

(3) for all δ > 0 one has

lim
N→∞

sup
δ≤|x|≤π

KN(x) = 0.

Thus, an approximate identity (KN) for large N resembles a Dirac

mass at 0, extended in a 2π-periodic way. We now show that there is

an approximate identity consisting of trigonometric polynomials.
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Lemma 2.1.4. The sequence

QN(x) = cN

(
1 + cos x

2

)N

,

where cN = 2π
(∫ π

−π

(
1+cosx

2

)N
dx

)−1

, is an approximate identity.

Proof. (1) and (2) are clear. To show (3), we first estimate cN by

1 =
cN
π

∫ π

0

(
1 + cos x

2

)N

dx ≥ cN
π

∫ π

0

(
1 + cos x

2

)N

sinx dx

=
cN
π

∫ 1

−1

(
1 + t

2

)N

dt =
2cN
π

∫ 1

0

sN ds =
2cN

π(N + 1)
.

Then for δ < |x| < π, we have

QN(x) ≤ QN(δ) = cN

(
1 + cos δ

2

)N

≤ π(N + 1)

2

(
1 + cos δ

2

)N

which shows (3) since (1 + cos δ)/2 < 1 for all δ > 0. □

It is possible to approximate Lp functions by convolving them against

an approximate identity. Here, the convolution of two 2π-periodic func-

tions is defined as the 2π-periodic function

(f ∗ g)(x) = 1

2π

∫ π

−π

f(y)g(x− y) dy.

This integral is well defined for a.e. x if one of the functions is in L1 and

the other in L∞, or more generally if f, g ∈ L1 by Fubini’s theorem.

We define the Lp norm by

∥f∥Lp([−π,π]) =

(
1

2π

∫ π

−π

|f(x)|p dx
)1/p

Lemma 2.1.5. Let (KN) be an approximate identity. If f ∈ Lp([−π, π])
where 1 ≤ p < ∞, or if f is a continuous 2π-periodic function and

p = ∞, then

∥KN ∗ f − f∥Lp([−π,π]) → 0 as N → ∞.

Proof. Since 1
2π
KN has integral 1, we have

(KN ∗ f)(x)− f(x) =
1

2π

∫ π

−π

KN(y)[f(x− y)− f(x)] dy.



2.1. FOURIER SERIES IN L2 13

Let first f be continuous and p = ∞. To estimate the L∞ norm of

KN ∗ f − f , we fix ε > 0 and compute

|(KN ∗ f)(x)− f(x)| ≤ 1

2π

∫ π

−π

KN(y)|f(x− y)− f(x)| dy

≤ 1

2π

∫
|y|≤δ

KN(y)|f(x−y)−f(x)| dy+
1

2π

∫
δ≤|y|≤π

KN(y)|f(x−y)−f(x)| dy.

Here δ > 0 is chosen so that

|f(x− y)− f(x)| < ε

2
whenever x ∈ R and |y| ≤ δ.

This is possible because f is uniformly continuous. Further, we use the

definition of an approximate identity and choose N0 so that

sup
δ≤|x|≤π

KN(x) <
πε

2∥f∥L∞
, for N ≥ N0.

With these choices, we obtain

|(KN ∗ f)(x)− f(x)| ≤ ε

4π

∫
|y|≤δ

KN(y) dy +
∥f∥L∞

π
sup

δ≤|x|≤π

KN(x) < ε

whenever N ≥ N0. The result is proved in the case p = ∞.

Let now f ∈ Lp([−π, π]) and 1 ≤ p < ∞. We will use the integral

form of Minkowski’s inequality,(∫
X

∣∣∣ ∫
Y

F (x, y) dν(y)
∣∣∣p dµ(x))1/p

≤
∫
Y

(∫
X

|F (x, y)|p dµ(x)
)1/p

dν(y),

which is valid on σ-finite measure spaces (X,µ) and (Y, ν), cf. the

usual Minkowski inequality ∥
∑

y F ( · , y)∥Lp ≤
∑

y∥F ( · , y)∥Lp . Using

this, we obtain

2π∥KN ∗ f − f∥Lp([−π,π]) ≤
∫ π

−π

KN(y)∥f( · − y)− f∥Lp([−π,π]) dy

=

∫
δ≤|y|≤π

KN(y)∥f( · −y)−f∥Lp dy+

∫
|y|≤δ

KN(y)∥f( · −y)−f∥Lp dy

≤ 2∥f∥Lp sup
δ≤|x|≤π

KN(x) + 2π sup
|y|≤δ

∥f( · − y)− f∥Lp .
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Since translation is a continuous operation on Lp spaces, for any ε > 0

there is δ > 0 such that

∥f( · − y)− f∥Lp([−π,π]) < ε whenever |y| ≤ δ.11

Thus the second term can be made arbitrarily small by choosing δ

sufficiently small, and then the first term is also small if N is large.

This shows the result. □

As a side product of the above results, we get the following version

of the Weierstrass approximation theorem for periodic functions.

Theorem 2.1.6. If f is a continuous 2π-periodic function, then for

any ε > 0 there is a trigonometric polynomial P such that

∥f − P∥L∞(R) < ε.

Proof. It is enough to choose P = QN ∗ f for N large and use

Lemma 2.1.52.1.5 for p = ∞. □

We can now finish the proof of the basic facts on Fourier series of

L2 functions.

Proof of Lemma 2.1.22.1.2. Let first n = 1. If f ∈ L2([−π, π]) and
(f, eikx) = 0 for all k ∈ Z, then the inner product of f against any

trigonometric polynomial vanishes. Thus, for any x,

0 =
1

2π

∫ π

−π

f(y)QN(x− y) dy = (QN ∗ f)(x)

Lemmas 2.1.42.1.4 and 2.1.52.1.5 imply that limN→∞QN ∗f = f in the L2 sense,

so f ≡ 0 as required.

Now let n ≥ 2, and assume that f ∈ L2(Q) and (f, eik·x) = 0 for all

k ∈ Zn. Since eik·x = eik1x1 · · · eiknxn , we have∫ π

−π

h(x1; k2, . . . , kn)e
−ik1x1 dx1 = 0

for all k1 ∈ Z, where

h(x1; k2, . . . , kn) =

∫
[−π,π]n−1

f(x1, x2, . . . , xn)e
−i(k2x2+...+knxn) dx2 · · · dxn.

1To see this, use Lusin’s theorem to find g ∈ Cc((−π, π)) with ∥f−g∥Lp < ε/3.

Extend f and g in a 2π-periodic way, and note that

∥f( · − y)− f∥Lp ≤ ∥f( · − y)− g( · − y)∥Lp + ∥g( · − y)− g∥Lp + ∥g − f∥Lp .

The first and third terms are < ε/3, and so is the second term by uniform continuity

if |y| < δ for δ small enough.
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Now h( · ; k2, . . . , kn) is in L2([−π, π]) by Cauchy-Schwarz inequality.

By the completeness of the system {eik1x1} in one dimension, we obtain

that h( · ; k2, . . . , kn) = 0 for all k2, . . . , kn ∈ Z. Applying the same

argument in the other variables shows that f ≡ 0. □

2.2. Pointwise convergence

Although pointwise convergence of Fourier series is not the main

topic of this course, it may be of interest to mention a few classical

results. We will focus on the case n = 1. Note that the Fourier coeffi-

cients

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikx dx, k ∈ Z,

are well defined for any f ∈ L1([−π, π]), and

|f̂(k)| ≤ ∥f∥L1 , k ∈ Z.

The partial sums of the Fourier series of a function f ∈ L1([−π, π]),
extended as a 2π-periodic function into R, are given by

Smf(x) =
m∑

k=−m

f̂(k)eikx =
m∑

k=−m

( 1

2π

∫ π

−π

f(y)e−iky dy
)
eikx

=
1

2π

∫ π

−π

Dm(x− y)f(y) dy

where Dm(x) is the Dirichlet kernel

Dm(x) =
m∑

k=−m

eikx = e−imx(1 + eix + . . .+ ei2mx)

= e−imx e
i(2m+1)x − 1

eix − 1
=
ei(m+ 1

2
)x − e−i(m+ 1

2
)x

ei
1
2
x − e−i 1

2
x

=
sin((m+ 1

2
)x)

sin(1
2
x)

.

Thus partial sums of the Fourier series of f are given by convolution

against the Dirichlet kernel,

Smf(x) = (Dm ∗ f)(x).

One might expect that that the Dirichlet kernel would behave like

an approximate identity, which would imply that the partial sums

Smf = Dm ∗ f would converge to f uniformly if f is continuous. How-

ever, Dm is not an approximate identity in the sense of the earlier

definition because it takes both positive and negative values. In fact,

one has 1
2π

∫ π

−π
Dm(x) dx = 1, but

∫ π

−π
|Dm(x)| dx → ∞ as m → ∞.
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Thus the convergence of the partial sums Smf to f may depend on

the oscillation (cancellation between positive and negative values) of

the Dirichlet kernel. This makes the pointwise convergence of Fourier

series somewhat subtle, and in fact there exist continuous functions

whose Fourier series diverge at uncountably many points.

By assuming something slightly stronger than continuity, pointwise

convergence holds:

Theorem 2.2.1. (Dini’s criterion) If f ∈ L1([−π, π]) and if x is a

point such that for some δ > 0∫
|y|<δ

∣∣∣∣f(x+ y)− f(x)

y

∣∣∣∣ dy <∞,

then Smf(x) → f(x) as m→ ∞.

Note that if f is Hölder continuous near x, so that for some α > 0

|f(x)− f(y)| ≤ C|x− y|α for y near x,

then f satisfies the above condition at x. Note also that the condition

is local: the behavior away from x will not affect the convergence of

the Fourier series at x. This general phenomenon is illustrated by the

following result.

Theorem 2.2.2. (Riemann localization principle) If f ∈ L1([−π, π])
satisfies f ≡ 0 near x, then

lim
m→∞

Smf(x) = 0.

The proof of these results will rely on a fundamental result due to

Riemann and Lebesgue.

Theorem 2.2.3. (Riemann-Lebesgue lemma) If f ∈ L1([−π, π]),
then f̂(k) → 0 as k → ±∞.

Proof. Since f(x) and e−ikx are periodic, we have

2πf̂(k) =

∫ π

−π

f(x)e−ikx dx =

∫ π

−π

f(x− π/k)e−ik(x−π/k) dx

= −
∫ π

−π

f(x− π/k)e−ikx dx.
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Rearranging gives

2πf̂(k) =
1

2

[∫ π

−π

f(x)e−ikx dx−
∫ π

−π

f(x− π/k)e−ikx dx

]
=

1

2

∫ π

−π

[f(x)− f(x− π/k)] e−ikx dx.

If f were continuous, taking absolute values of the above and using

that supx|f(x) − f(x − π/k)| → 0 as k → ±∞ would give f̂(k) → 0.

(This uses the fact that a continuous periodic function is uniformly

continuous.) In general, if f ∈ L1([−π, π]), given any ε > 0 we choose

a continuous periodic function g with ∥f − g∥L1 < ε/2. Then

|f̂(k)| ≤ |(f − g)̂ (k)|+ |ĝ(k)| < ε/2 + |ĝ(k)|.

The above argument for continuous functions shows that |ĝ(k)| < ε/2

for |k| large enough, which concludes the proof. □

Proof of Theorem 2.2.22.2.2. If f |(x−δ,x+δ) = 0, then

Smf(x) =
1

2π

∫
δ<|y|<π

Dm(y)f(x−y) dy =
1

2π

∫ π

−π

sin((m+
1

2
)y)g(y) dy

where

g(y) =
f(x− y)

sin(1
2
y)

χ{δ<|y|<π}.

Here g ∈ L1([−π, π]), and by writing sin t = eit−e−it

2i
we have

Smf(x) = −(e−iy/2g/2i)̂ (m) + (eiy/2g/2i)̂ (−m).

The Riemann-Lebesgue lemma shows that Smf(x) → 0 asm→ ∞. □

Proof of Theorem 2.2.12.2.1. Since 1
2π

∫ π

−π
Dm(x) dx = 1, we write

2π [Smf(x)− f(x)] =

∫ π

−π

Dm(y) [f(x− y)− f(x)] dy

=

∫
|y|<δ

Dm(y) [f(x− y)− f(x)] dy+

∫
δ<|y|<π

Dm(y) [f(x− y)− f(x)] dy.

Since Dm(y) =
sin((m+ 1

2
)y)

sin( 1
2
y)

and since |sin(1
2
y)| ∼ |1

2
y| for y small, the

first integral satisfies∣∣∣∣∫
|y|<δ

Dm(y) [f(x− y)− f(x)] dy

∣∣∣∣ ≤ C

∫
|y|<δ

∣∣∣∣f(x− y)− f(x)

y

∣∣∣∣ dy.
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By assumption, the last expression can be made arbitrarily small by

taking δ small. Also the second integral converges to zero as m → ∞
by the same argument as in the proof of Theorem 2.2.22.2.2. □

As discussed above, the problem with pointwise convergence is that

the Dirichlet kernel Dm takes negative values. One does get an approx-

imate identity if a different summation method is used: instead of the

partial sums Smf consider the Cesàro sums

σNf(x) =
1

N + 1

N∑
m=0

Smf(x).

This can be written in convolution form as

σNf(x) =
1

N + 1

N∑
m=0

(Dm ∗ f)(x) = (FN ∗ f)(x)

where FN is the Fejér kernel,

FN(x) =
1

N + 1

N∑
m=0

ei(m+ 1
2
)x − e−i(m+ 1

2
)x

ei
1
2
x − e−i 1

2
x

=
1

N + 1

ei
1
2
x ei(N+1)x−1

eix−1
− e−i 1

2
x e−i(N+1)x−1

e−ix−1

ei
1
2
x − e−i 1

2
x

=
1

N + 1

ei(N+1)x − 1 + e−i(N+1)x − 1

(ei
1
2
x − e−i 1

2
x)2

=
1

N + 1

sin2(N+1
2
x)

sin2(1
2
x)

.

Clearly this is nonnegative, and in fact FN is an approximate identity

(exercise). It follows from Lemma 2.1.52.1.5 that Cesàro sums of the Fourier

series an Lp function always converge in the Lp norm if 1 ≤ p <∞.

Theorem 2.2.4. (Cesàro summability of Fourier series) Assume

that f ∈ Lp([−π, π]) where 1 ≤ p < ∞, or that f is a continuous

2π-periodic function and p = ∞. Then

∥σNf − f∥Lp([−π,π]) → 0 as N → ∞.

2.3. Properties of Fourier series

In this section we describe the basic properties of Fourier series

and their behaviour under various operations, such as differentiation.
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In order for such operations to be well defined, we will work with a

particularly nice class of periodic functions.

Definition. Let P be the set of all C∞ functions Rn → C that

are 2π-periodic in each variable (periodic for short). Elements of P
are called periodic test functions.

Example. Any trigonometric polynomial
∑

|k|≤N cke
ik·x is in P.

Remark. The name test functions comes from distribution theory.

There the first step is to consider a class of very nice functions, called

test functions, and operations on them. Later, distributions are defined

as elements of the dual space of test functions. In this course we will not

have time to consider periodic distributions. However, we will develop

the theory of tempered distributions in connection with the Fourier

transform on Rn.

The set P is an infinite-dimensional vector space under the usual

addition and scalar multiplication of functions. We now consider some

basic operations on functions in P. To introduce some notation, define

the reflection

ũ(x) = u(−x),

translation (for x0 ∈ Rn)

(τx0u)(x) = u(x− x0),

and convolution (for u, v ∈ P)

(u ∗ v)(x) = (2π)−n

∫
[−π,π]n

u(x− y)v(y) dy.

Here are some basic properties of convolution:

Lemma 2.3.1. If u, v ∈ P then u∗v ∈ P. Moreover, for functions

in P we have

(1) u ∗ v = v ∗ u (commutativity)

(2) u ∗ (v ∗ w) = (u ∗ v) ∗ w (associativity)

(3) ∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv) (derivative)
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Proof. Let u, v ∈ P. We first observe that u ∗ v is uniformly

continuous: if x, y ∈ Rn write

|u ∗ v(x)− u ∗ v(y)| ≤ (2π)−n

∫
[−π,π]n

|u(x− z)− u(y − z)||v(z)| dz

≤ (2π)−n∥v∥L1([−π,π]n sup
z∈[−π,π]n

|u(x− z)− u(y − z)|.

Since u is uniformly continuous, for any ε > 0 we may find δ > 0

so that the last expression is < ε when |x − y| < δ. Thus u ∗ v is a

continuous periodic function.

For derivatives, note that

u ∗ v(x+ hej)− u ∗ v(x)
h

= (2π)−n

∫
[−π,π]n

u(x+ hej − y)− u(x− y)

h
v(y) dy.

By the mean value theorem, if |h| ≤ 1 there is θ with |θ| ≤ 1 so that∣∣∣∣u(x+ hej − y)− u(x− y)

h

∣∣∣∣ = |∂ju(x+ θej − y)| ≤ ∥∇u∥L∞ .

The last bound is independent of x, y, h, and dominated convergence

allows to take the limit as h→ 0 in the earlier integral to obtain that

∂j(u ∗ v)(x) = (∂ju) ∗ v(x).

Since ∂ju ∈ P, the first part of the argument shows that ∂j(u ∗ v)
is a continuous periodic function for each j. Iterating this argument

implies that u ∗ v ∈ P and ∂α(u ∗ v) = (∂αu) ∗ v. Parts (1) – (3) are

left as an exercise. □

Theorem 2.3.2. (Operations on test functions) If f, v ∈ P, then

the following operations map P to P:

(1) u 7→ ũ (reflection)

(2) u 7→ u (conjugation)

(3) u 7→ τx0u (translation)

(4) u 7→ ∂αu (derivative)

(5) u 7→ fu (multiplication)

(6) u 7→ v ∗ u (convolution).

Proof. Exercise. □
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We move to the study of Fourier series of test functions. Clearly test

functions are in L2, and hence their Fourier coefficients are l2 sequences

and their Fourier series converge in L2. Of course, much more is true.

We begin with the definition of rapidly decreasing sequences.

Definition. A sequence c = (ck)k∈Zn is said to be rapidly decreas-

ing if for any N > 0 there is CN > 0 such that

|ck| ≤ CN⟨k⟩−N .

Here ⟨k⟩ := (1 + |k|2)1/2. The set of rapidly decreasing sequences is

denoted by S = S (Zn).

We denote by F the map (“Fourier transform” in the periodic set-

ting) which takes a test function to its sequence of Fourier coefficients.

Thus,

F : P(Rn) → S (Zn), u 7→ (û(k))k∈Zn .

Theorem 2.3.3. (Fourier series of test functions) F is a linear

bijection from P(Rn) to S (Zn). Any u ∈ P can be written as the

uniformly convergent Fourier series

u =
∑
k∈Zn

û(k)eik·x.

For the proof, we need a simple lemma:

Lemma 2.3.4. The series ∑
k∈Zn

⟨k⟩−s

converges iff s > n.

Proof. Exercise. □

Proof of Theorem 2.3.32.3.3. If u ∈ P then also Dαu ∈ P. We

use repeatedly the integration by parts formula∫
[−π,π]n

v∂jw dx = −
∫
[−π,π]n

(∂jv)w dx, v, w ∈ C1([−π, π]n) periodic,

to obtain that

(Dαu)̂ (k) = (Dαu, eik·x) = (u,Dα(eik·x)) = kα(u, eik·x) = kαû(k).

In particular,

((1−∆)Nu)̂ (k) = ⟨k⟩2N û(k).
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Thus

|û(k)| ≤ ⟨k⟩−2N |((1−∆)Nu)̂ (k)| ≤ ⟨k⟩−2N∥(1−∆)Nu∥L∞([−π,π]n).

This shows that for u ∈ P, the sequence (û(k)) is in S .

Conversely, if (ck) ∈ S , define

u(x) =
∑
k∈Zn

cke
ik·x.

Since |ckeik·x| ≤ CN⟨k⟩−N for N > n, the series converges uniformly

by Lemma 2.3.42.3.4 and the Weierstrass M-test. By a similar argument

we see that
∑

k∈Zn Dα(cke
ik·x) converges uniformly for any α, and the

limit function is then equal to Dαu. This shows that u ∈ P, the series

converges uniformly, and also ck = û(k).

We have shown that F : P → S is bijective, and clearly it is

linear. □

We conclude this section by collecting some properties of the Fourier

transform on test functions. This illustrates the general philosophy that

the Fourier transform exchanges certain operations:

• translation is exchanged with modulation (=multiplication by

suitable complex exponentials);

• derivatives are exchanged with multiplication by polynomials ;

• convolutions are exchanged with products.

Here, the convolution of two rapidly decreasing sequences c = (ck) and

d = (dk) is defined as the rapidly decreasing sequence

(c ∗ d)k =
∑
l∈Zn

ck−ldl.

Theorem 2.3.5. If f ∈ P then the Fourier transform on P has

the following properties.

(1) (τx0u)̂ (k) = e−ik·x0û(k) (translation)

(2) (eik0·xu)̂ (k) = τk0û(k) (modulation)

(3) (Dαu)̂ (k) = kαû(k) (derivative)

(4) (u ∗ v)̂ (k) = û(k)v̂(k) (convolution)

(5) (fu)̂ (k) = (f̂ ∗ û)(k) (product)

Proof. Exercise. □
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2.4. Applications

In this section we show how Fourier analysis leads to remarkably

simple proofs of fundamental results in diverse areas. We will prove

the isoperimetric inequality in geometry, the Weyl equidistribution the-

orem in number theory, the (compact) Sobolev embedding theorem

in function space theory, and elliptic regularity for partial differential

equations.

2.4.1. Isoperimetric inequality. Let γ : [a, b] → R2 be a C1

simple closed curve (this means that γ(a) = γ(b), γ has no other

self-intersections, and γ′(t) ̸= 0 everywhere), and let U ⊂ R2 be the

bounded region enclosed by γ. The fact that U exists is a special case

of the Jordan curve theorem, which has an easier proof in the C1 case

by a winding number argument. The length of γ is defined by

L =

∫ b

a

|γ̇(t)| dt,

and the area of U is

A = |U | =
∫
U

dx.

Theorem 2.4.1. (Isoperimetric inequality) One has

4πA ≤ L2

with equality iff γ is a circle.

We will prove the isoperimetric inequality by using Fourier series.

The next result will be useful:

Theorem 2.4.2. (Poincaré inequality) If u is a C1 function on R
with period 2π, and if

∫ 2π

0
u(x) dx = 0, then∫ 2π

0

|u(x)|2 dx ≤
∫ 2π

0

|u′(x)|2 dx

with equality iff u(x) = a cosx+ b sinx for some a, b ∈ C.

Proof. Since u and u′ are periodic and L2, we have the Fourier

series

u(x) =
∑
k ̸=0

cke
ikt,

u′(x) =
∑
k ̸=0

ikcke
ikt,
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where ck = û(k) and we have c0 = 1
2π

∫ 2π

0
u(x) dx = 0. Then by the

Parseval identity and periodicity∫ 2π

0

|u(x)|2 dx = 2π
∑
k ̸=0

|ck|2 ≤ 2π
∑
k ̸=0

|ikck|2 =
∫ 2π

0

|u′(x)|2 dx

with equality iff ck = 0 for k = 0,±2,±3, . . .. □

Proof of Theorem 2.4.12.4.1. We reparametrize γ so that

γ : [0, 2π] → R2

and

|γ̇(t)| = L

2π
, t ∈ [0, 2π].

This can be achieved by taking t = 2π
L
s where s is the arc length

parameter. Then (
L

2π

)2

=
1

2π

∫ 2π

0

|γ̇(t)|2 dt

and by the divergence theorem
∫
U
(∂1F1 + ∂2F2) dx =

∫
∂U
F · ν dS,

A =

∫
U

dx =

∫
U

∂2x2 dx =

∫
∂U

x2ν2 dS = −
∫ 2π

0

γ2(t)
γ̇1(t)

|γ̇(t)|
|γ̇(t)| dt

= −
∫ 2π

0

γ2(t)γ̇1(t) dt

since ν(γ(t)) = 1
|γ̇(t)|(γ̇2(t),−γ̇1(t)). Then

L2 − 4πA = 2π

∫ 2π

0

(|γ̇(t)|2 + 2γ2(t)γ̇1(t)) dt

= 2π

(∫ 2π

0

(γ̇1(t) + γ2(t))
2 dt+

∫ 2π

0

(γ̇2(t)
2 − γ2(t)

2) dt

)
.

Wemay assume that
∫ 2π

0
γ2(t) dt = 0 by subtracting a constant (i.e. trans-

lating U in the x2 direction). Thus, Theorem 2.4.22.4.2 implies that

L2 − 4πA ≥ 0

and equality holds iff γ is a circle (exercise). □
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2.4.2. Weyl’s equidistribution theorem. Let α ∈ R+, and

consider the sequence (nα)∞n=1. We wish to consider the distribution of

this sequence modulo 1, or equivalently the sequence ({nα})∞n=1 ⊂ [0, 1)

where {x} is the fractional part of x. If α is rational, it is easy to see

that the sequence ({nα}) consists of finitely many rational numbers.

If α is irrational, it is a theorem of Kronecker that ({nα}) is a dense

subset of [0, 1).

In this section we will show a stronger theorem due to Weyl. We

say that a sequence (xn)
∞
n=1 ⊂ [0, 1) is equidistributed if for any interval

[a, b] ⊂ [0, 1) one has

lim
N→∞

#{xj ; xj ∈ [a, b] and j ≤ N}
N

= b− a.

Theorem 2.4.3. (Weyl’s equidistribution theorem) If α ∈ R+ is

irrational, the sequence ({nα})∞n=1 is equidistributed.

Proof. Let [a, b] ⊂ [0, 1) and let χ(x) be the characteristic func-

tion of [a, b] extended as a 1-periodic function to R. We need to show

that for the choice f = χ, one has

(2.1)
1

N

N∑
n=1

f(nα) →
∫ 1

0

f(x) dx as N → ∞.

We first show (2.12.1) for f(x) = e2πikx where k ∈ Z. In fact, one has

1

N

N∑
n=1

f(nα) =
1

N
e2πikα

N−1∑
n=0

e2πiknα =
e2πikα

N

1− e2πikNα

1− e2πikα

using the fact that α is irrational (so 1−e2πikα ̸= 0). The last expression

converges to zero as N → ∞.

It follows that (2.12.1) holds for any trigonometric polynomial of the

form

f(x) =
M∑

k=−M

cke
2πikx.

By the Weierstrass approximation theorem for trigonometric polyno-

mials (Theorem 2.1.62.1.6 for 1-periodic functions), it is easy to see that

(2.12.1) holds for any continuous 1-periodic function f .

To see that (2.12.1) holds for f = χ, we fix ε > 0, extend χ in a 1-

periodic way to R, and choose continuous 1-periodic functions f± such

that

f− ≤ χ ≤ f+ in R
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and

b− a− ε

2
≤

∫ 1

0

f−(x) dx,

∫ 1

0

f+(x) dx ≤ b− a+
ε

2
.

Since

1

N

N∑
n=1

f−(nα) ≤
1

N

N∑
n=1

χ(nα) ≤ 1

N

N∑
n=1

f+(nα)

and since (2.12.1) holds for f±, we may choose N0 so large that for N ≥ N0

one has ∫ 1

0

f−(x) dx−
ε

2
≤ 1

N

N∑
n=1

χ(nα) ≤
∫ 1

0

f−(x) dx+
ε

2
.

This implies that

b− a− ε ≤ 1

N

N∑
n=1

χ(nα) ≤ b− a+ ε, N ≥ N0,

which proves the claim. □

2.4.3. Sobolev spaces. In this section we consider L2 Sobolev

spaces of periodic functions. These spaces correspond to the Ck spaces

of continuously differentiable functions, but measure regularity in terms

of derivatives being in L2 instead of being continuous. Sobolev spaces

are a central concept in the theory of partial differential equations.

Let Tn = Rn/2πZn be the n-dimensional torus. Note that L2(Q)

above may be identified with L2(Tn). However, Ck(Q) is different from

Ck(Tn); in fact Ck(Tn) (resp. C∞(Tn)) can be identified with the Ck

(resp. C∞) 2π-periodic functions in Rn.

To define Sobolev spaces, we need to define weak derivatives of L2

functions.

Definition. (Weak derivative) If u ∈ L2(Tn) and α ∈ Nn, we say

that u has αth weak derivative in L2(Tn) if there is uα ∈ L2(Tn) such

that ∫
Tn

uDαφdx = (−1)|α|
∫
Tn

uαφdx, φ ∈ P.

In this case we write Dαu = uα.

It follows from the completeness of the set {eik·x}k∈Zn ⊂ P that

the αth weak derivative Dαu, if it exists, is unique.
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Definition. (Sobolev space Wm,2(Tn)) If m ≥ 0 is an integer, we

denote by Wm,2(Tn) the space of all u ∈ L2(Tn) such that Dαu ∈
L2(Tn) for all α ∈ Nn satisfying |α| ≤ m.

The index m in Wm,2 measures the smoothness (number of deriva-

tives), and the index 2 reflects the fact that we consider Sobolev spaces

based on L2 spaces.

Example 2.4.1. Clearly P is a subset of Wm,2(Tn) for any m.

Lemma 2.4.4. Wm,2(Tn) is a Hilbert space when equipped with the

inner product

(u, v)Wm,2(Tn) =
∑
|α|≤m

(Dαu,Dαv).

Proof. Exercise. □

It is important that Sobolev spaces on the torus can be character-

ized in terms of Fourier coefficients.

Lemma 2.4.5. Let u ∈ L2(Tn). Then u ∈ Wm,2(Tn) if and only if

(⟨k⟩mû(k))k∈Zn ∈ ℓ2(Zn).

Proof. By the Parseval identity, one has

u ∈ Wm,2(Tn) ⇔ Dαu ∈ L2(Tn) for |α| ≤ m

⇔ kαû(k) ∈ ℓ2(Zn) for |α| ≤ m

⇔ (k21, . . . , k
2
n)

α|û(k)|2 ∈ ℓ1(Zn) for |α| ≤ m.

If the last condition is satisfied, then

⟨k⟩2m|û(k)|2 =
∑
|β|≤m

cβ(k
2
1, . . . , k

2
n)

β|û(k)|2 ∈ ℓ1(Zn),

consequently ⟨k⟩mû(k) ∈ ℓ2(Zn). Conversely, if ⟨k⟩mû(k) ∈ ℓ2(Zn),

then kαû(k) ∈ ℓ2(Zn) for |α| ≤ m because |kj| ≤ ⟨k⟩. □

The previous result motivates the following definition, which defines

Sobolev spaces also for non-integer smoothness indices.

Definition. (Sobolev spaceHs(Tn)) If s ≥ 0, we denote byHs(Tn)

the space of all u ∈ L2(Tn) for which the sequence (⟨k⟩sû(k))k∈Zn is in

ℓ2(Zn).
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It would also be possible to define Hs(Tn) for s < 0 analogously,

but the elements of these spaces would not be L2 functions (they would

be periodic distributions).

Example 2.4.2. If u ∈ Hs(Tn), it follows that Dαu ∈ Hs−|α|(Tn).

Lemma 2.4.6. Hs(Tn) is a Hilbert space when equipped with the

inner product

(u, v)Hs(Tn) =
∑
k∈Zn

⟨k⟩2sû(k)v̂(k).

Proof. Exercise. □

2.4.4. Sobolev embedding. Sobolev embedding theorems come

in many forms, and one of their main uses is to relate various weak

regularity and integrability properties to classical regularity. It is easy

to prove a version that corresponds to our present situation. The next

result allows to obtain classical C l differentiability from Hs regularity

if s is sufficiently large.

Theorem 2.4.7. (Sobolev embedding theorem) If s > n/2+ l where

l ∈ N, then Hs(Tn) ⊂ C l(Tn).

Proof. Let u ∈ Hs(Tn), so that ⟨k⟩sû ∈ ℓ2(Zn) and

u(x) =
∑
k∈Zn

û(k)eik·x.

Let Mk = |û(k)eik·x| = ⟨k⟩−s(⟨k⟩s|û(k)|). We have∑
k∈Zn

Mk ≤ ∥⟨k⟩−s∥ℓ2(Zn)∥⟨k⟩sû(k)∥ℓ2(Zn) <∞,

by Lemma 2.3.42.3.4 since s > n/2. Since the terms in the Fourier series

of u are continuous functions, this Fourier series converges uniformly

into a continuous function in Tn by the Weierstrass M -test. Moreover,

if |α| ≤ l we may repeat the above argument for

Dαu(x) =
∑
k∈Zn

kαû(k)eik·x,

and the condition s > n/2 + l guarantees that Dαu is a continuous

periodic function for |α| ≤ l. □
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To be precise, the statement Hs(Tn) ⊂ C l(Tn) means that any

u ∈ L2(Tn) that belongs to Hs(Tn) satisfies u = v a.e. for some v in

C l(Tn), and we identify the function u with the C l function v. The

proof also implies the norm estimate

∥u∥Cl(Tn) ≤ C∥u∥Hs(Tn), u ∈ Hs(Tn),

which means that the embedding Hs(Tn) ⊂ C l(Tn) is continuous.

2.4.5. Compact Sobolev embedding. Many Sobolev embed-

dings are much better than merely continuous: often they are compact.

Compact operators are bounded linear operators between infinite di-

mensional spaces that share some of the good properties of operators

between finite dimensional spaces (i.e. matrices), such as the possi-

bility to extract convergent subsequences, the fact that existence and

uniqueness of solutions to certain equations are equivalent (Fredholm

alternative), and discrete spectrum.

Definition. Let X and Y be complex Banach spaces. A bounded

linear operator T : X → Y is said to be compact if for any bounded

sequence (xj) ⊂ X, the sequence (Txj) has a convergent subsequence.

Equivalently, T is compact if T (B) is compact in Y where B is the unit

ball B = {x ∈ X ; ∥x∥ ≤ 1}.

Example 2.4.3. (Finite rank operators) A bounded linear operator

T : X → Y is said to have finite rank if its range T (X) is a finite

dimensional subspace of Y . Any finite rank operator is compact since

bounded sequences in Cn have convergent subsequences.

Example 2.4.4. (Integral operators) Let Ω ⊂ Rn be an open set,

and let k ∈ L2(Ω× Ω). The integral operator

K : L2(Ω) → L2(Ω), Kf(x) =

∫
Ω

k(x, y)f(y) dy

is compact (it is called a Hilbert-Schmidt operator). In particular, if Ω

is bounded and k is continuous on Ω × Ω, then K is compact. These

examples indicate that many integral operators whose integral kernels

are sufficiently nice are compact.

Example 2.4.5. (Limits of compact operators) If Tj : X → Y

are compact operators, and if Tj → T in the operator norm where

T : X → Y is a bounded linear operator, then T is compact. This is
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easy to see by using the fact that a closed set K in a complete metric

space is compact iff it is totally bounded, meaning that for any ε > 0

the set K is covered by finitely many balls with radius ε.

Example 2.4.6. (Limits of finite rank operators) If Tj : X → Y

are finite rank operators and if Tj → T in the operator norm, then T is

compact by the previous examples. If X and Y are Hilbert spaces, the

converse is also true: any compact operator is the limit of finite rank

operators.

We are now in a position to prove the compact Sobolev embedding

theorem, often attributed to Rellich and Kondrachov, in the present

periodic setting. The next theorem actually implies other standard

versions of compact Sobolev embedding on bounded domains in Rn.

Theorem 2.4.8. (Compact Sobolev embedding) The inclusion map

i : Hs(Tn) → L2(Tn) is compact if s > 0.

Proof. For N ∈ Z+ define the projection

PN : Hs(Tn) → L2(Tn), PNu(x) =
∑
|k|≤N

û(k)eik·x.

Then PN is finite rank, and to show that i is compact it is enough to

prove that

∥i− PN∥Hs(Tn)→L2(Tn) → 0 as N → ∞.

Let u ∈ Hs(Tn), and note that

∥(i− PN)u∥L2(Tn) =

 ∑
|k|>N

|û(k)|2
1/2

=

 ∑
|k|>N

⟨k⟩−2s⟨k⟩2s|û(k)|2
1/2

≤ ⟨N⟩−2s∥u∥Hs(Tn).

Thus ∥i− PN∥Hs(Tn)→L2(Tn) ≤ ⟨N⟩−2s, which implies the claim. □

2.4.6. Elliptic regularity. The final result in this section will be

elliptic regularity in the periodic case. Consider a constant coefficient

differential operator P (D) of order m acting on 2π-periodic functions

in Rn,

P (D) =
∑
|α|≤m

aαD
α,
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where aα are complex constants. The principal part of P (D) is

Pm(D) =
∑
|α|=m

aαD
α.

The symbol of P (D) is the polynomial

P (ξ) =
∑
|α|≤m

aαξ
α, ξ ∈ Rn,

and the principal symbol of P (D) is the polynomial

Pm(ξ) =
∑
|α|=m

aαξ
α, ξ ∈ Rn.

We say that P (D) is elliptic if

Pm(ξ) ̸= 0 whenever ξ ∈ Rn ∖ {0}.

The following proof also indicates how Fourier series are used in the

solution of partial differential equations.

Theorem 2.4.9. (Elliptic regularity in Hs) Let P (D) be an elliptic

differential operator with constant coefficients, and assume that u ∈
L2(Tn) solves the equation

P (D)u = f

for some f ∈ Hs(Tn). Then u ∈ Hs+m(Tn).

In fact the same result is true for any periodic distribution u and

any s ∈ R. A combination of the previous theorem and the Sobolev em-

bedding theorem, Theorem 2.4.72.4.7, yields immediately a corresponding

elliptic regularity result for C∞ data.

Theorem 2.4.10. (Elliptic regularity in C∞) If f is C∞ in the

previous theorem, then also u is C∞.

Proof of Theorem 2.4.92.4.9. Taking the Fourier coefficients of both

sides of P (D)u = f gives

(2.2) P (k)û(k) = f̂(k), k ∈ Zn.

Now Pm(ξ) is a homogeneous polynomial of degree m, so we have

|Pm(k)| = |k|m|Pm(k/|k|)| ≥ c|k|m
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for some c > 0, since the ellipticity condition implies that Pm(ξ) ̸= 0

on the compact set {ξ ∈ Rn ; |ξ| = 1}. Then for |k| ≥ 1,

|P (k)| = |Pm(k) +
∑

|α|≤m−1

aαk
α|

≥ |Pm(k)| −
∑

|α|≤m−1

|aα||k||α|

≥ c|k|m − C|k|m−1.

If N > 0 is sufficiently large, it follows that

|P (k)| ≥ 1

2
c|k|m for |k| ≥ N.

From (2.22.2) we obtain

|û(k)| =
∣∣∣ f̂(k)
P (k)

∣∣∣ ≤ 2

c|k|m
|f̂(k)|, |k| ≥ N.

Since ⟨k⟩sf̂(k) ∈ ℓ2(Zn) this shows that ⟨k⟩s+mû(k) ∈ ℓ2(Zn), which

implies u ∈ Hs+m(Tn) as required. □



CHAPTER 3

Fourier transform

In this chapter we will discuss Fourier analysis for non-periodic

functions and distributions in Rn. If f is a complex valued function in

Rn (say in L1), its Fourier transform is defined by

f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

For the purposes of Fourier analysis it will be useful to have a test

function space which is invariant under the Fourier transform. We first

introduce a space that will satisfy this criterion.

3.1. Schwartz space

The first step in distribution theory is to consider classes of very

nice functions, called test functions, and operations on them. Later,

distributions will be defined as elements of the dual space of test func-

tions. The test function space relevant for the Fourier transform is as

follows.

Definition. The Schwartz space S (Rn), or the space of rapidly

decreasing functions, is the set of infinitely differentiable complex func-

tions on Rn for which the seminorms

(3.1) ∥φ∥α,β = ∥xα∂βφ(x)∥L∞(Rn)

are finite for all α, β ∈ Nn. Equivalently, S (Rn) is the space of func-

tions for which the norms

∥φ∥N =
∑
|β|≤N

∥⟨x⟩N∂βφ∥L∞(Rn)

are finite for all N ∈ N.

Example 3.1.1. S is the set of those smooth functions which to-

gether with their derivatives decrease more rapidly than the inverse of

any polynomial. Any compactly supported C∞ function is in S (Rn),

33
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and also functions like exp(−|x|2) are in Schwartz space. The function

exp(−|x|) is not in Schwartz space since it is not C∞ near the origin.

The set S is an infinite-dimensional vector space under the usual

addition and scalar multiplication of functions. To obtain a reasonable

dual space, we need a suitable topology. In practice it will be enough to

know how sequences converge, and we would like to say that a sequence

(φj)
∞
j=1 converges to φ if for any fixed N ,

∥φj − φ∥N → 0 as j → ∞,

of equivalently if for any fixed α, β ∈ Nn,

∥φj − φ∥α,β → 0 as j → ∞,

Sequential convergence is sufficient for describing topological properties

in metric spaces, but not in general topological spaces. (If the space

is not first countable, one should use nets or filters instead, and many

distribution spaces are not first countable!) However, here there are no

complications since there is a natural metric space topology on S for

which sequential convergence coincides with the notion above.

Theorem 3.1.1. (S as a metric space) If u, v ∈ S , define

d(u, v) =
∞∑

N=0

2−N ∥u− v∥N
1 + ∥u− v∥N

.

Then (S , d) is a metric space. Moreover, uj → u in (S , d) iff for any

N ∈ N one has

∥uj − u∥N → 0.

Proof. Since 0 ≤ t/(1 + t) ≤ 1 for t ≥ 0 we have that d(u, v)

is defined for all u, v ∈ S and 0 ≤ d(u, v) ≤
∑∞

N=0 2
−N = 2. If

d(u, v) = 0 then ∥u − v∥N = 0 for all N , and the case N = 0 implies

u = v. Clearly d(u, v) = d(v, u), and the triangle inequality follows

since

∥u− w∥N
1 + ∥u− w∥N

=
1

1
∥u−w∥N

+ 1

≤ 1
1

∥u−v∥N+∥v−w∥N
+ 1

≤ ∥u− v∥N
1 + ∥u− v∥N

+
∥v − w∥N

1 + ∥v − w∥N
.

Thus d is a metric on S .
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Let (uj) be a sequence in S . If uj → u in (S , d) then d(uj, u) → 0,

which implies that
∥uj−u∥N

1+∥uj−u∥N
→ 0 for all N . Thus ∥uj − u∥N ≤ 1 for

j sufficiently large, and we obtain that ∥uj − u∥N → 0 for all N . For

the converse, suppose that ∥uj − u∥N → 0 for all N . Given ε > 0, first

choose N0 so that
∞∑

N=N0+1

2−N ≤ ε/2.

Then choose j0 so large that for j ≥ j0 we have

N0∑
N=0

2−N ∥uj − u∥N
1 + ∥uj − u∥N

≤ ε/2.

Then d(uj, u) ≤ ε for j ≥ j0, showing that d(uj, u) → 0. □

The previous theorem is an instance of a general phenomenon: a

complex vector space X whose topology is given by a countable sep-

arating family of seminorms is in fact a metric space. Here, a map

ρ : X → R is called a seminorm if for any u, v ∈ X and for c ∈ C,

(1) ρ(u) ≥ 0 (nonnegativity)

(2) ρ(u+ v) ≤ ρ(u) + ρ(v) (subadditivity)

(3) ρ(cu) = |c|ρ(u) (homogeneity)

Thus, a seminorm ρ is almost like a norm but it is allowed that ρ(u) = 0

for some nonzero elements u ∈ X. A family {ρα}α∈A is called separating

if for any nonzero u ∈ X there is α ∈ A with ρα(x) ̸= 0.

Theorem 3.1.2. Let X be a vector space and let {ρN}∞N=0 be a

countable separating family of seminorms. The function

d(u, v) =
∞∑

N=0

2−N ρN(u− v)

1 + ρN(u− v)
, u, v ∈ X,

is a metric on X. Moreover, uj → u in (X, d) iff for any N one has

ρN(uj − u) → 0.

Proof. Exercise. □

If X and {ρN} are as in the theorem, we say that the metric space

topology of (X, d) is the topology on X induced by the family of semi-

norms {ρN}. This notion will be used several times later. In particu-

lar, the topology on S is the one induced by the seminorms (actually
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norms) {∥ · ∥N}, and it is also equal to the topology induced by the

seminorms {∥xα∂β · ∥L∞}α,β∈Nn . From now on we will always consider

S with this topology.

It will be important that the test function space is complete.

Theorem 3.1.3. (Completeness) Any Cauchy sequence in S con-

verges.

Proof. Let (uj) be a Cauchy sequence in S , that is, for any ε > 0

there is M such that

d(uj, uk) ≤ ε for j, k ≥M.

In particular, this implies for any fixed N that

2−N ∥uj − uk∥N
1 + ∥uj − uk∥N

≤ ε for j, k ≥M.

Then for any multi-indices α, β and for any ε > 0 there exists M > 0

such that j, k ≥ M implies ∥uj − uk∥α,β < ε. The last condition may

be written

(3.2) ∥xα∂βuj − xα∂βuk∥L∞ < ε.

Hence the sequence (xα∂βuj) is Cauchy in the complete space C(Rn)

and converges uniformly to a continuous bounded function gα,β.

Denote by g the limit function g0,0. Since all the sequences (∂βuj)

converge uniformly we have that g is C∞ and ∂βg = g0,β. It now follows

from (3.23.2) that xα∂βg = gα,β and g ∈ S , and clearly uk → g in S . □

Remark. The previous results show that S is a Fréchet space.

By definition, a Fréchet space is a locally convex Hausdorff topological

vector space whose topology is given by an invariant metric and which

is complete as a metric space (a metric d on a vector space is said to be

invariant if d(u+w, v +w) = d(u, v) for all u, v, w). This terminology

will not be important in what follows.

We wish to consider various operations on S . To introduce some

notation, define the reflection

ũ(x) = u(−x),

and translation (for x0 ∈ Rn)

(τx0u)(x) = u(x− x0).
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In order to have a sufficiently general multiplication on S we are

led to introduce a new space of functions.

Definition. The space OM(Rn) is the set of all C∞ functions

Rn → C which together with all their derivatives are polynomially

bounded; that is, f ∈ OM if f ∈ C∞(Rn) and for any α ∈ Nn there

exist C = Cα > 0, N = Nα ≥ 0 such that

|∂αf(x)| ≤ C⟨x⟩N , x ∈ Rn.

Members of OM are sometimes called C∞ functions of slow growth.

Theorem 3.1.4. If f ∈ OM and v ∈ S , then the following opera-

tions are continuous maps from S into S .

(1) u 7→ ũ (reflection)

(2) u 7→ u (conjugation)

(3) u 7→ τx0u (translation)

(4) u 7→ ∂αu (derivative)

(5) u 7→ fu (multiplication)

Proof. Parts (1) and (2) are clear, and for (3) we may use the

identity xα = (x− x0 + x0)
α =

∑
γ≤α cγ(x− x0)

γ to obtain

∥τx0u∥α,β = sup
x∈Rn

|xα∂βu(x− x0)|

≤ C
∑
γ≤α

sup
x∈Rn

|(x− x0)
γ∂βu(x− x0)| = C

∑
γ≤α

∥u∥γ,β.

This shows that τx0uj → 0 in S whenever uj → 0 in S . Part (4)

follows from

∥∂βu∥α′,β′ = ∥u∥α′,β′+β.

It remains to show (5). Since f ∈ OM , given any β we may choose

C and N such that |⟨x⟩−N∂γf(x)| ≤ C whenever γ ≤ β. Now we have

∥fu∥α,β = ∥xα∂β(fu)∥L∞

= ∥xα
∑
γ≤β

cγ(∂
β−γf)(∂γu)∥L∞

≤ C
∑
γ≤β

∥xα⟨x⟩N(⟨x⟩−N∂β−γf)(∂γu)∥L∞

≤ C
∑
γ≤β

∥xα⟨x⟩N∂γu∥L∞ .
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This shows that fuj → 0 in S whenever uj → 0 in S . □

The following elementary fact is often useful.

Lemma 3.1.5. The integral∫
Rn

⟨x⟩−s dx

is finite iff s > n.

Example 3.1.2. The space S (Rn) is contained in Lp(Rn) for all

p ≥ 1. If φ ∈ S (Rn), then for p = 1 the claim follows from

∥φ∥L1 =

∫
Rn

⟨x⟩−n−1
[
⟨x⟩n+1|φ(x)|

]
dx

≤ C∥⟨x⟩n+1φ(x)∥L∞ .

For p > 1 the result is given by the inequality

∥φ∥Lp =

(∫
Rn

|φ(x)||φ(x)|p−1 dx

)1/p

≤ ∥φ∥1/pL1 ∥φ∥1−1/p
L∞ .

These expressions also show that the inclusion map i : S (Rn) →
Lp(Rn) is continuous, that is,

φj → 0 in S =⇒ φj → 0 in Lp.

3.2. Fourier transform on Schwartz space

Definition. The Fourier transform of a function f ∈ S (Rn) is

the function f̂ : Rn → C defined by

(3.3) f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

The inverse Fourier transform of f ∈ S (Rn) is defined by

(3.4) f̌(x) = (2π)−n

∫
Rn

eix·ξf(ξ) dξ, x ∈ Rn.

The Fourier transform is also denoted by F{f(x)} and the inverse

transform by F−1{f(ξ)} (this notation will be justified soon). We

use the name “Fourier transform” both for the function f̂ which is

the image of some f ∈ S , and for the linear map F defined on the

function space S by the formula (3.33.3).
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Since S ⊂ L1 it is clear that the integral (3.33.3) exists for all ξ ∈ Rn.

The following theorem justifies our choice of the Schwartz space as the

first setting in which the Fourier transform is discussed. It says that not

only does the Fourier transform map S into S , but also that the map

is an isomorphism (a linear bijective continuous map with continuous

inverse).

Theorem 3.2.1. (Fourier transform on Schwartz space) The Fourier

transform is an isomorphism from S (Rn) onto S (Rn). The inverse

map is the inverse Fourier transform: one has F−1Ff = FF−1f = f

for f ∈ S .

To show this, the first point to observe is that the rapid decrease

of functions in S ensures that the Fourier transform is infinitely dif-

ferentiable.

Lemma 3.2.2. For any f ∈ S (Rn), the Fourier transform f̂ is a

C∞ function from Rn to C and ∂αf̂ ∈ L∞(Rn) for all α ∈ Nn.

Proof. The function f̂ is bounded since

(3.5) |f̂(ξ)| ≤
∫
Rn

∣∣e−ix·ξf(x)
∣∣ dx = ∥f∥L1 .

For differentiability consider the expression

(3.6)
f̂(ξ + hek)− f̂(ξ)

h
=

∫
Rn

e−ix·ξf(x)
e−ihxk − 1

h
dx.

The estimate ∣∣∣e−ihxk − 1

h

∣∣∣ = ∣∣∣ ∫ xk

0

e−iht dt
∣∣∣ ≤ |xk|

shows that the integrand on the right side of (3.63.6) is in L1, so an

application of the dominated convergence theorem gives

(3.7)
∂

∂ξk
f̂(ξ) = F{(−ixk)f(x)}.

It follows that the first partial derivatives of f̂ are bounded functions.

Since xαf(x) is in S for any multi-index α, we may repeat the process

to see that derivatives of any order are bounded continuous functions

in Rn. □
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Theorem 3.2.3. (Properties of Fourier transform) Let f ∈ S (Rn),

x0, ξ0 ∈ Rn, c > 0 and α, β ∈ Nn. Then the following identities hold:

(1) F{τx0f(x)} = e−ix0·ξf̂(ξ) (translation)

(2) F{eix·ξ0f(x)} = τξ0 f̂(ξ) (modulation)

(3) F{f(cx)} = c−nf̂(ξ/c) (scaling)

(4) F{Dαf(x)} = ξαf̂(ξ) (derivative)

(5) F{(−x)βf(x)} = Dβ f̂(ξ) (polynomial)

Proof. The identities (1), (2) and (3) follow from linear changes

of variables in the defining integral. For (4), integration by parts gives

F

{
∂

∂xk
f(x)

}
=

∫
Rn

e−ix·ξ ∂f

∂xk
(x) dx = −

∫
Rn

∂

∂xk

(
e−ix·ξ) f(x) dx

= (iξk)

∫
Rn

e−ix·ξf(x) dmn = (iξk)f̂(ξ).

Thus F{Dxk
f} = ξkf̂ , and (4) follows by iteration. Part (5) is given

by repeated application of the formula (3.73.7) which was obtained in the

proof of Lemma 3.2.23.2.2. □

Lemma 3.2.4. F and F−1 map S (Rn) to S (Rn) continuously.

Proof. Let f ∈ S and let α, β be multi-indices. Lemma 3.2.23.2.2

showed that f̂ is a bounded C∞ function. From Theorem 3.2.33.2.3, parts

(4) and (5) we have

∥f̂∥α,β = sup
ξ∈Rn

|ξαDβ f̂(ξ)| = sup
ξ∈Rn

|(iξ)αDβ f̂(ξ)|

= sup
ξ∈Rn

|F
{
Dα

[
(−ix)βf(x)

]}
|.(3.8)

Now Dα
[
(−ix)βf(x)

]
is in S , so the Fourier transform of this function

is bounded, and ∥f̂∥α,β is finite. Hence f̂ is in S .

Clearly the Fourier transform is linear. To establish the continuity

of F , we note that (3.83.8) and (3.53.5) give

∥f̂∥α,β ≤ (2π)−n/2∥Dα[(−ix)βf(x)]∥L1 .

Now by the Leibniz rule, Dα[(−ix)βf(x)] =
∑m

k=1 ckx
αkDβkf(x) for

some constants ck and multi-indices αk, βk, so

∥f̂∥α,β ≤ C

m∑
k=1

∥xαkDβkf∥L1 ≤ C

m∑
k=1

∥xαk+n+1Dβkf∥L∞ .
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Now if fj → 0 in S we have ∥f̂j∥α,β → 0 for all α, β, showing that F
is continuous. The proof that F−1 is continuous is similar. □

It remains to establish the Fourier inversion theorem. The proof

rests on the following simple lemma on the Fourier transform of a

Gaussian function.

Lemma 3.2.5. The function ϕn ∈ S (Rn) given by

ϕn(x) = e−
1
2
|x|2

satisfies ϕ̂n = (2π)n/2ϕn and ϕn(0) = (2π)−n
∫
Rn ϕ̂n(x) dx.

Proof. We have

(3.9) ϕ̂1(ξ) =

∫ ∞

−∞
e−ixξe−

1
2
x2

dx = e−
1
2
ξ2
∫ ∞

−∞
e−

1
2
(x+iξ)2 dx.

Integrating e−
1
2
z2 along the rectangular contour with corners at (±R, 0)

and (±R, ξ) gives∫ R

−R

e−
1
2
(x+iξ)2dx =

∫ R

−R

e−
1
2
x2

dx+

∫ ξ

0

{
e−

1
2
(R+iy)2dy − e−

1
2
(−R+iy)2dy

}
Taking the limit as R → ∞, the last integral on the right becomes zero

and we are left with the known integral
∫∞
−∞ e−

1
2
x2
dx =

√
2π. Thus

(3.10)

∫ ∞

−∞
e−

1
2
(x+iξ)2dx =

√
2π.

Now (3.93.9) and (3.103.10) give that ϕ̂1 = (2π)1/2ϕ1.

Moving to n dimensions, we see that ϕn(x) = ϕ1(x1) · · ·ϕ1(xn), from

which one obtains ϕ̂n(ξ) = ϕ̂1(ξ1) · · · ϕ̂n(ξn) by repeated use of Fubini’s

theorem. Hence ϕ̂n = (2π)n/2ϕn. The second assertion is evident. □

Theorem 3.2.6. (Fourier inversion theorem) For any f ∈ S (Rn)

one has the inversion formula F−1Ff = f , that is,

f(x) = (2π)−n

∫
Rn

eix·ξf̂(ξ) dξ.

Proof. For f, g ∈ L1(Rn), an application of Fubini’s theorem to

the integral ∫
Rn

∫
Rn

e−ix·yf(x)g(y) dx dy
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gives the identity

(3.11)

∫
Rn

f̂(x)g(x) dx =

∫
Rn

f(y)ĝ(y) dy.

Let now f be any function in S (Rn) and choose g(x) = φ(x/c), where

φ ∈ S and c > 0. The scaling property of the Fourier transform gives∫
Rn

f̂(x)φ(x/c) dx =

∫
Rn

f(y)cnφ̂(cy) dy

=

∫
Rn

f(y/c)φ̂(y) dy.

Both the integrands are in L1, so dominated convergence implies that

we may take c→ ∞ to obtain

φ(0)

∫
Rn

f̂(x) dx = f(0)

∫
Rn

φ̂(y) dy.

If φ is taken to be the Gaussian ϕn in Lemma 3.2.53.2.5 then we obtain that

f(0) = (2π)−n
∫
Rn f̂(x) dx. This gives the inversion theorem for x = 0,

and the general case is a consequence of the translation property of the

Fourier transform (Theorem 3.2.33.2.3, part (1)). □

Proof of Theorem 3.2.13.2.1. We have seen that F and F−1 are

continuous maps from S to S , and that F−1Ff = f . Since F−1f =

(2π)−n(Ff )̃ , it follows that F is bijective and the proof is concluded.

□

Theorem 3.2.7. For f, g ∈ S (Rn) one has

(1) F 2f = (2π)nf̃ and F 4f = (2π)2nf (symmetry)

(2)
∫
Rn f̂(x)g(x) dx =

∫
Rn f(x)ĝ(x) dx (Parseval identity)

(3)
∫
Rn f(x)g(x) dx = (2π)−n

∫
Rn f̂(ξ)ĝ(ξ) dξ (Parseval identity)

(4)
∫
Rn |f(x)|2 dx = (2π)−n

∫
Rn |f̂(ξ)|2 dξ (Parseval identity)

Proof. Part (1) is evident from the Fourier inversion theorem.

The first of Parseval’s identities was established in (3.113.11), and the oth-

ers are special cases. □

3.3. The space of tempered distributions

Section 3.13.1 discussed the rapidly decreasing functions which will be

the test functions of choice in Fourier analysis. The next step is to

define the corresponding class of distributions, namely the tempered
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distributions, which will possess a distributional Fourier transform.

Tempered distributions are just elements of the dual space of S .

Definition. Let S ′(Rn) be the set of continuous linear functionals

on S (Rn). Thus

S ′(Rn) = {T : S (Rn) → C ; T linear and T (φj) → 0

whenever φj → 0 in S (Rn)}.

The elements of S ′ are called tempered distributions. The pairing of a

distribution and test function will also be written as

⟨T, φ⟩ := T (φ).

The terminology is due to Schwartz and means that S ′ is in a sense

the space of distributions with polynomial (or slow) growth. We make

a remark at this point: to check that a linear functional T : S → C is

continuous, it is indeed enough to check that

φj → 0 in S =⇒ T (φj) → 0.

This follows immediately from the linearity of T , and will be used many

times below.

We can give several examples of tempered distributions.

Example 3.3.1. (Polynomially bounded functions) If f : Rn → C
is any measurable polynomially bounded function f , in the sense that

|f(x)| ≤ C⟨x⟩N for a.e. x ∈ Rn, define

Tf : S (Rn) → C, Tf (φ) =

∫
Rn

fφ dx.

Then Tf is a tempered distribution, since it is linear and for any φ in

S we have

|Tf (φ)| =
∣∣∣ ∫

Rn

fφ dx
∣∣∣ ≤ C

∫
Rn

⟨x⟩N |φ(x)| dx

≤ C∥⟨x⟩N+n+1φ∥L∞

by Lemma 3.1.53.1.5. Thus T (φj) → 0 whenever φj → 0 in S . Moreover,

it is possible to identify the distribution Tf with the function f , since

the condition Tf1 = Tf2 for two such functions f1 and f2 implies that∫
Rn

(f1 − f2)φdx = 0, φ ∈ S (Rn),

which implies that f1 = f2 a.e. by a convolution approximation result

to be discussed later.
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Example 3.3.2. (Lp functions) Each space Lp(Rn), 1 ≤ p ≤ ∞,

is contained in S ′(Rn). This follows from Hölder’s inequality since if
1
p
+ 1

p′
= 1 and f ∈ Lp then

|Tf (φ)| =
∣∣∣ ∫

Rn

f(x)φ(x) dx
∣∣∣ ≤ ∫

Rn

|f(x)φ(x)| dx ≤ ∥f∥Lp∥φ∥Lp′ .

Here ∥φj∥Lp′ → 0 whenever φj → 0 in S by Example 3.1.23.1.2, so Tf ∈ S ′.

Example 3.3.3. (Measures) Let µ be a positive or complex regular

Borel measure on Rn. We say that the measure µ is polynomially

bounded if for some N the total variation |µ| satisfies∫
Rn

⟨x⟩−N d|µ|(x) <∞.

An equivalent condition is that for any M > 0 the measure of the ball

B(0,M) satisfies |µ|(B(0,M)) ≤ C⟨M⟩N .
Any polynomially bounded measure µ gives rise to a tempered dis-

tribution defined by

Tµ(φ) =

∫
Rn

φ(x) dµ(x),

since for any φ ∈ S one has∣∣∣ ∫
Rn

φ(x) dµ(x)
∣∣∣ ≤ ∫

Rn

|φ(x)| d|µ|(x)

≤ ∥⟨x⟩Nφ(x)∥L∞

∫
Rn

⟨x⟩−N d|µ|(x).

It is also true that a positive measure which is in S ′ is necessarily

polynomially bounded.

Example 3.3.4. (Dirac measure) A particular case of the previous

example is the measure δ defined by

δ(E) =

{
1, 0 ∈ E,

0, otherwise.

This measure is called the Dirac measure, or slightly imprecisely Dirac

delta function, and it satisfies

Tδ(φ) = φ(0).
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Example 3.3.5. (Derivative of Dirac measure) An example of a

tempered distribution that is not a measure is the linear functional

δ′ : S (R) → C, φ 7→ −φ′(0).

This is an element on S ′(R). If δ′ were a measure then one would have

|φ′(0)| ≤ C∥φ∥L∞ for all φ ∈ S (R), which is impossible.

Thus, S ′ is a set that contains all polynomially bounded functions,

measures and more. It turns out that most operations that are defined

on test functions can also be defined for distributions by duality.

Example 3.3.6. Consider the reflection operator on S that sends

φ to φ̃(x) = φ(−x). We wish to define the reflection of a distribution

T ∈ S ′ as another distribution T̃ . A reasonable requirement is that

the operation should extend the reflection on S , i.e. if u ∈ S then the

reflection of Tu should be Tũ. If this holds then we have

T̃u(φ) = Tũ(φ) =

∫
Rn

u(−x)φ(x) dx =

∫
Rn

u(x)φ(−x) dx = Tu(φ̃).

Motivated by this computation we define the reflection of T ∈ S ′ as

the distribution T̃ given by

T̃ (φ) = T (φ̃).

Here T̃ is continuous since the composition φ 7→ φ̃ 7→ T (φ̃) is continu-

ous from S to the scalars.

One may carry out similar computations as in the preceding ex-

ample for the conjugation and translation to motivate the definitions

T (φ) = T (φ̄) and (τx0T )(φ) = T (τ−x0φ).

It is a remarkable fact that there is a natural notion of derivative

on S ′. For u ∈ S the usual requirement that ∂αTu should be equal to

T∂αu leads to

(∂αTu)(φ) = T∂αu(φ) =

∫
Rn

(∂αu)(x)φ(x) dx

= (−1)|α|
∫
Rn

u(x)∂αφ(x) dx = (−1)|α|Tu(∂
αφ)

where we have integrated repeatedly by parts.

Definition. For any T ∈ S ′ we define the distribution ∂αT by

(∂αT )(φ) = (−1)|α|T (∂αφ).
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The distribution ∂αT is called the αth distributional derivative or weak

derivative of T .

Note that ∂αT is a continuous linear functional on S since dif-

ferentiation is continuous on S . It follows that any distribution has

well defined derivatives of any order, even if it arises from a function

which is not differentiable in the classical sense. (The downside is that

these derivatives are only defined in a weak sense, and saying anything

more may require precise arguments that depend on the case at hand.)

The definition of derivative also accommodates a form of integration

by parts which is valid for distributions.

Example 3.3.7. If u is a Ck function whose derivatives up to order

k are polynomially bounded, then the derivatives ∂αu exist as con-

tinuous functions if |α| ≤ k. On the other hand, u gives rise to a

distribution Tu, which has distributional derivatives ∂αTu for any α. It

is an easy exercise to check that

∂αTu = T∂αu, |α| ≤ k,

showing that the distributional derivatives up to order k coincide with

the corresponding classical derivatives.

Example 3.3.8. As an example of weak derivatives consider the

function

u(x) = |x|, x ∈ R.
Now u is not differentiable in the classical sense, but it determines a

distribution Tu (below we write u = Tu) by

u : S → C, u(φ) =

∫ ∞

−∞
|x|φ(x) dx.

The distribution u has a weak derivative given by

u′(φ) = −u(φ′) = −
∫ 0

−∞
(−x)φ′(x) dx−

∫ ∞

0

xφ′(x) dx

= −
∫ 0

−∞
φ(x) dx+

∫ ∞

0

φ(x) dx

where we have used integration by parts and the fact that |φ(x)| ≤
CN⟨x⟩−N for any N since φ ∈ S . Hence u′ can be identified with the

function

u′(x) =

{
−1, x < 0,

1, x > 0.
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Differentiation of u′ leads to the distribution u′′ with

u′′(φ) = −u′(φ′) = −
∫ 0

−∞
(−1)φ′(x) dx−

∫ ∞

0

(1)φ′(x) dx = 2φ(0).

Hence u′′ is the measure 2δ. The derivative of the Dirac measure is

given by

δ′(φ) = −φ′(0).

This explains the notation in Example 3.3.53.3.5.

For later purposes, we define a notion of convergence in S ′. There

is a topology on S ′ (the so called weak* topology) which is compatible

with this notion of convergence, but we will not specify the topology

or use any of its properties.

Definition. If (Tj)
∞
j=1 ⊂ S ′ and T ∈ S ′, we say that Tj → T in

S ′ if

Tj(φ) → T (φ) for any φ ∈ S .

The next simple result states that limits in S ′ are unique, and that

convergence in S or Lp implies convergence in S ′.

Lemma 3.3.1. (Convergence in S ′)

(a) If Tj → T in S ′ and Tj → S in S ′, then T = S.

(b) If (φj) is a sequence in S or Lp (1 ≤ p ≤ ∞) with φj → φ in

S or Lp, then φj → φ in S ′.

The operations on Schwartz functions given in Theorem 3.1.43.1.4 ex-

tend to tempered distributions by duality. Perhaps the most striking

point is that any tempered distribution, no matter how irregular, has

distributional derivatives of any order, and these derivatives are still

tempered distributions.

Theorem 3.3.2. (Operations on tempered distributions) Let f be a

function in OM(Rn). The following operations map S ′ into S ′, and

they extend the corresponding operations on S :

(1) T̃ (φ) = T (φ̃) (reflection)

(2) T (φ) = T (φ) (conjugation)

(3) (τx0T )(φ) = T (τ−x0φ) (translation)

(4) (∂αT )(φ) = (−1)|α|T (∂αφ) (derivative)

(5) (fT )(φ) = T (fφ) (multiplication)
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Proof. Follows from Theorem 3.1.43.1.4. □

We have seen that the polynomially bounded continuous functions

and their weak derivatives are among the tempered distributions. The

structure theorem for tempered distributions says that there are no

others. First we observe a result that is of interest in its own right.

Lemma 3.3.3. (Any tempered distribution has finite order) For any

T ∈ S ′ there exist C > 0 and N ∈ N such that

|T (φ)| ≤ C
∑
|β|≤N

∥⟨x⟩N∂βφ∥, φ ∈ S .

Remark 3.3.4. If T and N are as in the lemma, we say that the

distribution T has order N . The lemma states that any tempered

distribution has finite order. It is also true that the distributions that

have order 0 are exactly the bounded measures (this is a consequence of

the Riesz representation theorem in measure theory). This lemma is the

first place where we use in an essential way the fact that distributions

are continuous linear functionals, instead of just linear functionals.

Proof of Lemma 3.3.33.3.3. Let T ∈ S ′. We argue by contradiction

and assume that for any N > 0 there is φN ∈ S such that

|T (φN)| ≥ N
∑
|α|≤N

∥⟨x⟩N∂αφN∥L∞ .

Define

ψN :=
1

N

 ∑
|α|≤N

∥⟨x⟩N∂αφN∥L∞

−1

φN .

For any fixed K ∈ N and β ∈ Nn, if N ≥ max(K, |β|) we have

∥⟨x⟩K∂βψN∥L∞ ≤ ∥⟨x⟩N∂βψN∥L∞ ≤ 1

N
..

Thus for each K and β, ⟨x⟩K∂βψN → 0 uniformly as N → ∞, which

shows that ψN → 0 in S . Since T is a continuous linear functional we

also have

T (ψN) → 0 as N → ∞.

But |T (ψN)| ≥ 1 for all N by the inequality above, which gives a

contradiction. □
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Theorem 3.3.5. (Structure theorem for tempered distributions) Any

T ∈ S ′(Rn) can be written as

T = ∂αf

for some α ∈ Nn and some polynomially bounded continuous function

f .

Proof. We only give the proof when n = 1. Let T ∈ S ′(R) and
let N be an even integer such that for all φ ∈ S (R) one has

(3.12) |T (φ)| ≤ C

N−1∑
β=0

∥⟨x⟩N∂βφ∥L∞

where C and N do not depend on φ. Let x0 be a point where the

function |⟨x⟩N∂βφ(x)| attains its maximum. If x0 < 0 choose I =

(−∞, x0), otherwise take I = (x0,∞). We obtain the estimate

∥⟨x⟩N∂βφ(x)∥L∞ = ⟨x0⟩N |∂βφ(x0)| = ⟨x0⟩N
∣∣∣ ∫

I

∂β+1φ(x) dx
∣∣∣

≤
∫
I

⟨x⟩N |∂β+1φ(x)| dx

≤
∫ ∞

−∞
⟨x⟩N |∂β+1φ(x)| dx.

It is convenient to introduce the weighted L1 space L1
w = L1(R, dµ)

where dµ(x) = ⟨x⟩N dx. Using the last estimate in (3.123.12) gives that

(3.13) |T (φ)| ≤ C
N∑

β=0

∥∂βφ∥L1
w

which is valid for all φ in S .

Denote by L the direct sum L1
w ⊕ . . . ⊕ L1

w (N + 1 times). The

space L becomes a Banach space with norm

∥(φ0, . . . , φN)∥ = ∥φ0∥L1
w
+ . . .+ ∥φN∥L1

w
,

and there is an injective map

π : S → L , φ 7→ (φ, φ′, . . . , φ(N))

from S onto π(S ) ⊂ L . Define

U : π(S ) → C, U(φ, φ′, . . . , φ(N)) = T (φ).

According to (3.133.13) the map U can be interpreted as a bounded linear

functional on π(S ) ⊂ L , and hence has a continuous extension into
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all of L by the Hahn-Banach theorem. The extended U splits into

bounded linear functionals Uj on L
1
w so that

U(φ0, . . . , φN) = U0(φ0) + . . .+ UN(φN).

Since the dual of L1
w is L∞(R, dµ) = L∞(R, dx), any bounded linear

functional on L1
w is of the form

S(φ) =

∫ ∞

−∞
fφ dµ

for some f ∈ L∞(R). Thus each Uj is of the form

Uj(φ) =

∫ ∞

−∞
⟨x⟩Nbj(x)φ(x) dx

where bj is some function in L∞(R). Define new functions hN(x) =

bN(x) and for 1 ≤ j ≤ N

hN−j(x) =

∫ x

0

∫ x2

0

· · ·
∫ xj

0

⟨t⟩NbN−j(t) dt dxj · · · dx2.

Now each hj is polynomially bounded, since

|hN−j(x)| ≤ ∥bN−j∥L∞

∫
· · ·

∫
⟨t⟩N

where the last integral is a polynomial (recall that N was even). Re-

peated integrations by parts give that

T (φ) = U0(φ) + U1(φ
′) + . . .+ UN(φ

(N)) =

∫ ∞

−∞
h(x)φ(N) dx

where the function h is a linear combination of the hj, hence it is

polynomially bounded. One more integration by parts shows that h

may be taken continuous if φ(N) is replaced by φ(N+1). □

3.4. The Fourier transform of tempered distributions

Parseval’s identity (Theorem 3.2.73.2.7, part (2)) shows that the follow-

ing definition extends the Fourier transform on S .

Definition. The Fourier transform of any tempered distribution

T ∈ S ′ is the tempered distribution T̂ = FT defined by

T̂ (φ) = T (φ̂).

Similarly, the inverse Fourier transform of T ∈ S ′ is the distribution

Ť = F−1T for which Ť (φ) = T (φ̌).
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The composition φ 7→ φ̂ 7→ T (φ̂) is continuous so T̂ and also Ť are

indeed tempered distributions.

Example 3.4.1. (Dirac measure) The Fourier transform of the

Dirac measure δx0 is the tempered distribution given by

δ̂x0(φ) = δx0(φ̂) = φ̂(x0) =

∫
Rn

e−ix0·yφ(y) dy.

Thus δ̂x0 is the function ξ 7→ e−ix0·ξ. In particular, δ̂0 = 1.

Example 3.4.2. (Derivative of Dirac measure)

(Dαδ0)̂ (φ) = Dαδ0(φ̂) = (−1)|α|δ0(D
αφ̂) = δ0((x

αφ)̂ ) =

∫
Rn

xαφ(x) dx.

Thus (Dαδ0)̂ (ξ) = ξα.

Example 3.4.3. (Dirac comb) If a > 0, define

∆a =
∑
k∈Zn

δak.

It is not difficult to check that ∆a is a tempered distribution. The

Poisson summation formula from the exercises,∑
k∈Zn

φ̂(ak) = (2π/a)n
∑
k∈Zn

φ(2πk/a), φ ∈ S (Rn),

implies that

∆̂a = (2π/a)n∆2π/a.

As for the Schwartz space, the Fourier transform is an isomorphism

of the dual space S ′.

Theorem 3.4.1. (Fourier transform on tempered distributions) The

Fourier transform is a bijective map from S ′(Rn) onto S ′(Rn). It is

continuous in the sense that

Tj → T in S ′ =⇒ T̂j → T̂ in S ′.

One has the inversion formula

F−1FT = FF−1T = T, T ∈ S ′.

Proof. Clearly F : S ′ → S ′ is linear, and the continuity follows

since F is continuous on Schwartz space. The inversion formula is a

consequence of the corresponding formula on S since F−1FT (φ) =

T̂ (φ̌) = T (φ). The proof that FF−1T = T is analogous, and thus F
is bijective. □
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Note that the identities F 2f = (2π)nf̃ and F 4f = (2π)2nf hold

also on S ′.

Theorem 3.4.2. Let x0, ξ0 ∈ Rn, let α and β be multi-indices, and

let f be a function in S (Rn). Then the Fourier transform on S ′(Rn)

has the following properties.

(1) (τx0T )̂ = e−ix0·ξT̂ (translation)

(2) (eiξ0·xT )̂ = τξ0T̂ (modulation)

(3) (DαT )̂ = ξαT̂ (derivative)

(4) ((−x)βT )̂ = DβT̂ (polynomial)

Proof. Follows from the definitions and the corresponding result

on S . □

We now give some classical theorems on the Fourier transform by

restricting the Fourier transform on S ′ to certain special cases. For

the first theorem, let

C0(Rn) = {f : Rn → C ; f continuous and f(x) → 0 as x→ ∞}.

We equip C0(Rn) with the L∞(Rn) norm, and then C0(Rn) is a Banach

space.

Theorem 3.4.3. (Riemann-Lebesgue) The Fourier transform is a

continuous map from L1(Rn) into C0(Rn). For any f ∈ L1 the Fourier

transform is given by the usual formula

(3.14) f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx, ξ ∈ Rn.

Theorem 3.4.4. (Plancherel) The Fourier transform is an isomor-

phism from L2(Rn) onto L2(Rn). It is isometric in the sense that

∥f̂∥L2 = (2π)n/2∥f∥L2 .

The transform is given by

(3.15) f̂(ξ) = l.i.m
R→∞

∫
|x|≤R

e−ix·ξf(x) dx

where l.i.m means that the limit is in L2.

Theorem 3.4.5. (Hausdorff-Young) If 1 ≤ p ≤ 2, the Fourier

transform is a continuous map from Lp(Rn) to Lp′(Rn) where 1
p
+ 1

p′
= 1.

Moreover,

∥f̂∥Lp′ ≤ (2π)n/p
′∥f∥Lp , f ∈ Lp.
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To complement the above results, we mention that the range of the

Fourier transform on Lp(Rn) with p > 2 is a subset of S ′(Rn) which

contains distributions that are not measures (see [HöHö, Section 7.6]).

The proofs rely on two results. The first is an approximation result

to be proved later in the section concerning convolution:

Lemma 3.4.6. S (Rn) is a dense subspace of Lp(Rn) if 1 ≤ p <∞.

The other result is a basic functional analysis fact, sometimes known

as the BLT (bounded linear transformation) theorem.

Theorem 3.4.7. (BLT theorem) Let X and Y be Banach spaces

and let X0 be a dense subspace of X. If T : X0 → Y is a linear map

that satisfies

∥T (x)∥Y ≤ C∥x∥X , x ∈ X0,

then there is a unique bounded linear map T̄ : X → Y with T̄ |X0 = T .

Moreover,

∥T̄ (x)∥Y ≤ C∥x∥X , x ∈ X,

and T̄ (x) = limj→∞ T (xj) whenever (xj) ⊂ X0 and xj → x in X.

Proof. If x ∈ X, we would like to define T̄ (x) as in the last line

of the statement of the theorem. If (xj) ⊂ X0 and xj → x in X, then

∥T (xj)− T (xk)∥Y ≤ C∥xj − xk∥X
and thus T (xj) is a Cauchy sequence in Y , hence it converges to

some y ∈ Y by completeness. We define T̄ (x) = y. The defini-

tion is independent of the choice of the sequence converging to x,

since if (x′j) ⊂ X0 is another sequence with x′j → x in X, then

∥T (xj) − T (x′j)∥Y ≤ C∥xj − x′j∥X → 0 as j → ∞ because both (xj)

and (x′j) converge to x. Thus also T (x′j) → y.

It is easy to check that T̄ is a bounded linear map X → Y with

norm bounded by C, and it is the unique continuous extension of T

since X0 was dense. □

Proof of Theorem 3.4.33.4.3. If f ∈ S then we already know that

f̂ ∈ C0 and ∥f̂∥L∞ ≤ ∥f∥L1 . This means that F : S ⊂ L1 → C0 is

a bounded linear map from a dense subspace of L1 to C0, hence has a

unique bounded extension Φ : L1 → C0 with ∥Φ(f)∥L∞ ≤ ∥f∥L1 .

We wish to show that Φ = F |L1 where F is the Fourier transform

on S ′. For this we take any f ∈ L1 and choose a sequence (fj) ⊂ S
such that fj → f in L1. Then Ffj → Φ(f) in L∞, hence also in S ′,



54 3. FOURIER TRANSFORM

but also Ffj → Ff in S ′ by Theorem 3.4.13.4.1. Since limits in S ′ are

unique, we have Φ(f) = F (f) as distributions. The formula (3.143.14) is

given by

Φ(f)(ξ) = lim
j→∞

f̂j(ξ) = lim
j→∞

∫
Rn

e−ix·ξfj(x) dx =

∫
Rn

e−ix·ξf(x) dx

where the last equality follows since ∥fj − f∥L1 → 0. □

Proof of Theorem 3.4.43.4.4. If f ∈ S then f̂ ∈ S and ∥f̂∥L2 =

(2π)n/2∥f∥L2 by Parseval’s identity. Thus F : S ⊂ L2 → L2 is an

isometry from a dense subspace of L2 to L2 and extends uniquely into

an isometry Φ : L2 → L2.

It follows from Schwarz’s inequality and a similar argument as in the

proof of the preceding theorem that Φ and F |L2 coincide. For (3.153.15)

let BR = B(0, R) and let χBR
be the characteristic function. Then for

any f ∈ L2 we have χBR
f → f in L2 as R → ∞, thus (χBR

f )̂ → f̂ in

L2 by what we have already proved. This gives

f̂(ξ) = l.i.m
R→∞

(χBR
f )̂ (ξ) = l.i.m.

R→∞

∫
|x|≤R

e−ix·ξf(x) dx,

the last equation coming from the preceding theorem since χBR
f is in

L1. □

Proof of Theorem 3.4.53.4.5. The Riemann-Lebesgue and Plancherel

theorems imply that F is a bounded linear map

F : L1 → L∞, ∥Ff∥L∞ ≤ ∥f∥L1 ,

F : L2 → L2, ∥Ff∥L2 ≤ (2π)n/2∥f∥L2 .

The result follows from these facts and the Riesz-Thorin interpolation

theorem. □

3.5. Compactly supported distributions

To study the local behaviour of tempered distributions we introduce

the following concepts.

Definition. For any open set V ⊂ Rn the distribution T ∈ S ′(Rn)

is said to vanish on V , written T = 0 on V , if T (φ) = 0 for any

φ ∈ C∞
c (V ). Two distributions T1 and T2 are said to be equal on V if

T1 − T2 = 0 on V .
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Lemma 3.5.1. If {Vj}j∈J is a family of open sets in Rn, and if T

vanishes on each Vj, then T vanishes on
⋃

j∈J Vj.

Proof. Let V =
⋃

j∈J Vj. We use a locally finite partition of unity

subordinate to {Vj}j∈J (see [RuRu, Theorem 6.20]). This is a family

of functions {ψj}j∈J with ψj ∈ C∞(Vj), 0 ≤ ψj ≤ 1, such that any

compact set K ⊂ V has a neighborhood U where only finitely many

ψj are not identically zero, and∑
j∈J

ψj(x) = 1 for x ∈ U.

Let φ ∈ C∞
c (V ), and write K = supp(φ). We can now write

φ =
∑
j∈J

ψjφ

where only finitely many terms of the sum are nonzero. Thus

T (φ) =
∑
j∈J

T (ψjφ) = 0,

using the fact that T vanishes on each Vj. □

Definition. The support of a distribution T ∈ S ′(Rn), denoted

by supp(T ), is the complement of the largest open subset of Rn where

T vanishes.

The definition makes sense since if a distribution vanishes on open

sets {Vj} then it vanishes on
⋃
Vj by Lemma 3.5.13.5.1. It follows that

x ∈ supp(T ) if and only if T does not vanish on any neighborhood of

x. Easy consequences of the definition are that T (φ) = 0 whenever

φ ∈ C∞
c (Rn) and supp(φ) ∩ supp(T ) = ∅, and if ψ ∈ OM(Rn) is such

that ψ|V = 1 for some neighborhood V of supp(T ) then ψT = T .

It will be convenient to have a characterization of the tempered

distributions with compact support. These have a natural connection

with the space E (Rn) which we now define.

Definition. The space E (Rn) = C∞(Rn) is given the topology

induced by the seminorms

∥f∥N =
∑
|α|≤N

∥∂αf∥L∞(B(0,N)), N ∈ N.

We denote by E ′(Rn) the set of continuous linear functionals on E .
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Theorem 3.1.23.1.2 implies that E is a metric space, and that fj → f in

E if and only if ∂αfj → ∂αf uniformly on compact subsets of Rn for

any α ∈ Nn.

Lemma 3.5.2. E (Rn) is a complete metric space, and the identity

map i : S (Rn) → E (Rn) is continuous.

The continuity of the identity map S → E shows that any con-

tinuous linear functional S on E (that is, any S ∈ E ′) gives rise to a

distribution T ∈ S ′ where T = S ◦ i. On the other hand S is dense

in E (for any f ∈ E just take a sequence (fj) in S such that fj = f

on B(0, j)), so two distinct elements of E ′ give different distributions

in S ′. We may thus identify E ′ with a certain subspace of S ′; this

subspace is exactly the set of distributions with compact support.

Theorem 3.5.3. (Compactly supported distributions) If T ∈ S ′,

then T has compact support if and only if T can be extended into a

continuous linear functional on E .

Proof. Suppose T has compact support, and choose ψ ∈ C∞
c (Rn)

so that ψ = 1 on some open set containing supp(T ). Denote the

support of ψ by K. Then T (φ) = T (ψφ) for all φ ∈ S , and we can

extend T into E by defining T (f) = T (ψf) for f ∈ E . Since T ∈ S ′,

there exist C and N such that

|T (φ)| ≤ C
∑
|α|≤N

∥⟨x⟩N∂αφ∥L∞ , φ ∈ S .

This implies that

|T (φ)| ≤ C ′
∑
|α|≤N

∥∂αφ∥L∞ , φ ∈ C∞
c (Rn) with supp(φ) ⊂ K.

Now for any f ∈ E the function ψf is supported in K and we have

(3.16) |T (f)| = |T (ψf)| ≤ C ′
∑
|α|≤N

∥∂αf∥L∞ .

This implies that T is continuous on E and we have the desired exten-

sion.

For the converse we suppose that T is a continuous linear functional

on E , so there are C and N such that

|T (f)| ≤ C
∑
|α|≤N

∥∂αf∥L∞(B(0,N)), f ∈ E .
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If T does not have compact support, then for anyM there is a function

φ ∈ C∞
c (Rn \ B(0,M)) for which T (φ) ̸= 0. This clearly contradicts

the above inequality. □

The next theorem characterizes all distributions with support con-

sisting of one point.

Theorem 3.5.4. (Distributions supported at a point) If T ∈ S ′

and supp(T ) = {x0}, then there are constants N and Cα such that

T =
∑
|α|≤N

Cα∂
αδx0 .

Proof. [RuRu], p. 165. □

As a consequence, we obtain a generalization of the standard Li-

ouville theorem which states that any bounded harmonic function is

constant.

Theorem 3.5.5. (Liouville theorem for distributions) If u ∈ S ′(Rn)

satisfies ∆u = 0 in the sense of distributions, then u is a polynomial.

Proof. Taking Fourier transforms in the equation ∆u = 0 implies

that |ξ|2û = 0. If φ ∈ C∞
c (Rn) vanishes near 0, also the function

|ξ|−2φ(ξ) is in C∞
c (Rn) and

⟨û, φ⟩ = ⟨|ξ|2û, |ξ|−2φ⟩ = 0.

Thus supp(û) = {0}, and Theorem 3.5.43.5.4 implies that

û =
∑
|α|≤N

Cα∂
αδ0.

Taking the inverse Fourier transform, we see that u is a polynomial. □

It is natural that in the structure theorem for compactly supported

distributions, compactly supported continuous functions appear.

Theorem 3.5.6. (Structure theorem for E ′) If T ∈ E ′(Rn) and if

V ⊂ Rn is any open set containing supp(T ), there exist N ∈ N and

functions fα ∈ Cc(V ) such that

T =
∑
|α|≤N

∂αfα.

Proof. See [ScSc, Section III.7]. □
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Example 3.5.1. We illustrate the structure theorem in the case of

the compactly supported distribution Tf , where f(x) = χ(0,1)(x) is the

characteristic function of the unit interval. Define

F (x) =


0, x < 0,

x, 0 < x < 1,

1, x > 1.

Then F is a tempered distribution, and F ′ = f in the sense of distri-

butions. Let ψ ∈ C∞
c (R) satisfy ψ = 1 near [0, 1]. Then for φ ∈ E (R)

we have

Tf (φ) = Tf (ψφ) = ⟨F ′, ψφ⟩ = −⟨F, ψ′φ+ ψφ′⟩
= ⟨−ψ′F + (ψF )′, φ⟩.

This shows that Tf = f0 + f ′
1 where f0 = −ψ′F and f1 = ψF are

continuous compactly supported functions in R.

The structure theorem easily implies that the Fourier transform of

any compactly supported distribution is actually a smooth function

in Rn. This illustrates the fact that the Fourier transform exchanges

decay properties with smoothness.

Theorem 3.5.7. The Fourier transform of any T ∈ E ′(Rn) is the

function

T̂ (ξ) = T (e−ix·ξ), ξ ∈ Rn.

More precisely, if T ∈ E ′ then T̂ = TF where F is the function in OM

defined by F (ξ) = T (e−ix·ξ).

Proof. Let T ∈ E ′, and use the structure theorem in order to

write T =
∑

|α|≤N D
αfα where fα ∈ Cc(Rn). Then by properties of the

Fourier transform,

T̂ (φ) = T (φ̂) =
∑
|α|≤N

⟨fα, (−D)αφ̂⟩ =
∑
|α|≤N

⟨fα, (ξαφ)̂ ⟩

= ⟨
∑
|α|≤N

ξαf̂α, φ⟩.

But also

F (ξ) = ⟨
∑
|α|≤N

Dαfα, e
−ix·ξ⟩ = ⟨

∑
|α|≤N

fα, ξ
αe−ix·ξ⟩ =

∑
|α|≤N

ξαf̂α(ξ).

This shows that T̂ (φ) = ⟨F, φ⟩, and it is not difficult to check that

F ∈ OM . □
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Finally, we remark that the range of the Fourier transform on

C∞
c (Rn) and E ′(Rn) can be completely characterized via the Paley-

Wiener and Paley-Wiener-Schwartz theorems.

3.6. The test function space D

The test function space S , and the corresponding space of tem-

pered distributions S ′, are objects that are naturally defined on the

whole space Rn. The requirement that the space S ′ should have a rea-

sonable Fourier analysis is reflected in the decay properties of Schwartz

functions at infinity. We will next consider a distribution space D ′(Rn)

which is larger than S ′(Rn) and which is completely local: for elements

in D ′ the behavior at infinity does not play any role, and if Ω is any

open subset of Rn there is a natural corresponding space D ′(Ω), the

set of distributions in Ω.

The test functions for D ′ have compact support so that any locally

integrable function becomes a distribution, and they are infinitely dif-

ferentiable to ensure that also the corresponding distributions will have

derivatives of any order. The topology on this space will be taken so

fine that it is not a harsh requirement for linear functionals to be con-

tinuous. However, the topology on the test function space will be more

complicated than for S or E for instance. In particular, it will not be

a metric space topology. We begin by defining the spaces DK .

Definition. If K ⊂ Rn is a compact set, we denote by DK the set

of all C∞ complex functions on Rn with support contained in K. The

topology on DK is taken to be the one given by the norms

(3.17) ∥φ∥N =
∑
|α|≤N

∥∂αφ∥L∞(Rn)

where N ≥ 0 is an integer.

Lemma 3.6.1. DK is a complete metric space.

Proof. This follows as before. □

Having established a topology for the spaces DK , the next step is

to consider the space D(Ω) of all compactly supported C∞ functions

on an open set Ω ⊂ Rn. Thus

D(Ω) = C∞
c (Ω) =

⋃
K⊂Ω compact

DK .
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In the following, it may be useful to consider an exhaustion of Ω by

compact subsets. This means a family {Km}∞m=1 of compact subsets of

Ω so that Km ⊂ K◦
m+1 and

⋃
Km = Ω. One can take

Km := Ω \

{x ; |x| > m} ∪
⋃

z∈Rn\Ω

B(z, 1/m)

 .

Imitating our previous arguments for the other test function spaces, one

could try to give D(Ω) the topology induced by the countable family

of seminorms

∥φ∥N =
∑
|α|≤N

∥∂αφ∥L∞(KN ), N ∈ N,

where {Km} is an exhaustion of Ω as above. This topology however

has one immediate handicap: it is not complete. The problem is that

although any Cauchy sequence converges with respect to all the semi-

norms to a C∞ function, the limit function need not have compact

support in Ω.

The situation can be remedied by considering D(Ω) as a strict in-

ductive limit of the spaces DK , where the compact sets K increase

toward Ω. We will not give the details of this construction, but rather

only state some of its properties. It is shown in [ScSc] (in the case where

Ω = Rn) that the topology on D(Ω) is determined by the uncountable

family of seminorms

ρ(εm),(rm)(φ) = sup
m≥0

sup
x/∈K◦

m
|α|≤rm

|Dαφ(x)|/εm

where (εm) is a decreasing sequence of positive numbers with limit 0

and (rm) is an increasing sequence of natural numbers converging to

∞. (We define K0 = ∅.)

Theorem 3.6.2. There exists a topology on D(Ω) which is a vector

space topology (that is, addition and scalar multiplication are continu-

ous operations) and has the following properties:

(a) A sequence (φj) in D(Ω) converges if and only if (φj) ⊂ DK

for some fixed compact set K ⊂ Ω and (φj) converges in DK.

(b) D(Ω) is complete (any Cauchy sequence or net in D(Ω) con-

verges).

Proof. See [RuRu] or [ScSc]. □
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Although D(Ω) is not metrizable (it is the countable union of the

spaces DKm which are nowhere dense in D(Ω)) we have seen that the

topology behaves well with respect to sequential convergence. Also

continuous linear maps from D(Ω) into other spaces are easily charac-

terized: only sequential convergence needs to be considered.

Theorem 3.6.3. Let T be a linear map from D(Ω) into some locally

convex vector space Y . Then the following statements are equivalent.

(a) T is continuous.

(b) T (φj) → 0 in Y whenever φj → 0 in D(Ω).

(c) T |DK
is continuous for each K.

Proof. See [RuRu] or [ScSc]. □

We now introduce the usual operations on the space D(Ω). The

reflection and translation are only defined for certain sets (such as

Ω = Rn), but complex conjugation and the derivative φ 7→ ∂αφ are

well defined on D(Ω). To define pointwise multiplication of functions

in D(Ω), it is clear that if f ∈ C∞(Ω) then fφ will be in D(Ω), and on

the other hand multiplication by functions which are not infinitely dif-

ferentiable need not give functions in D(Ω). Hence C∞(Ω) is a natural

space of multipliers on D(Ω). We have the following theorem.

Theorem 3.6.4. Let Ω ⊂ Rn be an open set. If f ∈ C∞(Ω), then

the following operations are continuous maps from D(Ω) into D(Ω):

(1) φ 7→ φ (conjugation)

(2) φ 7→ ∂αφ (derivative)

(3) φ 7→ fφ (multiplication)

If Ω = Rn, then additionally the following operations are continuous

from D(Rn) into D(Rn):

(4) φ 7→ φ̃ (reflection)

(5) φ 7→ τx0φ (translation)

Proof. The proof is similar to the case of Schwartz functions (for

continuity of multiplication, one needs to use the Leibniz rule for dif-

ferentiation). □
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3.7. The distribution space D ′

We are now ready to give a formal definition of distributions.

Definition. The set of continuous linear functionals on D(Ω) is

denoted by D ′(Ω) and its elements are called distributions on Ω.

It follows from Theorem 3.6.33.6.3 that a linear functional T on D(Ω)

is a distribution if for any sequence (φj) with φj → 0 in D(Ω) one

has T (φj) → 0, or equivalently if T |DK
is continuous on DK whenever

K ⊂ Ω is compact. Combining the last fact with the same argument

that was used to show that periodic or tempered distributions have

finite order, we see that if T ∈ D ′(Ω) then for any compact set K ⊂ Ω

there exist C > 0 and N > 0 such that

(3.18) |T (φ)| ≤ C
∑
|α|≤N

∥∂αφ∥L∞ , φ ∈ DK .

If there is a fixed N such that (3.183.18) is satisfied for any K then the

distribution T is said to be of order ≤ N , and if N is the least such

integer then T is said to be of order N .

We will sometimes use the notation ⟨T, φ⟩ to indicate the action of

a distribution on a test function.

Example 3.7.1. (Locally integrable functions) We denote by L1
loc(Ω)

the set of all measurable functions f on Ω such that
∫
K
|f(x)| dx < ∞

for any compact set K ⊂ Ω. Any function f ∈ L1
loc(Ω) gives rise to a

distribution Tf ∈ D ′(Ω) defined by

(3.19) Tf (φ) =

∫
Rn

f(x)φ(x) dx.

Here Tf is continuous since for φ ∈ DK we have

|Tf (φ)| ≤
∫
K

|f(x)φ(x)| dx ≤ ∥φ∥∞
∫
K

|f(x)| dx.

In particular any continuous function gives rise to a distribution. We

will use the notation Tf for a distribution determined by the function

f by (3.193.19). As before, different functions in L1
loc determine different

distributions, and we will identify the function f and the distribution

Tf .
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Example 3.7.2. (Measures) Any positive or complex regular Borel

measure µ in Ω gives rise to a distribution Tµ, where

Tµ(φ) =

∫
Ω

φ(x) dµ(x).

This is continuous since for φ ∈ DK one has |Tµ(φ)| ≤ ∥φ∥L∞|µ|(K)

where |µ| is the total variation of µ. Conversely, if T ∈ D ′ has order 0,

meaning that for any compact set K there is C = CK > 0 such that

(3.20) |T (φ)| ≤ C∥φ∥L∞ , φ ∈ DK ,

then T determines a unique measure (for the details see [ScSc]). Hence

distributions which satisfy (3.203.20) may be identified with measures.

Example 3.7.3. (Tempered distributions) Any tempered distribu-

tion is in D ′(Rn). To see this, we need to show that if T ∈ S ′(Rn) and

φj → 0 in D(Rn), then T (φj) → 0. There is a compact set K ⊂ Rn

such that supp(φj) ⊂ K for all j and ∂αφj → 0 uniformly on K for

any α ∈ Nn. Then also

∥⟨x⟩N∂αφj∥L∞ ≤ CK,N∥∂αφj∥L∞ → 0

for any N and α, showing that φj → 0 in S . Thus T (φj) → 0. This

shows that we have the inclusions

E ′(Rn) ⊂ S ′(Rn) ⊂ D ′(Rn).

The examples show that D ′ is a large space which contains many

ordinary classes of functions and measures. The following step is to ex-

tend the operations from Theorem 3.6.43.6.4 to distributions. This proceeds

exactly as before.

Example 3.7.4. Consider the reflection operation on D which sends

φ to φ̃. We wish to define the reflection of a distribution T ∈ D ′ as

another distribution T̃ . A reasonable requirement is that the operation

should extend the reflection on D , i.e. if f ∈ D then the reflection of

Tf should be Tf̃ . If this holds then we have

T̃f (φ) = Tf̃ (φ) =

∫
Rn

f(−x)φ(x) dx =

∫
Rn

f(x)φ(−x) dx = Tf (φ̃).

Motivated by this computation we define the reflection of T ∈ D ′ as

the distribution T̃ given by

T̃ (φ) = T (φ̃).
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Here T̃ is continuous since the composition φ 7→ φ̃ 7→ T (φ̃) is continu-

ous from D to the scalars.

One may carry out similar computations as in the preceding ex-

ample for the conjugation and translation to motivate the definitions

T (φ) = T (φ) and (τx0T )(φ) = T (τ−x0φ).

It is a remarkable fact that there is a natural notion of derivative

on D ′. For f ∈ D the usual requirement that ∂αTf should be equal to

T∂αf leads to

(∂αTf )(φ) = T∂αf (φ) =

∫
Rn

(∂αf)(x)φ(x) dx

= (−1)|α|
∫
Rn

f(x)(∂αφ)(x) dx

where we have integrated repeatedly by parts (the boundary terms

vanish since the functions have compact support).

Definition. For any T ∈ D ′ we define the distribution ∂αT by

(∂αT )(φ) = (−1)|α|T (∂αφ).

(∂αT )(φ) is called the distribution derivative or weak derivative of T .

Note that ∂αT is continuous since differentiation is continuous on

D . It follows that any distribution has well defined derivatives of any

order even if it arises from a function which is not differentiable in the

classical sense. The definition of derivative also accommodates a form

of integration by parts which is valid for distributions.

Example 3.7.5. As an example of weak derivatives consider the

continuous function on R given by

f(x) =

{
0, x ≤ 0,

x, x > 0.

Now f is not differentiable in the classical sense but determines a dis-

tribution

f : φ 7→
∫ ∞

0

xφ(x) dx,

and the distribution f has a derivative given by

f ′(φ) = −f(φ′) = −
∫ ∞

0

xφ′(x) dx =

∫ ∞

0

φ(x) dx
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where we have used integration by parts. Hence f ′ can be identified

with the Heaviside unit step function

H(x) =

{
0, x < 0,

1, x ≥ 0.

Differentiation ofH leads to the distributionH ′ withH ′(φ) = −H(φ′) =

−
∫∞
0
φ′(x) dx = φ(0). Hence we have arrived at the Dirac measure.

The derivative of the Dirac measure is given by

δ′(φ) = −φ′(0).

Example 3.7.6. Let f ∈ C1(R∖{x0}) where f has a jump discon-

tinuity at x0, i.e. the limits f(x0−) and f(x0+) exist and are finite.

We denote by J(x0) = f(x0+) − f(x0−) the jump of f at x0. If [f ′]

is the classical derivative of f , defined everywhere except at x0, and if

Df is the distribution derivative then we have

⟨Df, φ⟩ = −⟨f, φ′⟩ = −
∫ x0

−∞
f(x)φ′(x) dx−

∫ ∞

x0

f(x)φ′(x) dx

= (f(x0+)− f(x0−))φ(x0) +

∫ ∞

−∞
[f ′(x)]φ(x) dx

where integration by parts has been used. Thus we have the distribu-

tional relation

Df = [f ′] + J(x0)δx0 .

Example 3.7.7. The expression

T =
∞∑
j=1

δ
(j)
j

gives rise to a distribution in D ′(R) that does not have finite order.

It is a striking fact that one can always differentiate pointwise con-

vergent sequences of distributions.

Theorem 3.7.1. Let (Tj) be a sequence of distributions in D ′ so

that (Tj(φ)) converges for all φ ∈ D . Then there is a distribution

T ∈ D ′ defined by T (φ) = limj→∞ Tj(φ), and for any α we have

(3.21) ∂αTj → ∂αT

with convergence in D ′.

Proof. See [RuRu] or [ScSc]. □
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Besides differentiation one can also consider the inverse operation,

which is the integration of distributions. We give two simple arguments

in the one-dimensional case: the general case is treated in Schwartz

[ScSc], pp. 51-62. If S ∈ D ′(R) then a distribution T ∈ D ′(R) is called
a primitive of S if DT = S.

Theorem 3.7.2. Any distribution S ∈ D ′(R) has infinitely many

primitives, any two of these differing by a constant.

Proof. We denote by H the space of those χ ∈ D(R) which have

integral zero over R. It is easy to see that any χ ∈ H is of the form

χ = ψ′ for a unique ψ ∈ D(R). If φ0 is a fixed function in D(R) which
has integral one over R, then any φ ∈ D(R) can be written uniquely

in the form

(3.22) φ = λφ0 + χ

where λ =
∫∞
−∞ φ(t) dt and χ ∈ H.

For S ∈ D ′(R) define a linear form T on D(R) by

(3.23) T (φ) = λT (φ0)− S(χ)

where φ ∈ D(R) has been written in the form (3.223.22). If φk → 0 in

D(R) and φk = λkφ0+χk, then λk → 0 and also χk → 0 in D(R) since
χk = φk − λkφ0. This shows that T (φk) → 0 so T is a distribution,

and by (3.233.23) we have

⟨DT,φ⟩ = −⟨T, φ′⟩ = ⟨S, φ⟩.

Thus T is a primitive of S. If T1 and T2 are two primitives of S then

⟨T1 − T2, χ⟩ = 0 for all χ ∈ H and

⟨T1 − T2, φ⟩ = ⟨T1 − T2, λφ0 + χ⟩ = C

∫ ∞

−∞
φ(t) dt

where C = ⟨T1 − T2, φ0⟩. Consequently T1 = T2 + C. □

Theorem 3.7.3. If T ∈ D ′(R) is such that the distribution deriva-

tive DkT is a continuous function g(x), then T is a function in Ck(R).

Proof. We may integrate k times to obtain a Ck function f so

that Dkf = g in the classical sense. Then DkT = Dkf which means

that T and f differ by a polynomial of degree ≤ k − 1. □



3.7. THE DISTRIBUTION SPACE D ′ 67

The final operation on distributions that we wish to introduce here

is multiplication by functions. This is easy to define since if f ∈ C∞

then fT is a well-defined distribution if (fT )(φ) = T (fφ), and the

operation extends that on D . We summarize what we have done.

Theorem 3.7.4. If f ∈ C∞(Rn) then the following operations are

well defined maps from D ′ into D ′.

(1) T̃ (φ) = T (φ̃) (reflection)

(2) T (φ) = T (φ) (conjugation)

(3) (τx0T )(φ) = T (τ−x0φ) (translation)

(4) (DαT )(φ) = (−1)|α|T (Dαφ) (derivative)

(5) (fT )(φ) = T (fφ) (multiplication)

Proof. Follows from the corresponding continuity properties on

D . □

To study the local behaviour of distributions we introduce the fol-

lowing concepts.

Definition. For any open set V ⊂ Ω the distribution T ∈ D ′(Ω)

is said to vanish on V , written T = 0 on V , if T (φ) = 0 for any

φ ∈ D(V ). Two distributions T1 and T2 are said to be equal on V if

T1 − T2 = 0 on V .

It is an important fact that if the local behaviour of a distribution

is known at each point then the distribution is uniquely determined

globally. The proof uses a partition of unity.

Theorem 3.7.5. Let {Vi} be an open cover of Ω and let {Ti} be a

family of distributions such that Ti ∈ D ′(Vi), and suppose that for any

Vi, Vj with Vi ∩ Vj ̸= ∅ one has

Ti = Tj on Vi ∩ Vj.

Then there is a unique T ∈ D ′(Ω) for which T = Ti on each Vi.

Proof. Let {ψi} be a C∞ locally finite partition of unity subordi-

nate to {Vi}. Define

(3.24) T (φ) =
∑
i

Ti(ψiφ) (φ ∈ D(Ω)).
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If K ⊂ Ω is a compact set then the local finiteness of {ψi} shows

that K has some neighborhood where only finitely many of the ψi

do not vanish. Consequently for φ ∈ DK only finitely many of the

functions ψiφ will be nonzero, the sum in (3.243.24) will be finite, and T

is a distribution.

If φ ∈ DK for some compact K ⊂ Vi then

T (φ) =
∑
j

Tj(ψjφ) = Ti(
∑
j

ψjφ) = Ti(φ)

since the sum is finite and for any j with Vi∩Vj ̸= ∅ one has Tj(ψjφ) =

Ti(ψjφ). This shows that T = Ti on Vi, and also the uniqueness follows

since any distribution T with T = Ti on each Vi must be given by

(3.243.24). □

Much of the justification for distribution theory comes from the

fact that continuous functions possess infinitely many derivatives. On

the other hand we have the following important theorem which states

that any distribution is at least locally the derivative of a continuous

function. This shows that D ′ is in a sense the smallest possible set

where continuous functions can be differentiated at will.

Theorem 3.7.6. Let T ∈ D ′(Ω) and let K ⊂ Ω be a compact set.

Then there is a continuous function f on Ω such that T (φ) = (∂αf)(φ)

for all φ ∈ DK.

3.8. Convolution of functions

We now define the important convolution operation first for certain

classes of functions. This operation arises naturally in Fourier analysis

since the Fourier transform takes convolutions into products.

Definition. The convolution of two measurable functions f, g :

Rn → C is the function f ∗ g : Rn → C given by

(3.25) (f ∗ g)(x) =
∫
Rn

f(y)g(x− y) dy

provided that the integral exists almost everywhere.

Clearly the convolution of arbitrary functions need not be defined.

In order for the integral (3.253.25) to converge the functions must satisfy

certain growth restrictions at infinity, in particular the rapid growth of
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one function must be compensated by the rapid decrease at infinity of

the other. Theorem 3.8.13.8.1 below illustrates this.

A change of variables in (3.253.25) gives that

(3.26) (f ∗ g)(x) =
∫
Rn

f(x− y)g(y) dy,

which shows that the convolution is commutative (f ∗ g = g ∗ f). It

is also associative by Fubini’s theorem if the functions involved satisfy

certain decay conditions. The identity (3.263.26) allows one to interpret

f ∗ g as a weighted sum of translates of f . Since averaging translates

of a function is a smoothing operation it should be no surprise that

convolution turns irregular functions into smoother ones.

We introduce some new notation for the following theorem, which is

stated in a fairly general form but which should clarify the relationship

of regularity and growth properties in convolution.

Definition. We denote by Lpol(Rn) the space of measurable com-

plex functions on Rn which are polynomially bounded. In other words,

a measurable function f is in Lpol if and only if there are C > 0 and

N ∈ N such that |f(x)| ≤ C⟨x⟩N for almost all x ∈ Rn. The set of

continuous functions in Lpol is denoted by Cpol.

The space C∞(Rn) of rapidly decreasing continuous functions on Rn

consists of those f ∈ C(Rn) for which ⟨x⟩Nf(x) is a bounded function

for all N ∈ N. Differentiability is indicated by a superscript; a function

f is in Ck
∞ (in Ck

pol) if ∂
αf is in C∞ (in Cpol) whenever |α| ≤ k.

Theorem 3.8.1. The convolution is a map

(1) L1
loc × Ck

c → Ck

(2) Cj × Ck
c → Cj+k

(3) Cj
c × Ck

c → Cj+k
c

(4) Lpol × Ck
∞ → Ck

pol

(5) Cj
pol × Ck

∞ → Cj+k
pol

(6) Cj
∞ × Ck

∞ → Cj+k
∞

One has the identity

∂α+β(f ∗ g) = (∂αf) ∗ (∂βg)

whenever |α| ≤ j, |β| ≤ k (where j = 0 in (1) and (4)).
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Lemma 3.8.2. If ⟨x⟩Nf ∈ L∞(Rn) and K ⊂ Rn is compact, then

there is C = CK,N > 0 such that

(3.27) sup
h∈K

sup
x∈Rn

|⟨x⟩Nf(x+ h)| ≤ C∥⟨x⟩Nf∥L∞ .

Proof. We first take N = 2m to be an even integer, and we may

also assume that K = B(0, R). Now

sup
h∈K

sup
x∈Rn

|⟨x⟩2mf(x+ h)| = sup
h∈K

sup
x∈Rn

|⟨x− h⟩2mf(x)|.

The expression ⟨x−h⟩2m = (1+ |x−h|2)m = (1+ |x|2− 2x ·h+ |h|2)m
may be expanded into

⟨x− h⟩2m =
m∑
j=0

(
m

j

)
(1 + |x|2)m−j(−2x · h+ |h|2)j.

The condition |h| ≤ R implies that |−2x · h+ |h|2| ≤ CR⟨x⟩. We thus

have the estimate

⟨x− h⟩2m ≤ C⟨x⟩2m, h ∈ K.

If N = 2m+1 is an odd integer, we write ⟨x−h⟩2m+1 = (⟨x−h⟩2m) 2m+1
2m .

The estimate above implies that for any N ∈ N,

⟨x− h⟩N ≤ C⟨x⟩N , h ∈ K.

This proves the result. □

Proof of Theorem 3.8.13.8.1. (1) Let f ∈ L1
loc and g ∈ Ck

c . If x ∈
Rn is fixed then the integral in (3.253.25) reduces to one over the compact

set supp(τxg̃), so (f ∗ g)(x) exists. For differentiability consider

(3.28)
(f ∗ g)(x+hej)− (f ∗ g)(x)

h
=

∫
Rn

f(y)
g(x−y+hej)− g(x−y)

h
dy.

If |h| ≤ 1 the integral reduces to one over some compact set K, and

Taylor’s theorem gives

g(x− y + hej)− g(x− y)

h
=

∂g

∂xj
(x− y + θej)

where |θ| ≤ 1. The integrand in (3.283.28) is now the product of f(y) and

a bounded function on K, hence is bounded by a function in L1(K),

and we may apply dominated convergence to obtain

(3.29)
∂(f ∗ g)
∂xj

(x) =

(
f ∗ ∂g

∂xj

)
(x).
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Iterating this argument gives that f ∗g is in Ck and ∂β(f ∗g) = f ∗(∂βg)
for |β| ≤ k.

(2) The same argument as in (1) shows that ∂α(f ∗ g) = (∂αf) ∗ g
for |α| ≤ j.

(3) Differentiability follows from (2), and the support condition

follows from the inclusion supp(f ∗ g) ⊂ supp(f) + supp(g). This last

fact is shown by noting that if x /∈ supp(f)+supp(g), then y ∈ supp(f)

implies that x− y /∈ supp(g), and then (f ∗ g)(x) must be zero by the

definition (3.253.25). Since supp(f) + supp(g) is closed the given inclusion

must hold.

(4) Let f ∈ Lpol and g ∈ Ck
∞. Then ⟨y⟩−Nf(y) ∈ L1(Rn) for some

large enough N , and for any fixed x

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)g(x− y)| dy

≤ ∥⟨y⟩−Nf(y)∥L1∥⟨y⟩Nτxg̃(y)∥L∞ .

This shows that f ∗ g exists. If |h| ≤ 1 then the integrand in (3.283.28)

satisfies∣∣∣∣f(y)g(x− y + hej)− g(x− y)

h

∣∣∣∣ ≤ |⟨y⟩−Nf(y)|

×
∣∣∣⟨y⟩N ∂g

∂xj
(x− y + θej)

∣∣∣ (|θ| ≤ 1).

If N is large enough then the first factor is in L1(Rn) and the second

is bounded by Lemma 3.8.23.8.2, hence dominated convergence gives (3.293.29)

in this case. It follows that f ∗ g ∈ Ck.

The identity (3.293.29) also shows that f ∗g ∈ Ck
pol if we can prove that

f ∗ g ∈ Cpol. Choosing N as above we have

|⟨x⟩−N(f ∗ g)(x)| =
∣∣∣⟨x⟩−N

∫
Rn

f(x− y)g(y)dy
∣∣∣

≤
∫
Rn

∣∣∣⟨x− y⟩−Nf(x−y)⟨x− y⟩N

⟨x⟩N
g(y)

∣∣∣dy
≤ C ∥⟨y⟩−Nf(y)∥L1 · sup

y∈Rn

⟨x− y⟩N

⟨x⟩N⟨y⟩N
.

The last expression is finite since 1 + |x − y|2 ≤ 1 + 2(|x|2 + |y|2) ≤
2(1+|x|2)(1+|y|2). Hence f ∗ g is polynomially bounded.

(5) This follows similarly as in (4).
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(6) By (5) it is enough to show that f ∗g ∈ C∞ whenever f, g ∈ C∞.

The binomial expansion gives (x − y + y)α =
∑k

i=1 ci(x − y)αiyβi for

some constants ci and some multi-indices αi and βi, so we have

|xα(f ∗ g)(x)| ≤
∫
Rn

∣∣∣(x− y + y)αf(y)g(x− y)
∣∣∣ dy

≤
k∑

i=1

|ci|
∫
Rn

∣∣∣yβif(y)(x− y)αig(x− y)
∣∣∣ dy

≤
k∑

i=1

|ci| ∥zβif(z)∥L1(Rn) ∥zαig(z)∥∞.(3.30)

This implies that ⟨x⟩N(f ∗ g)(x) is a bounded function for any N ∈ N,
so the claim follows. □

Theorem 3.8.3. The convolution is a separately continuous map

(1) D × D → D ,

(2) E × D → E ,

(3) S × S → S .

Proof. Theorem 3.8.13.8.1 immediately gives that the ranges in (1) –

(3) are correct. It remains to show continuity. If f ∈ E and φ ∈ DK ,

then for any compact subset K0 of Rn,

sup
x∈K0

|∂α(f ∗ φ)(x)| = sup
x∈K0

|(f ∗ ∂αφ)(x)| ≤ sup
x∈K0

∫
K

|f(x− y)(∂αφ)(y)| dy

≤ sup
y∈K1

|f(y)| · sup
y∈K

|(∂αφ)(y)| · µ(K)

where K1 = K0 −K is compact. Taking φ = φk where φk → 0 in DK

gives (1) and one half of (2). Also the other half of (2) follows if one

takes the derivative of f instead of φ in the above.

Part (3) is a consequence of (3.303.30) which states that for f, g ∈ S
one has ∥xα(f ∗ g)∥L∞ ≤ ρ(g) where ρ is a continuous seminorm on S ;

this implies that

∥f ∗ g∥α,β = ∥xαf ∗ (∂βg)∥L∞ ≤ ρ(∂βg),

the right side being another continuous seminorm on S . □

The convolution is a tool which can be used to prove approximation

theorems. The idea, which is classical, is that convolving a function
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with a regular function looking like the Dirac delta gives a regular func-

tion close to the original one. In fact we will later define convolution

of a function and a distribution, and then f ∗ δ will be exactly equal

to f .

Definition. Suppose j ∈ D(Rn) is such that j ≥ 0, the support

of j is contained in the closed unit ball of Rn, and
∫
Rn j(x) dx = 1.

Then the family of functions {jε}, where jε(x) = ε−nj(x/ε) and ε > 0,

is called an approximate identity.

It is clear that approximate identities exist on Rn. The function jε
has support contained in B(0, ε) and its integral over Rn is equal to

one, so the functions jε converge (in a sense which is made precise later)

to the Dirac delta. For a locally integrable function f , the convolutions

f ∗ jε are called regularizations of f .

Theorem 3.8.4. Let {jε} be an approximate identity on Rn.

(a) If f is a continuous function on Rn then f ∗ jε → f uniformly

on compact subsets of Rn.

(b) If f is in Lp(Rn) then f ∗ jε → f in Lp(Rn) for 1 ≤ p <∞.

(c) If f is in D (in E , S ) then f ∗ jε → f in D (in E , S ).

Proof. (a) Let K ⊂ Rn be compact and let ε′ > 0. One has

|(f ∗ jε)(x)− f(x)| =
∣∣∣ ∫

Rn

f(x− y)jε(y) dy − f(x)

∫
Rn

jε(y) dy
∣∣∣

≤
∫
Rn

jε(y)
∣∣∣f(x− y)− f(x)

∣∣∣ dy.
The last integral can be taken over B(0, ε), so choosing ε so small that

|f(x− y)− f(x)| < ε′ on K +B(0, ε) for |y| ≤ ε gives the claim.

(b) This follows from Minkowski’s inequality in integral form and

the continuity of translation on Lp similarly as in the periodic case (see

Lemma 2.1.52.1.5).

(c) The claim follows for D and E directly from (a) and the fact

that derivatives commute with convolution. For S we have

|xα[(f ∗ jε)(x)− f(x)]| =
∣∣∣xα{∫

Rn

f(x− y)jε(y) dy − f(x)

∫
Rn

jε(y) dy
}∣∣∣

≤
∫
B(0,ε)

jε(y)
∣∣∣xα{f(x− y)− f(x)

}∣∣∣dy.
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Using Taylor’s theorem we may write

(3.31) xα(f(x− y)− f(x)) = −
n∑

i=1

xα
∂f

∂xi
(x+ θy)yi (|θ| < ε).

Lemma 3.8.23.8.2 now shows that the expressions xα(∂f/∂xi)(x + h) are

bounded for x ∈ Rn and |h| ≤ 1, so the absolute value of (3.313.31) goes to

zero as ε→ 0. We have shown that ∥f ∗ jε − f∥α,0 → 0 as ε→ 0, and

the convergence with respect to ∥ · ∥α,β follows just because we may

replace f in the above by ∂βf . □

Lemma 3.8.5. D(Rn) is dense in Lp(Rn) for 1 ≤ p < ∞ and uni-

formly dense in C0(Rn).

Proof. Since Cc is dense in Lp the first claim follows from (b) in

the theorem. The second claim is given by (a) which says that D is

uniformly dense in Cc and hence in C0. □

3.9. Convolution of distributions

We first define convolution between distributions and functions.

The usual requirement that the operation should extend the convo-

lution of functions leads to the following: if g is a function and Tg the

corresponding distribution, and if f is a function, then

(Tg ∗ f)(φ) =
∫
Rn

(g ∗ f)(x)φ(x) dx =

∫
Rn

∫
Rn

g(y)f(x− y)φ(x) dy dx

=

∫
Rn

g(y)
(∫

Rn

f̃(y − x)φ(x) dx
)
dy

= Tg(f̃ ∗ φ).

The formula

(T ∗ f)(φ) = T (f̃ ∗ φ)

can be used in conjunction with Theorem 3.8.33.8.3 to define T ∗ f on

D ′ × D , E ′ × E and S ′ × S (for instance if T ∈ D ′ and f ∈ D then

the composition φ 7→ f̃ ∗ φ 7→ T (f̃ ∗ φ) is continuous D → C). This

definition gives that T ∗ f will be either in D ′ or S ′; it is due to the

smoothing nature of convolution that T ∗ f will in fact be a function.
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Theorem 3.9.1. The convolution is a separately continuous map

(1) D ′ × D → E ,

(2) E ′ × D → D ,

(3) E ′ × E → E ,

(4) S ′ × S → OM .

In each case the function T ∗ f is given by

(T ∗ f)(x) = T (τxf̃).

Furthermore, the following identities are valid.

(a) ∂β(T ∗ f) = ∂βT ∗ f = T ∗ ∂βf
(b) (T ∗ f) ∗ g = T ∗ (f ∗ g)

Proof. This theorem follows from the structure theorems since

the distributions can be written as derivatives of continuous functions.

We provide the details for (4).

Let T ∈ S ′ and f ∈ S . By Theorem 3.3.53.3.5 there is a polynomially

bounded continuous function h such that T = ∂αTh, where

Th(φ) =

∫
Rn

h(x)φ(x) dx, T (φ) = (−1)|α|
∫
Rn

h(x)∂αφ(x) dx.

We now have

(T ∗ f)(φ) = T (f̃ ∗ φ) = (∂αTh)(f̃ ∗ φ) = (−1)αTh((∂
αf̃) ∗ φ)

= Th((∂
αf )̃ ∗ φ) =

∫
Rn

h(x)
{∫

Rn

∂αf(y − x)φ(y) dy
}
dx

=

∫
Rn

(h ∗ ∂αf)(y)φ(y) dy.

This shows that T ∗ f is the distribution arising from the function

h ∗ ∂αf , which is in OM by Theorem 3.8.13.8.1. This function has the form

(h ∗ ∂αf)(x) =
∫
Rn

h(y)(∂αf)(x− y) dy

= (−1)|α|
∫
Rn

h(y)∂α(τxf̃)(y) dy = T (τxf̃).

The continuity proof, which would require us to define a topology on

OM , is omitted (see [ScSc]). The proofs of (a) and (b) are just manipu-

lations of the definitions. □
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Where discussing convolution on S ′ there is another space of dis-

tributions which is useful, namely the space O ′
C of rapidly decreasing

distributions, which we set out to define.

Definition. The space DL1(Rn) consists of those functions f ∈
C∞(Rn) such that f is in L1 along with all its derivatives. We give

DL1 a topology by the countable family of norms

∥f∥α = ∥∂αf∥L1 , α ∈ Nn.

The space of continuous linear functionals on DL1(Rn) is denoted by

B′(Rn) and its members are said to be distributions bounded on Rn.

The space O ′
C(Rn) is now taken to be the set of those T ∈ D ′ for

which ⟨x⟩NT is a bounded distribution (i.e. belongs to B′) for any

N ∈ N.

The test function space DL1 is a complete metric space, and we

have D ⊂ DL1 ⊂ E with continuous embeddings. Also D is dense in

DL1 since for f ∈ DL1 there is a sequence φk(x) = ψ(x/k)f(x) in D
where ψ ∈ D is equal to one on the closed unit ball of Rn, and it is

easy to check that

∥∂α(φk − f)∥L1 =

∫
|x|≥k

|∂α(φk(x)− f(x))| dx→ 0

Thus B′ can be identified with a subspace of D ′ and it contains all com-

pactly supported distributions. The structure theorem for the spaces

B′ and O ′
C has the following form.

Theorem 3.9.2. Let T be a distribution in D ′.

(1) T is in B′ if and only if T =
∑

|α|≤N ∂
αgα where the gα are in

L∞.

(2) T is in O ′
C if and only if for any N ∈ N there exist M(N) ∈ N

and continuous functions gα such that T =
∑

|α|≤M(N) ∂
αgα,

where ⟨x⟩Ngα is a bounded function for each α.

Proof. Modifications of the proof of Theorem 3.3.53.3.5 give the first

claim. The second claim follows from the first upon integrating by

parts. □

Note that the preceding theorem implies that E ′ ⊂ O ′
C ⊂ S ′, and

functions in S and also C∞, for instance x 7→ e−|x| on R, lie in O ′
C .
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Theorem 3.9.3. The convolution is a map O ′
C × S → S contin-

uous in the second argument.

Proof. We know from Theorem 3.9.13.9.1 that T ∗ f is a function in

OM and (T ∗f)(x) = T (τxf̃) if T ∈ O ′
C and f ∈ S . To show that T ∗f

is in S take any β ∈ Nn and choose m such that |xβ| ≤ ⟨x⟩2m for all

x ∈ Rn. Let gα be the functions in Theorem 3.9.23.9.2, part (b); then

xβ∂γ(T ∗ f)(x) = xβT (τx(∂
γf )̃ ) =

∑
|α|≤N

xβ(∂αgα)(τx(∂
γf )̃ )

=
∑
|α|≤N

∫
Rn

xβgα(y)(∂
α+γf)(x− y) dy.

The method used in the proof of Theorem 3.8.13.8.1, part (6) now gives

that T ∗ f ∈ S and that f 7→ T ∗ f is continuous S → S . □

As for functions, also distributions T can be approximated with the

regularizations T ∗jε. It is remarkable here that the regularizations are

functions by Theorem 3.9.13.9.1, so any distribution is in fact the limit of

a sequence of C∞ functions.

Theorem 3.9.4. Let {jε} be an approximate identity on Rn.

(a) If T ∈ D ′ then T ∗ jε → T in D ′.

(b) If T ∈ E ′ then T ∗ jε → T in E ′.

(c) If T ∈ S ′ then T ∗ jε → T in S ′.

Proof. The proofs of (a) – (c) are identical. For (c) let T ∈ S ′

and choose any φ ∈ S . Now {j̃ε} is an approximate identity, so

j̃ε ∗ φ → φ in S by Theorem 3.8.43.8.4, part (b). Then T (j̃ε ∗ φ) → T (φ)

by the continuity of T , which means that T ∗ jε → T in the topology

of S ′ by the definition of convolution. □

We have discussed convolution for functions and for a function and a

distribution. It is natural to define the convolution of two distributions

S and T by

(S ∗ T )(φ) = S(T̃ ∗ φ)
provided that the expression on the right makes sense. This is the case

for instance when S ∈ D ′ and T has compact support; in general the

growth of S must be compensated by decay of T for S∗T to be defined,

exactly as for functions. The analogy between the following theorem

and Theorem 3.8.13.8.1 is evident.
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Theorem 3.9.5. The convolution is a separately continuous map

(1) D ′ × E ′ → D ′,

(2) E ′ × E ′ → E ′,

(3) S ′ × O ′
C → S ′.

Proof. Let S be in D ′ (in E ′, S ′) and T in E ′ (in E ′, O ′
C). If φ

is any test function in D (in E , S ), then

φ 7→ T̃ ∗ φ 7→ S(T̃ ∗ φ)

maps D (E ,S ) continuously and linearly into C by Theorem 3.9.13.9.1.

This shows that convolution is indeed well defined in the settings of

(1) – (3). □

Having defined the convolution on fairly general spaces, we now

summarize some of the properties of the operation. In the following

the distributions are assumed to be chosen so that all the convolutions

are defined (for instance in the first part T1 ∈ D ′ and T2 ∈ E ′, or

T1 ∈ S ′ and T2 ∈ O ′
C etc.).

(1) Commutativity. For two distributions T1 and T2 one has

T1 ∗ T2 = T2 ∗ T1.

For functions this is valid by a change of variables, and for dis-

tributions commutativity is essentially a matter of definition.

(2) Associativity. If T1, T2, T3 are distributions in D ′ and at least

two have compact support, then

T1 ∗ (T2 ∗ T3) = (T1 ∗ T2) ∗ T3.

This is not valid without the condition on supports even if

all the convolutions were defined: take for instance T1 = 1,

T2 = δ′, and T3 = H (the Heaviside unit step function). If two

of the distributions have compact support then the statement

follows by manipulating the definitions.

(3) Translation invariance. If x ∈ Rn then

τx(T1 ∗ T2) = (τxT1) ∗ T2 = T1 ∗ (τxT2).

This clearly holds for functions, and the extension to distribu-

tions follows from the definition.
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(4) Differentiation. If α is a multi-index then

∂α(T1 ∗ T2) = (∂αT1) ∗ T2 = T1 ∗ (∂αT2).

We saw in Theorem 3.8.13.8.1 that if a function is convolved with

a second one which is differentiable in the classical sense, then

the convolution is differentiable and the derivatives are ob-

tained by differentiating the second function. Distribution the-

ory generalizes the classical setting and the above identity is

always valid if all the derivatives are taken in the distributional

sense.

(5) Identity. The Dirac measure δ is an identity element for the

convolution operation: if T ∈ D ′ then

T ∗ δ = δ ∗ T = T.

To show this take φ ∈ D and note that (δ ∗ φ)(x) = δ(τxφ̃) =

φ(x), which gives the general case since (T ∗ δ)(φ) = T (δ ∗φ).
(6) Translation. If T ∈ D ′ and x ∈ Rn then

T ∗ δx = δx ∗ T = τxT.

This is a consequence of part 5 and translation invariance.

(7) Differentiation. If T ∈ D ′ and α is a multi-index then

T ∗ (∂αδ) = (∂αδ) ∗ T = ∂αT.

Use part 5 and part 4.

A map L : D → D ′ is said to be translation-invariant if

τx ◦ L = L ◦ τx

for all x ∈ Rn. The above discussion shows that convolution with a

given T ∈ D ′ is a continuous translation-invariant linear map D →
E ; we prove below that these properties also characterize convolution

maps. In the following we denote by CRn
the space of all maps Rn → C

with the product topology (i.e. the weakest topology which makes all

projections f 7→ f(x) continuous).

Theorem 3.9.6. If L is any continuous translation-invariant linear

map D → CRn
, then there is a unique distribution T ∈ D ′ so that

L(φ) = T ∗ φ for all φ ∈ D . Particularly, the range of L is in E .
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Proof. We define T as a linear functional on D by T (φ) = L(φ̃)(0).

The continuity assumption gives that T is continuous, hence it is a dis-

tribution. If φ ∈ D then by translation invariance

L(φ)(x) = (τ−xL(φ))(0) = L(τ−xφ)(0) = T (τxφ̃) = (T ∗ φ)(x).

This gives existence, and uniqueness follows since if T ∗ φ = 0 for all

φ ∈ D then also T ∗ jε = 0 for any ε, and we have T = 0 by taking the

limit. □

There is a similar theorem of Schwartz ([ScSc], p. 53) which states

that any continuous linear map D → D ′ which commutes with trans-

lations is a convolution map. All in all one can conclude that linearity

and translation invariance combined with fairly weak continuity re-

quirements force a map on D to come from convolution.

There is a much stronger theorem that is valid for almost any linear

operator (not necessarily translation invariant). To motivate this, note

that if Ω1 and Ω2 are open sets and K ∈ C(Ω1 × Ω2), then there is a

corresponding integral operator

L : Cc(Ω2) → C(Ω1), Lf(x) =

∫
Ω2

K(x, y)f(y) dy.

The function K(x, y) is called the integral kernel of L. Typically one

might not think that arbitrary linear operators can be written as in-

tegral operators with respect to some kernel. However, the Schwartz

kernel theorem says that this is in fact true if one allows the integral

kernel to be a distribution (and if the linear operator satisfies a mild

continuity assumption).

Theorem 3.9.7. (Schwartz kernel theorem) Assume that Ω1 ⊂ Rn1,

Ω2 ⊂ Rn2 are open. If L is a continuous linear operator D(Ω2) →
D ′(Ω1), there is a unique K ∈ D ′(Ω1 × Ω2) such that

⟨L(φ), ψ⟩ = ⟨K,ψ ⊗ φ⟩, ψ ∈ D(Ω1), φ ∈ D(Ω2).

Here the tensor product is defined by

(ψ ⊗ φ)(x, y) = ψ(x)φ(y), x ∈ Ω1, y ∈ Ω2.

Conversely, any K ∈ D ′(Ω1 × Ω2) gives rise to a unique continuous

linear operator L : D(Ω1) → D ′(Ω2) that satisfies the above formula.
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We conclude the section with a general convolution-multiplication

theorem for the Fourier transform of tempered distributions. For the

proof of the first theorem note that the Laplace operator

∆ =
∂2

∂x21
+ . . .+

∂2

∂x2n

satisfies ((1−∆)T )̂ = ⟨x⟩2T̂ and by iteration ((1−∆)kT )̂ = ⟨x⟩2kT̂ .

Theorem 3.9.8. The Fourier transform is a bijective map from

OM(Rn) onto O ′
C(Rn).

Proof. It is enough to show that F takes OM into O ′
C and vice

versa. Let first f ∈ OM . For any m ≥ 0 there is by definition some

k > 0 such that |(1 −∆)mf(x)| ≤ C⟨x⟩2k. We can increase k so that

the function

h(x) = ⟨x⟩−2k(1−∆)mf(x)

will be in L1(Rn). Taking Fourier transforms gives

(1−∆)kĥ = ⟨x⟩2mf̂ .

Now by the Riemann-Lebesgue lemma (Theorem 3.4.33.4.3) the function ĥ

is continuous and bounded, hence ⟨x⟩2mf̂ is a bounded distribution by

Theorem 3.9.23.9.2. This shows that f̂ ∈ O ′
C .

On the other hand if T ∈ O ′
C , then for any β also (−x)βT is in O ′

C

and Theorem 3.9.23.9.2 implies that we may write (−x)βT =
∑

|α|≤N D
αgα

where the gα are functions in L1. The Fourier transform immediately

gives

DβT̂ =
∑
|α|≤N

xαĝα.

An application of the Riemann-Lebesgue lemma shows that DβT̂ is a

continuous polynomially bounded function for each β, thus T̂ ∈ OM .

□

The next result is a very general convolution-multiplication theorem

for the Fourier transform.

Theorem 3.9.9. If S ∈ S ′ and T ∈ O ′
C, then

(3.32) (S ∗ T )̂ = T̂ Ŝ.

If f ∈ OM and T in S ′, then

(fT )̂ = (2π)−nf̂ ∗ T̂ .
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Proof. First note that if f, g ∈ S , then f ∗ g ∈ S and

(f ∗ g)̂ (ξ) =
∫
Rn

∫
Rn

e−ix·ξf(x− y)g(y) dy dx

=

∫
Rn

∫
Rn

e−i(x−y)·ξf(x− y)e−iy·ξg(y) dx dy.

Changing variables x 7→ x+ y gives

(f ∗ g)̂ (ξ) = f̂(ξ)ĝ(ξ).

Applying this to f̌ and ǧ implies

(fg)̂ (ξ) = F 2(f̌ ∗ ǧ)(ξ) = (2π)n(f̌ ∗ ǧ)(−ξ)

= (2π)−n

∫
Rn

f̂(−η)ĝ(ξ + η) = (2π)−n(f̂ ∗ ĝ)(ξ).

Let now S ∈ S ′ and g ∈ S . We compute

(S ∗ g)̂ (φ) = (S ∗ g)(φ̂) = S(g̃ ∗ φ̂) = (2π)nS((ˇ̃gφ)̂ )

= Ŝ(ĝφ) = (ĝŜ)(φ)

and

(gS )̂ (φ) = S(gφ̂) = S((ǧ ∗ φ)̂ ) = Ŝ((2π)−n ˜̂g ∗ φ) = (2π)−n(Ŝ ∗ ĝ)(φ).

Finally, if S ∈ S ′ and T ∈ O ′
C , then S ∗ T ∈ S ′ and we have

(S ∗ T )̂ (φ) = (S ∗ T )(φ̂) = S(T̃ ∗ φ̂) = (2π)nS((φ ˇ̃T )̂ )

= Ŝ(T̂φ) = (T̂ Ŝ)(φ). □

3.10. Fundamental solutions

In this section we discuss how convolution can be used for solving

partial differential equations. We only consider constant coefficient

partial differential operators in Rn, that is, operators of the form

P (D) =
∑
|α|≤N

aαD
α

where aα are complex numbers. Note that if u ∈ D ′(Rn), then P (D)u

makes sense as an element of D ′(Rn).

Definition. Let P (D) be a constant coefficient differential opera-

tor in Rn. A distribution E ∈ D ′(Rn) is called a fundamental solution

for P (D) if

P (D)E = δ0.
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We note that fundamental solutions are not unique, since if E is

a fundamental solution of P (D) then so is E + v for any v ∈ D ′(Rn)

satisfying P (D)v = 0. The next result shows how fundamental solu-

tions can be used in PDE theory in two ways: in producing solutions to

P (D)u = f for f ∈ E ′, and in studying properties of solutions u ∈ E ′

of P (D)u = f .

Theorem 3.10.1. Let P (D) be a constant coefficient partial differ-

ential operator, and let E be a fundamental solution for P (D). Then

for any f ∈ E ′(Rn)â the equation

P (D)u = f in Rn

has a solution u = E ∗ f ∈ D ′(Rn). Moreover, if u ∈ E ′ satisfies

P (D)u = f for some f ∈ E ′, then u can be represented as

u = E ∗ f.

Proof. The first fact follows since the convolution of distributions

E ∈ D ′ and f ∈ E ′ is in D ′, and

P (D)(E ∗ f) = (P (D)E) ∗ f = δ0 ∗ f = f.

Also, if u ∈ E ′ satisfies P (D)u = f , then

u = δ0 ∗ u = (P (D)E) ∗ u = E ∗ (P (D)u) = E ∗ f. □

The following basic result shows that fundamental solutions always

exist.

Theorem 3.10.2. (Malgrange-Ehrenpreis) Any constant coefficient

partial differential operator has a fundamental solution.

The previous theorem does not give much information on the prop-

erties of fundamental solutions. In the remainder of this section we will

discuss briefly the fundamental solutions of four classical linear PDE:

∆u = 0 (Laplace equation)

(∂t −∆)u = 0 (heat equation)

(∂2t −∆)u = 0 (wave equation)

(i∂t +∆)u = 0 (Schrödinger equation)
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For the Laplacian we try to find a fundamental solution E ∈ S ′(Rn),

and note that the Fourier transform implies

−∆E = δ0 ⇐⇒ |ξ|2Ê = 1.

Thus formally (at least if n ≥ 3)

E(x) = F−1

{
1

|ξ|2

}
(x) = (2π)−n

∫
Rn

eix·ξ
1

|ξ|2
dξ, x ∈ Rn.

The function 1
|ξ|2 is radial and homogeneous of degree −2, thus by prop-

erties of the Fourier transform E should be radial and homogeneous of

degree 2− n. Thus we guess that E(x) would be given by

E(x) =
cn

|x|n−2
.

This function satisfies ∆E = 0 in Rn \ {0}, since we may express the

Laplacian in polar coordinates (r, ω) as

∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆ω

where ∆ω is the Laplacian on Sn−1 and only acts in the ω variable.

Then it is easy to check that E(r) = cnr
2−n satisfies ∆E = 0 for r > 0.

If n = 2, we try a radial solution E(r) and compute for r > 0

∆E = ∂2rE +
1

r
∂rE = (∂r +

1

r
)(∂rE).

The equation (∂r+
1
r
)v = 0 has the solution v = c1

r
, thus we guess that

E(x) = c2 log |x|.

The following theorem makes these formal computations precise.

Theorem 3.10.3. (Fundamental solution of the Laplace equation)

Define

E(x) =

{
− 1

2π
log|x|, n = 2,

1
(n−2)β(n)

|x|2−n, n ≥ 3,

where β(n) = |Sn−1|. Then E ∈ S ′(Rn) and −∆E = δ0.

Proof. We only do the case n ≥ 3. First let χB be the character-

istic function of the unit ball, and write

|x|2−n = χB|x|2−n + (1− χB)|x|2−n

where χB|x|2−n ∈ L1(Rn) and (1 − χB)|x|2−n ∈ L∞(Rn). Thus E ∈
L1 + L∞, and in particular E ∈ S ′.
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The identity −∆E = δ0 means that

⟨E,∆φ⟩ = −φ(0), φ ∈ C∞
c (Rn).

Let supp(φ) ⊂ B(0, R). Since E ∈ L1
loc, we have

(n− 2)β(n)⟨E,∆φ⟩ = lim
ε→0

∫
ε<|x|<R

|x|2−n∆φ(x) dx.

We use the integration by parts formula∫
Ω

u∂jv dx =

∫
∂Ω

uvνj dS −
∫
Ω

(∂ju)v dx, u, v ∈ C1(Ω).

This implies

(n− 2)β(n)⟨E,∆φ⟩

= lim
ε→0

(
−
∫
∂B(0,ε)

|x|2−n∆φ(x) dS −
∫
ε<|x|<R

∇(|x|2−n) · ∇φdx
)
.

The boundary integral goes to 0 as ε→ 0. Integrating by parts again,

and using that ∆(|x|2−n) = 0 in Rn \ {0}, gives that

(n− 2)β(n)⟨E,∆φ⟩ = lim
ε→0

∫
∂B(0,ε)

∂ν(|x|2−n)φdS.

Here ∂ν(|x|2−n) = (2 − n)|x|1−nx/|x| · ν = (2 − n)ε1−n on ∂B(0, ε).

Therefore

(n− 2)β(n)⟨E,∆φ⟩ = (2−n) lim
ε→0

1

εn−1

∫
∂B(0,ε)

φdS = (2−n)β(n)φ(0).

This is the required result. □

Now consider the heat equation,

(∂t −∆)u(t, x) = 0, u(0, x) = f(x).

If we denote by ˆ the partial Fourier transform with respect to the x

variable, Fourier transforming the equation gives

(∂t + |ξ|2)û(t, ξ) = 0, û(0, ξ) = f̂(ξ).

This is a first order ODE in the t variable, and it has the solution

û(t, ξ) = e−t|ξ|2 f̂(ξ).

Thus u should be given by

u(t, x) = (F−1
ξ {e−t|ξ|2} ∗ f)(x).
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We have computed earlier that F−1{e− 1
2
|x|2} = (2π)−n/2e−

1
2
|x|2 . Using

the scaling property of Fourier transform, the function F−1
ξ {e−t|ξ|2} is

equal to

K(t, x) = (4πt)−n/2e−
1
4t
|x|2 .

The function K(t, x) is called the heat kernel in Rn, and the solution

of the heat equation is given by

u(t, x) =

∫
Rn

K(t, x− y)f(y) dy.

Theorem 3.10.4. (a) Let f ∈ S ′(Rn), and consider the problem

(∂t −∆)u = 0 in (0,∞)× Rn, u(0) = f.

There is a unique solution u ∈ C∞((0,∞)×Rn)∩C∞([0,∞),S ′(Rn))

given by

u(t, · ) = K(t, · ) ∗ f, t > 0.

(b) The function

E(t, x) =

{
K(t, x), t > 0,

0, t ≤ 0

is in L1
loc(Rn+1) ∩C∞(Rn+1 \ {0}), and it is a fundamental solution of

the heat operator in the sense that

(∂t −∆)E = δ0 in Rn+1.

Now consider the wave equation

(∂2t −∆)u = 0, u(0) = f, ∂tu(0) = g.

As for the heat equation, we take Fourier transforms in x:

(∂2t + |ξ|2)û(t, ξ) = 0, û(0) = f̂ , ∂tû(0) = ĝ.

If ξ is fixed this is an ODE, and its solution is given by

û(t, ξ) = c1(ξ) cos(|ξ|t) + c2(ξ) sin(|ξ|t)

for some constants cj(ξ). By using the initial conditions we get

c1(ξ) = f̂(ξ), |ξ|c2(ξ) = ĝ(ξ).

Theorem 3.10.5. (a) Let f, g ∈ S ′(Rn), and consider

(∂2t −∆)u = 0, u(0) = f, ∂tu(0) = g.

This problem has a unique solution u ∈ C∞(R,S ′(Rn)) given by

u(t) = C(t)f + S(t)g
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where C(t) and S(t) are the cosine and sine propagators

C(t)f = F−1{cos(t|ξ|)f̂}, S(t)f = F−1{sin(t|ξ|)
|ξ|

f̂}.

(b) Let

E(t, · ) = F−1{sin(t|ξ|)
|ξ|

}.

This gives rise to a distribution in Rn+1 which is a fundamental solution

of the wave operator in the sense that

(∂2t −∆)E = δ.

One has for t > 0

E(t, x) =


1
2
χ(−t,t)(x), n = 1,

1
2π

1√
t2−|x|2

χ{|x|<t}, n = 2,

1
4πt
δ(t− |x|), n = 3.
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