Calderón problem

Solutions to Exercises \#2, 16.6.2008
4. Let $P_{0}=-h^{2} \Delta$ and $P_{0, \varphi}=e^{\varphi / h} P_{0} e^{-\varphi / h}=(h D)^{2}-1+2 i \alpha \cdot h D$, and let $u \in C_{c}^{\infty}(\Omega)$. Theorem 5.3 in the lectures states that

$$
\begin{equation*}
h\|u\| \leq C\left\|P_{0, \varphi} u\right\| . \tag{1}
\end{equation*}
$$

To have a bound for $\|D u\|$ we compute
$\|h D u\|^{2}=(h D u \mid h D u)=\left((h D)^{2} u \mid u\right)=\left(P_{0, \varphi} u \mid u\right)+\|u\|^{2}-2 i(\alpha \cdot h D u \mid u)$, which implies upon using the inequality $|a b| \leq \delta a^{2}+\frac{1}{4 \delta} b^{2}$ that

$$
\|h D u\|^{2} \leq \frac{1}{2}\left\|P_{0, \varphi} u\right\|^{2}+\frac{1}{2}\|h D u\|^{2}+C\|u\|^{2} .
$$

Moving one term one the other side, we have

$$
\|h D u\|^{2} \leq\left\|P_{0, \varphi} u\right\|^{2}+C\|u\|^{2} .
$$

This and the original Carleman estimate (1) imply

$$
h^{2}\|h D u\|^{2} \leq h^{2}\left\|P_{0, \varphi} u\right\|^{2}+C\left\|P_{0, \varphi} u\right\|^{2} \leq C\left\|P_{0, \varphi} u\right\|^{2},
$$

and we obtain the required estimate in the case $q=0$,

$$
h\|u\|+h\|h D u\| \leq C\left\|P_{0, \varphi} u\right\| .
$$

If q is nonzero one may proceed as in the proof of Theorem 5.3 to add a potential if h is small enough.
5. Let $P_{\varphi}=e^{\varphi / h} h^{2}(-\Delta+q) e^{-\varphi / h}$, so that $P_{\varphi}^{*}=P_{0,-\varphi}+h^{2} \bar{q}$. Applying Theorem 5.6 to P_{φ}^{*}, we have the Carleman estimate

$$
h^{3}\left((\alpha \cdot \nu) \partial_{\nu} v \mid \partial_{\nu} v\right)_{\partial \Omega_{+}}+h^{2}\|v\|^{2} \leq C\left\|P_{\varphi}^{*} v\right\|^{2}-C h^{3}\left((\alpha \cdot \nu) \partial_{\nu} v \mid \partial_{\nu} v\right)_{\partial \Omega_{-}},
$$

which is valid for $v \in C^{\infty}(\bar{\Omega})$ satisfying $\left.v\right|_{\partial \Omega}=0$. Define

$$
M=\left\{v \in C^{\infty}(\bar{\Omega}) ;\left.v\right|_{\partial \Omega}=0,\left.\partial_{\nu} v\right|_{\partial \Omega_{-}}=0\right\} .
$$

Let $D=P_{\varphi}^{*} M$ be a subspace of $L^{2}(\Omega)$, and consider the linear functional

$$
L: D \rightarrow \mathbf{C}, \quad L\left(P_{\varphi}^{*} v\right)=(v \mid f), \quad \text { for } v \in M .
$$

This is well defined by the Carleman estimate, which also implies

$$
\left|L\left(P_{\varphi}^{*} v\right)\right| \leq\|v\|\|f\| \leq \frac{C}{h}\|f\|\left\|P_{\varphi}^{*} v\right\| .
$$

Thus L is a bounded linear functional on D.
The Hahn-Banach theorem ensures that there is a bounded linear functional $\hat{L}: L^{2}(\Omega) \rightarrow \mathbf{C}$ satisfying $\left.\hat{L}\right|_{D}=L$ and $\|\hat{L}\| \leq C h^{-1}\|f\|$. By the Riesz representation theorem, there is $\tilde{r} \in L^{2}(\Omega)$ such that

$$
\hat{L}(w)=(w \mid \tilde{r}), \quad w \in L^{2}(\Omega)
$$

and $\|\tilde{r}\| \leq C h^{-1}\|f\|$. Then, for $w \in C_{c}^{\infty}(\Omega)$, by the definition of weak derivatives we have

$$
\left(w \mid P_{\varphi} \tilde{r}\right)=\left(P_{\varphi}^{*} w \mid \tilde{r}\right)=\hat{L}\left(P_{\varphi}^{*} w\right)=L\left(P_{\varphi}^{*} w\right)=(w \mid f),
$$

which shows that $P_{\varphi} \tilde{r}=f$ in the weak sense. The function $r=h^{2} \tilde{r}$ satisfies $e^{\varphi / h}(-\Delta+q) e^{-\varphi / h} r=f$ in Ω, and $\|r\| \leq C h\|f\|$.
It remains to show that $\left.\tilde{r}\right|_{\partial \Omega_{+}}=0$. For this we use the fact (stated in the lectures) that \tilde{r} is in the space $H_{\Delta}(\Omega)=\left\{u \in L^{2}(\Omega) ; \Delta u \in L^{2}(\Omega)\right\}$, and that there is a well defined bounded trace operator $H_{\Delta}(\Omega) \mapsto H^{-1 / 2}(\partial \Omega)$. An integration by parts (which can be justified by using properties of $\left.H_{\Delta}(\Omega)\right)$ gives for $v \in M$ that

$$
\left(v \mid P_{\varphi} \tilde{r}\right)-\left(P_{\varphi}^{*} v \mid \tilde{r}\right)=h^{2}\left(\partial_{\nu} v \mid \tilde{r}\right)_{\partial \Omega}
$$

The left hand side is $(v \mid f)-(v \mid f)=0$ and $\left.\partial_{\nu} v\right|_{\partial \Omega_{-}}=0$, which implies

$$
\left(\partial_{\nu} v \mid \tilde{r}\right)_{\partial \Omega_{+}}=0, \quad v \in M .
$$

Since we may choose $\partial_{\nu} v$ to be any smooth function in a slightly smaller set than $\partial \Omega_{+}$, we obtain $\left.\tilde{r}\right|_{\partial \Omega_{+}}=0$ as required.
6. Let $P_{0}=P_{0}(h D)=(h D)^{2}$ and $\varphi(x)=\alpha \cdot x$, and consider the convexified weight $\varphi_{\varepsilon}(x)=\varphi(x)+\frac{h}{\varepsilon} \frac{\varphi^{2}}{2}$. We first prove a Carleman estimate for the operator

$$
P_{0, \varphi_{\varepsilon}}=P_{0, \varphi_{\varepsilon}}(h D)=e^{\varphi_{\varepsilon} / h} P_{0}(h D) e^{-\varphi_{\varepsilon} / h}=P_{0}\left(h D+i \nabla \varphi_{\varepsilon}\right) .
$$

As in the proof of Theorem 5.3, we decompose $P_{0, \varphi_{\varepsilon}}=A_{\varepsilon}+i B_{\varepsilon}$ where $A_{\varepsilon}=(h D)^{2}-\left(\nabla \varphi_{\varepsilon}\right)^{2}$ and $B_{\varepsilon}=\nabla \varphi_{\varepsilon} \circ h D+h D \circ \nabla \varphi_{\varepsilon}$ are self-adjoint. Also, since $\nabla \varphi_{\varepsilon}=\left(1+\frac{h}{\varepsilon} \varphi\right) \alpha$, we have

$$
A_{\varepsilon}=(h D)^{2}-\left(1+\frac{h}{\varepsilon} \varphi\right)^{2}, \quad B_{\varepsilon}=2\left(1+\frac{h}{\varepsilon} \varphi\right) \alpha \cdot h D+\frac{h^{2}}{i \varepsilon} .
$$

If $u \in C_{c}^{\infty}(\Omega)$, we compute

$$
\left\|P_{0, \varphi_{\varepsilon}} u\right\|^{2}=\left\|A_{\varepsilon} u\right\|^{2}+\left\|B_{\varepsilon} u\right\|^{2}+\left(i\left[A_{\varepsilon}, B_{\varepsilon}\right] u \mid u\right) .
$$

Now A_{ε} and B_{ε} have variable coefficients and $\left[A_{\varepsilon}, B_{\varepsilon}\right]$ does not vanish. A direct computation shows that

$$
i\left[A_{\varepsilon}, B_{\varepsilon}\right]=\frac{4 h^{2}}{\varepsilon}\left(\sum_{j, k=1}^{n} \alpha_{j} \alpha_{k} h D_{j} h D_{k}+\left(1+\frac{h}{\varepsilon} \varphi\right)^{2}\right) .
$$

The inner product becomes

$$
\left(i\left[A_{\varepsilon}, B_{\varepsilon}\right] u \mid u\right)=\frac{4 h^{2}}{\varepsilon}\|\alpha \cdot h D u\|^{2}+\frac{4 h^{2}}{\varepsilon}\left\|\left(1+\frac{h}{\varepsilon} \varphi\right) u\right\|^{2} .
$$

Note that this expression is positive instead of zero. If ε is fixed and h is so small that $1+\frac{h}{\varepsilon} \varphi \geq 1 / 2$ for $x \in \bar{\Omega}$, we obtain

$$
\left\|P_{0, \varphi_{\varepsilon}} u\right\|^{2} \geq \frac{h^{2}}{\varepsilon}\|u\|^{2} .
$$

This is in a sense stronger than the result in Theorem 5.3, since we may choose ε to be very small (but fixed).

If $A \in L^{\infty}(\Omega)^{n}$ is a vector field and if $q \in L^{\infty}(\Omega)$, consider the operator $P_{\varphi_{\varepsilon}}:=e^{\varphi_{\varepsilon} / h} h^{2}(-\Delta+A \cdot D+q) e^{-\varphi_{\varepsilon} / h}=P_{0, \varphi_{\varepsilon}}+h A \cdot h D+i h A \cdot \nabla \varphi_{\varepsilon}+h^{2} q$.

We have

$$
\frac{h}{\sqrt{\varepsilon}}\|u\| \leq\left\|P_{0, \varphi_{\varepsilon}} u\right\| \leq\left\|P_{\varphi_{\varepsilon}} u\right\|+C h\|h D u\|+C h\|u\| .
$$

On the other hand, the argument in Exercise 4 gives

$$
\|h D u\| \leq\left\|P_{0, \varphi_{\varepsilon}} u\right\|+C\|u\| \leq\left\|P_{\varphi_{\varepsilon}} u\right\|+C h\|h D u\|+C\|u\|,
$$

which implies for h small that

$$
\|h D u\| \leq C\left\|P_{\varphi_{\varepsilon}} u\right\|+C\|u\| .
$$

If $h \ll \varepsilon \ll 1$, combining these estimates gives

$$
\frac{h}{\sqrt{\varepsilon}}(\|u\|+\|h D u\|) \leq C\left\|P_{\varphi_{\varepsilon}} u\right\| .
$$

It remains to prove an estimate for P_{φ} instead of $P_{\varphi_{\varepsilon}}$. But

$$
P_{\varphi_{\varepsilon}}=e^{\varphi^{2} / 2 \varepsilon} P_{\varphi} e^{-\varphi^{2} / 2 \varepsilon}
$$

where $e^{ \pm \varphi^{2} / 2 \varepsilon}$ is uniformly bounded in $\bar{\Omega}$ together with its derivatives. Thus the last Carleman estimate easily implies

$$
h(\|u\|+\|h D u\|) \leq C\left\|P_{\varphi} u\right\| .
$$

