Calderón problem

Exercises #2, 23.04.2008(return by 06.05.2008)

The exercises can be returned to me personally (room B414 or lectures), in my box at the mail room, or by email.

- 1. Let $f : \overline{\Omega} \to \mathbf{C}$ be continuous, where $\Omega \subseteq \mathbf{R}^n$ is bounded. Show that there is a modulus of continuity ω such that $|f(x) f(y)| \leq \omega(|x y|)$.
- 2. Assuming the claim in Ex. 3, determine $\Lambda_{\gamma} f$.
- 3. Let $\gamma \equiv 1$ in the unit disc $\mathbb{D} \subseteq \mathbb{R}^2$. Show that the solution in $H^1(\mathbb{D})$ to $\nabla \cdot \gamma \nabla u = 0$ in \mathbb{D} , with $u|_{\partial \mathbb{D}} = f \in H^{1/2}(\partial \mathbb{D})$, is given by

$$u(re^{i\theta}) = \sum_{k=-\infty}^{\infty} r^{|k|} \hat{f}(k) e^{ik\theta}.$$

Below, $q \in L^{\infty}(\Omega)$, and $\varphi(x) = \alpha \cdot x$ where α is a unit vector in \mathbb{R}^n .

4. (H^1 Carleman estimate) Show that there are C > 0 and $h_0 > 0$ such that for any h with $0 < h \le h_0$, one has

$$||u|| + ||hDu|| \le Ch||e^{\varphi/h}(-\Delta + q)e^{-\varphi/h}u||, \quad u \in C_c^{\infty}(\Omega).$$

5. (Solvability with vanishing data on part of boundary) Show that there are C > 0 and $h_0 > 0$ such that whenever $0 < h \le h_0$, the equation

$$\begin{cases} e^{\varphi/h}(-\Delta+q)e^{-\varphi/h}r = f & \text{in } \Omega, \\ r = 0 & \text{on } \partial\Omega_+, \end{cases}$$

has a solution $r \in L^2(\Omega)$ for any $f \in L^2(\Omega)$, with $||r|| \leq Ch||f||$. (Hint: use test functions which vanish, along with their normal derivative, on suitable parts of the boundary.)

6. (Large first order perturbations) Let $A = (A_1, \ldots, A_n) \in L^{\infty}(\Omega)^n$ be a vector field. Show that there are C > 0 and $h_0 > 0$ such that for any h with $0 < h \leq h_0$, one has

$$||u|| + ||hDu|| \le Ch ||e^{\varphi/h} (-\Delta + A \cdot \nabla + q)e^{-\varphi/h}u||, \quad u \in C_c^{\infty}(\Omega).$$

(Hint: use the convexified weight $\varphi_{\varepsilon} = \varphi + \frac{h}{\varepsilon} \frac{\varphi^2}{2}$, where $\varepsilon > 0$ is small but fixed.)