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Exercise 1

Let D ̸= C be a simply connected domain and let f : C → D be analytic.
Show that f is a constant function.

Solution:

Since D is simply connected, Theorem 4.19(Riemann mapping theorem)
ensure the existence of an analytic bijection g : D → B(0, 1). Then
g◦f : C → B(0, 1) is everywhere analytic(entire). By Liouville’s theorem
(Theorem 5.3.4 in the notesnotes from Complex analysis 1), g ◦ f is constant,
so g(f(z)) = g(f(w)) for all z, w ∈ C. Since g is a bijection, g(f(z)) =
g(f(w)) implies f(z) = f(w) so also f is constant. ■

Exercise 2

Show that F = {enz : n ≥ 1} is a normal family in G = {z : Re(z) < 0}
but not in any domain larger than G.

Solution:

As with many compactness questions in function spaces, we could use
Arzelà-Ascoli (Theorem 4.23). But it turns out to be easier to use Mon-
tel’s theorem (Theorem 4.25), which of course is using Arzelà-Ascoli
behind the scenes.

Let’s first show that G is the largest possible domain where F is
normal. By the “only if” part of Montel’s theorem, we see that F cannot
be normal if the family is unbounded. But for z with Re(z) > 0,

|enz| = enRe(z)
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which is unbounded in n ∈ N. So F cannot be normal in {Re(z) > 0}.
For z with Re(z) = 0 we instead have |enz| = 1 for all n, so we have do
deal with this set in a different manner. But by the definition of normal
families(Definition 4.22), the concept of normal family only make sense
on open sets(domains to be precise). So if F is normal on a set which
contains part of {Re(z) = 0} then it must by continuity also be normal
on at least a small subset of {Re(z) > 0} but we saw above that this is
not possible. So F cannot be normal on any set which intersects C \G.

To see that F is normal on G all we need to do is verify that F
is bounded on arbitrary compact subsets of G. Then the result follows
from Montel’s theorem. Let K be any such compact subset. Then we
have for any z ∈ K and n ∈ N that

|enz| = enRe(z) ≤ eRe(z).

SinceK is compact, there exist z0 ∈ K which maximizesK ∋ z 7→ eRe(z).
Then

|enz| ≤ eRe(z0)

and the result follows from Montel’s theorem. ■

Exercise 3

Let D ⊂ C be an unbounded simply connected domain. Without using
the Riemann mapping theorem, show thatD can be conformally mapped
onto a bounded domain if

i) C \D contains a ball, or

ii) D ̸= C.

Solution:

We start with part i)i), so let z0 ∈ C \ D and r0 > 0 be such that
B(z0, r0) ⊂ C \D. Then |z − z0| ≥ r0 for all z ∈ D and it follows that
f(z) := 1

z−z0
maps D to B(0, 1

r0
). So f maps D to a bounded set and f

is analytic in D since z0 ̸∈ D. Furthermore, f is conformal(by Theorem
4.4) since f ′(z) = − 1

(z−z0)2
̸= 0 in D. So f maps D conformally to a

bounded set.
Now let’s prove part ii)ii), and we first show that we may without

loss of generality assume that 0 ̸∈ D. Let z0 ∈ C \ D be arbitrary
and define f(z) = z − z0. Then f is conformal since it is analytic and
f ′(z) ̸= 0. f therefore maps D conformally onto the set f(D) which
contains 0 = f(z0). So the case 0 ̸= z0 ∈ C \ D is reduced to the case

2



0 ∈ C \D and we may therefore assume without loss of generality that
0 ∈ C \D.

Assume that 0 ̸∈ D. I want to find an analytic branch of the square
root in D. Let h(z) = z2. Then h is conformal in D since it is analytic
and h′(z) ̸= 0 in D. Then the image h(D) is simply connected, by
Theorem 4.20. Since h(D) is simply connected and does not contain 0,
Theorem 1.15 ensures existence of an analytic branch of the logarithm
in h(D), that is, there exist

Logh(D) : h(D) → C

which is analytic and satisfies

eLogh(D)(z) = z ∀z ∈ h(D).

Then
g(z) := e

1
2
Logh(D)(z)

is an analytic function satisfying

g(z)2 = z ∀z ∈ h(D).

That is, g : h(D) → C is an analytic branch of the square root. Also
note that g′(z) ̸= 0, since both exponential and logarithm have nonzero
derivatives, which implies that g is conformal. Now g◦h maps D confor-
mally to g(h(D)). If C \ g(h(D)) contains a ball then we’re done, after
invoking part i)i).

Now let w ∈ g(h(D)) be any nonzero element. I want to conclude
that −w ̸∈ g(h(D)). Suppose to the contrary that −w ∈ g(h(D)). Then
there exist unique zw, z−w ∈ h(D) such that

g(zw) = w

g(zw)
2 = zw,

and
g(z−w) = −w

g(z−w)
2 = z−w.

But from this we get

zw = g(zw)
2 = w2 = (−w)2 = g(z−w)

2 = z−w.

This in turn gives

−w = g(z−w) = g(zw) = w,
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which contradicts w ̸= 0. So we conclude that if w ∈ g(h(D)) is nonzero
then −w ̸∈ g(h(D)). Since g(h(D)) is open, there exist a ball B(z0, r) ⊆
g(h(D)) around any z0 ∈ g(h(D)). Then B(−z0, r) ̸⊆ g(h(D)). In other
words, B(−z0, r) ⊆ C \ g(h(D)). So g ◦ h maps D conformally into a
set whose complement contains a ball. By composing g ◦ h with the
conformal map in part i)i) we can conformally map D into a bounded set.

■

Exercise 4

Fix a ∈ B(0, 1) and let φa : B(0, 1) → C, φa(z) =
z−a
1−āz . Prove that

φa(B(0, 1)) ⊂ B(0, 1).

Moreover, prove that φa : B(0, 1) → B(0, 1) is a conformal bijection
whose inverse function is φ−1

a (z) = φ−a(z).

Solution:

Proving that φa(B(0, 1)) ⊆ B(0, 1) was done in Exercise 6 in the first ex-
ercises in Complex analysis 1, see the model solutionsmodel solutions. Theorem 5.16(with
λ = 1 and z0 = a) says that φa is a conformal bijection. So we only need
to verify that φ−1

a = φ−a:

φa(φ−a(z)) =
φ−a(z)− a

1− āφ−a(z)

=
z+a
1+āz − a

1− ā z+a
1+āz

=
z + a− a− |a|2z
1 + āz − āz − |a|2

=
z − |a|2z
1− |a|2

= z.

■
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Exercise 5

Find the image of the upper half plane {z ∈ C : Im(z) ≥ 0}∪{∞} under
the Möbius transformation f(z) = z−i

z+i .

Solution:

Let’s write as in Theorem 5.6,

f(z) = −2i
1

z + i
+ 1.

Note that the map reiθ = z 7→ 1
z = r−1e−iθ reflects a points across

the real axis and inverts the modulus. So z 7→ 1
z+i first shift along the

imaginary axis, then reflects across the real axis and inverts the modulus.
Also, z 7→ −2iz rotates 90◦ clockwise and then doubles the modulus.

Doing this step-by-step we first map {Im(z) ≥ 0} under z 7→ z + i,

{Im(z) ≥ 0} 7→ {Im(z) ≥ 1}.

Finding the image of {Im(z) ≥ 1} under z 7→ 1
z turns out to not be

so easy by using the above intuition of first reflecting across the real
axis and then inverting the modulus. Instead we can try to inspect the
proof of Theorem 5.7 to figure out what this image look like. Note that
{Im(z) ≥ 1} =

⋃
R≥1{Im(z) = R} and {Im(z) = R} is a horizontal

line in the complex plane(or a generalized circle in the language of the
extended complex plane). The condition Im(z) = R is equivalent to

i

2
(z̄ − z) = R,

and by setting B = − i
2 this reads

Bz + B̄z̄ −R = 0,

which according to the proof of theorem 5.7 is the equation of a straight
line in the complex plane. In the proof it’s concluded that a line as the
above is mapped by z 7→ 1

z to a circle centered at

− B

−R
= −−i/2

−R
= − i

2R

and radius
|B|
|R|

=
1

2R
.
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In other words, z 7→ 1
z maps {Im(z) = R} to B(− i

2R ,
1
2R) and the image

of {Im(z) ≥ 1} is
⋃

R≥1B(− i
2R ,

1
2R) = B(− i

2 ,
1
2) \ {0},

Next we rotate 90◦ and double the modulus, z 7→ −2iz

B(− i

2
,
1

2
) \ {0} 7→ B(−1, 1) \ {0}

and finally shift along the real axis, z 7→ z + 1

B(−1, 1) \ {0} 7→ B(0, 1) \ {1}.

Finally, f(∞) = 1, so the image of {Im(z) ≥ 0} ∪ {∞} is B(0, 1). ■

Exercise 6

Find the images of the following sets under the Möbius transformation
f(z) = z+1

z :

1. the imaginary axis,

2. the right half plane {z : Re(z) > 0},

3. the unit circle ∂B(0, 1),

4. the unit disk B(0, 1).

Solution:

First note that the map reiθ = z 7→ 1
z = r−1e−iθ reflects a points across

the real axis and then inverts the modulus. So the function

f(z) =
z + 1

z
=

1

z
+ 1

first reflects across the real axis, then inverts the modulus and finally
shifts along the real axis. So we get the following images

1. {1 + iy : y ∈ R},

2. {z : Re(z) > 1},

3. ∂B(1, 1),

4. C \B(1, 1).

■
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