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Exercise 1

Find the poles of f(z) = z2+1
(z2−4)(z4−1)

and determine the corresponding

residues.

Solution:

By factorizing the polynomials we have

f(z) =
z2 + 1

(z + 2)(z − 2)(z2 + 1)(z + 1)(z − 1)
.

From this we see that the singular points are ±2,±1,±i. Since, for z0 =
±i, limz→z0(z − z0)f(z) = 0, z0 = ±i are removable singularities by
Theorem 3.4.

The remaining singularities are poles of order 1. Note that the func-
tions

g−2(z) =
z2 + 1

(z − 2)(z2 + 1)(z + 1)(z − 1)

g2(z) =
z2 + 1

(z − 2)(z2 + 1)(z + 1)(z − 1)

g−1(z) =
z2 + 1

(z − 2)(z2 + 1)(z + 1)(z − 1)

g1(z) =
z2 + 1

(z − 2)(z2 + 1)(z + 1)(z − 1)

are analytic in some neighborhood of −2,2,−1 and 1 respectively. The
it follows from Theorem 3.6 that z0 ∈ {−2, 2,−1, 1} are poles or order 1
since we can write

f(z) =
1

z − z0
gz0(z).
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As noted in Remark 3.7, we can use gz0 to compute the residue at z0,

Res(f,−2) = g−2(−2) = −
1

12

Res(f, 2) = g2(2) =
1

12

Res(f,−1) = g−1(−1) =
1

6

Res(f, 1) = g1(1) = −
1

6

■

Exercise 2

Let f(z) be as in Exercise 11. Evaluate
∫
γ f(z) dz when γr(t) = reit,

0 ≤ t ≤ 2π, and r takes the values 1/2, 3/2, and 5/2.

Solution:

First note that the paths are null-homologous and that we have the
following winding numbers

η(γ1/2, z0) = 0, z0 ∈ {±1,±2}
η(γ3/2, 1) = η(γ3/2,−1) = 1

η(γ3/2, 2) = η(γ3/2,−2) = 0

η(γ5/2, z0) = 1, z0 ∈ {±1,±2}.

Then it follows from the residue theorem(Theorem 3.12), using the
residues calculated in Exercise 11, that∫

γ1/2

f(z) dz =

∫
γ3/2

f(z) dz =

∫
γ5/2

f(z) dz = 0.

■

Exercise 3

Apply the residue theorem to evaluate
∫∞
−∞

1
x2+x+1

dx.

Solution:

With the path γr(t) = reit, 0 ≤ t ≤ π, r > 0, define the closed path
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σr = [−r, r] ∗ γr. Then we can write∫ ∞

−∞

1

x2 + x+ 1
dx = lim

r→∞

∫ r

−r

1

x2 + x+ 1
dx

= lim
r→∞

∫
σr

1

z2 + z + 1
dz −

∫
γr

1

z2 + z + 1
dz,

(1)

provided all involved integrals exist. The integral over σr can be com-
puted using the residue theorem and the integral over γr can be shown
to converge to 0 as r →∞.

To apply the residue theorem, let’s first find the poles. We have

1

z2 + z + 1
=

1

z − −1+
√
3i

2

1

z − −1−
√
3i

2

.

From Theorem 3.6 we get that −1±
√
3i

2 are poles of order 1 and the

residue at −1+
√
3i

2 is − i√
3
. For large enough r > 0, −1+

√
3i

2 is inside σr

so the winding number n(σr,
−1+

√
3i

2 ) = 1 and −1−
√
3i

2 is always outside

σr so its winding number is 0, n(σr,
−1−

√
3i

2 ) = 0. We now get from the
residue theorem(Theorem 3.12) that∫

σr

1

z2 + z + 1
dz = 2πi

−i√
3
=

2π√
3
. (2)

To deal with the integral over γr, first note that∣∣∣∣∫
γr

1

z2 + z + 1
dz

∣∣∣∣ ≤ ∫
γr

1

|z2 + z + 1|
d|z|.

From the reverse triangle inequality(|∥a∥ − ∥b∥| ≤ ∥a ± b∥) followed by
the triangle inequality we get

1

|z2 + z + 1|
≤ 1

|z|2 − |z + 1|
≤ 1

|z|2 − |z| − 1
.

Now we have ∣∣∣∣∫
γr

1

z2 + z + 1
dz

∣∣∣∣ ≤ ∫
γr

1

|z|2 − |z| − 1
d|z|

=

∫ π

0

r

r2 − r − 1
dt

=
π

r − 1− 1
r

.
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From this we see that

lim
r→∞

∫
γr

1

z2 + z + 1
dz = 0. (3)

From (11),(22) and (33) we conclude that∫ ∞

−∞

1

x2 + x+ 1
dx =

2π√
3
.

■

Exercise 4

Apply the residue theorem to evaluate
∫ 2π
0

1
2−sin(t) dt.

Solution:

By using the path γ(t) = eit, 0 ≤ t ≤ 2π and sin(t) = eit−e−it

2i we have

1

2− sin(t)
=

1

2− eit−e−it

2i

=
γ′(t)

iγ(t)
(
2− γ(t)−γ(t)−1

2i

)
and this allow us to transform the integral into a complex path integral:∫ 2π

0

1

2− sin(t)
dt =

∫ 2π

0

γ′(t)

iγ(t)
(
2− γ(t)−γ(t)−1

2i

) dt
=

∫
γ

1

iz
(
2− z−z−1

2i

) dz
=

∫
γ

−2
(z − (2−

√
3)i)(z − (2 +

√
3)i)

dz.

Using Theorem 3.6 we find that (2 −
√
3)i is a pole of order 1 and

the residue of the integrand in this pole is − i√
3
(again calculated as in

Remark 3.7). From the residue theorem we now get that∫ 2π

0

1

2− sin(t)
dt =

2π√
3
.

■
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Exercise 5

Let f be analytic in a domain that contains A = {1 ≤ |z| ≤ 2}. Assume
that f(z) ̸= 0 whenever z ∈ S1 = ∂B(0, 1) or z ∈ S2 = ∂B(0, 2). Prove
that

1

2π

∫
S2

f ′(z)

f(z)
dz − 1

2π

∫
S1

f ′(z)

f(z)
dz

is equal to the sum of the orders of the zeros of f in A.

Solution:

By the exercise assumption, there exist a domain D which contains A.
Since f is analytic in D the any accumulation points of the set of zeros
must be on the boundary ∂D, by Theorem 2.22. A doesn’t intersect ∂D
sinceA is a closed subset and it follows thatA can contain at most finitely
many zeros of f . By a similar reasoning, there exist a neighborhood B
of A which contains only the zeros of f which belong to A.

Next consider the paths γ2 = 2eit, γ1 = eit for 0 ≤ t ≤ 2π. For both
of these paths we have the winding number 1 at the origin

n(γ1, 0) = n(γ2, 0) = 1.

Hence the cycle σ = (←−γ1, γ2) is nullhomologous inB. Next let a1, . . . , aN ∈
A be all zeros of f in A and let k1, . . . , kN be the corresponding multi-
plicities. Then we can now apply the argument principle(Theorem 4.5)
to coclude that

1

2πi

∫
σ

f ′(z)

f(z)
dz =

N∑
j=1

kjn(σ, aj)

If we write the integral as two integrals over γ1, γ2 and use n(σ, aj) = 1
then we get

1

2πi

∫
γ2

f ′(z)

f(z)
dz − 1

2πi

∫
γ1

f ′(z)

f(z)
dz =

N∑
j=1

kj .

■

Exercise 6

Let D be a domain, and suppose that fj , j ≥ 1, are analytic injections
converging locally uniformly in D to a function f . Prove that f is either
a constant function or injective in D.
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Solution:

Let w ∈ D and define the sequence

gj(z) = fj(z)− fj(w).

Clearly gj is analytic in D and it converges locally uniformly to f(z)−
f(w). Since fj is injective, we know that gj(z) ̸= 0 for z ∈ D\{w}. Now
we get from Hurvitz’s theorem(Theorem 4.9) that either

g(z) = 0, ∀z ∈ D \ {w}

or
g(z) ̸= 0, ∀z ∈ D \ {w}.

In the former case we conclude that f is constant(equal to f(w) for all
z ∈ D) and in the latter that f is injective(since w is arbitrary). ■

6


