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EXERCISE 1

Find the poles of f(z) = % and determine the corresponding
residues.

SOLUTION:

By factorizing the polynomials we have
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f(z) =

From this we see that the singular points are +2,41,44. Since, for zg =
+i, lim,,,,(z — 20)f(2) = 0, 290 = i are removable singularities by
Theorem 3.4.

The remaining singularities are poles of order 1. Note that the func-
tions
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g1(z) = (z—2)(22+ 1)(z+1)(z — 1)

are analytic in some neighborhood of —2,2,—1 and 1 respectively. The
it follows from Theorem 3.6 that zp € {—2,2,—1,1} are poles or order 1

since we can write ]

f(z) = gzo(z)'
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As noted in Remark 3.7, we can use g,, to compute the residue at 2,

Res(f, ~2) = g2(~2) = o
Res(/f,2) = 02(2) = 15

Res(f,1) = 1(1) = —

EXERCISE 2

Let f(z) be as in Exercise 1. Evaluate [ f(2)dz when 7 (t) = re,
0 <t < 2m, and r takes the values 1/2, 3/2, and 5/2.

SOLUTION:

First note that the paths are null-homologous and that we have the
following winding numbers

n(71/2: 20) = 0, 20 € {£1,42}
n(y372:1) = (372, —1) =1
n(¥3/2,2) = n(7v3/2,—2) =0
(7572 20) = 1, 20 € {£1,£2}.

Then it follows from the residue theorem(Theorem 3.12), using the
residues calculated in Exercise 1, that

(2)dz = (2)dz = / f(z)dz=0.
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EXERCISE 3

Apply the residue theorem to evaluate ffooo m dx.

SOLUTION:

With the path 7,.(t) = re®®, 0 < t < 7w, r > 0, define the closed path



oy = [=r,7] *,. Then we can write
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/ — dr = lim ——dx
o T2tz +1 r—oo | . x?2+x+1 .
' 1 1 (1)
= lim ——dz — ——dz,
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provided all involved integrals exist. The integral over o, can be com-
puted using the residue theorem and the integral over ~, can be shown

to converge to 0 as 7 — oo.
To apply the residue theorem, let’s first find the poles. We have
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From Theorem 3.6 we get that %\/51

—14+/3i
2

are poles of order 1 and the
—%. For large enough r > 0, M
_1‘;\/31) =1 and =15 ‘[’
—1— \fz)

residue at is is inside o

so the winding number n(oy, is always outside

o, 8o its winding number is 0, n(o, 0. We now get from the

residue theorem(Theorem 3.12) that
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To deal with the integral over -, first note that

z2+z+1 ‘ /\2+ + 1] Il

From the reverse triangle inequality(|||a|| — ||b]|| < ||a £ b||) followed by
the triangle inequality we get
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Now we have




From this we see that

1
lim | ——dz=0. (3)
r—oo . 22 + 241

From (1),(2) and (3) we conclude that
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EXERCISE 4

Apply the residue theorem to evaluate fo% ﬁn(t) dt.

SOLUTION:

By using the path v(t) = e, 0 < t < 27 and sin(t) = ¢~ we have
y g Y 2
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2—sin(t) 2 &= i (t)(2 - %)

and this allow us to transform the integral into a complex path integral:

21 2m /
[han [ A0,
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Using Theorem 3.6 we find that (2 — v/3)i is a pole of order 1 and
the residue of the integrand in this pole is —ﬁ(again calculated as in
Remark 3.7). From the residue theorem we now get that

/27f 1 21
——dt = —.
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EXERCISE 5

Let f be analytic in a domain that contains A = {1 < |z| < 2}. Assume
that f(z) # 0 whenever z € S§; = 0B(0,1) or z € So = 0B(0,2). Prove

that
1 rE, 1P,
2n Js, f(2) 2m Js, f(2)

is equal to the sum of the orders of the zeros of f in A.

SOLUTION:

By the exercise assumption, there exist a domain D which contains A.
Since f is analytic in D the any accumulation points of the set of zeros
must be on the boundary dD, by Theorem 2.22. A doesn’t intersect 0D
since A is a closed subset and it follows that A can contain at most finitely
many zeros of f. By a similar reasoning, there exist a neighborhood B
of A which contains only the zeros of f which belong to A.

Next consider the paths v, = 2e%, v = €' for 0 < t < 2. For both
of these paths we have the winding number 1 at the origin

n(1,0) = n(y2,0) = 1.

Hence the cycle o = (*‘H ,72) is nullhomologous in B. Next let aj,...,an €
A be all zeros of f in A and let kq,...,kn be the corresponding multi-
plicities. Then we can now apply the argument principle(Theorem 4.5)
to coclude that N
1 [ f'()
el e = . .
omi ). 7o) z Z in(o,aj)

i=1

If we write the integral as two integrals over 71,72 and use n(o,a;) =1
then we get

N

1fre, 1 e, N
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EXERCISE 6

Let D be a domain, and suppose that f;, j > 1, are analytic injections
converging locally uniformly in D to a function f. Prove that f is either
a constant function or injective in D.



SOLUTION:

Let w € D and define the sequence

9i(2) = fj(2) = f;(w).

Clearly g; is analytic in D and it converges locally uniformly to f(z) —
f(w). Since f; is injective, we know that g;(z) # 0 for z € D\ {w}. Now
we get from Hurvitz’s theorem(Theorem 4.9) that either

g9(z) =0, VzeD\{w}

9(2) #0, Vze D\ {w}.

In the former case we conclude that f is constant(equal to f(w) for all
z € D) and in the latter that f is injective(since w is arbitrary).



