Complex analysis 2

Exercises 5

David Johansson

May 6, 2024

Exercise 1

Find the poles of $f(z)=\frac{z^{2}+1}{\left(z^{2}-4\right)\left(z^{4}-1\right)}$ and determine the corresponding residues.

Solution:

By factorizing the polynomials we have

$$
f(z)=\frac{z^{2}+1}{(z+2)(z-2)\left(z^{2}+1\right)(z+1)(z-1)} .
$$

From this we see that the singular points are $\pm 2, \pm 1, \pm i$. Since, for $z_{0}=$ $\pm i, \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0, z_{0}= \pm i$ are removable singularities by Theorem 3.4.

The remaining singularities are poles of order 1 . Note that the functions

$$
\begin{aligned}
g_{-2}(z) & =\frac{z^{2}+1}{(z-2)\left(z^{2}+1\right)(z+1)(z-1)} \\
g_{2}(z) & =\frac{z^{2}+1}{(z-2)\left(z^{2}+1\right)(z+1)(z-1)} \\
g_{-1}(z) & =\frac{z^{2}+1}{(z-2)\left(z^{2}+1\right)(z+1)(z-1)} \\
g_{1}(z) & =\frac{z^{2}+1}{(z-2)\left(z^{2}+1\right)(z+1)(z-1)}
\end{aligned}
$$

are analytic in some neighborhood of $-2,2,-1$ and 1 respectively. The it follows from Theorem 3.6 that $z_{0} \in\{-2,2,-1,1\}$ are poles or order 1 since we can write

$$
f(z)=\frac{1}{z-z_{0}} g_{z_{0}}(z) .
$$

As noted in Remark 3.7, we can use $g_{z_{0}}$ to compute the residue at z_{0},

$$
\begin{aligned}
& \operatorname{Res}(f,-2)=g_{-2}(-2)=-\frac{1}{12} \\
& \operatorname{Res}(f, 2)=g_{2}(2)=\frac{1}{12} \\
& \operatorname{Res}(f,-1)=g_{-1}(-1)=\frac{1}{6} \\
& \operatorname{Res}(f, 1)=g_{1}(1)=-\frac{1}{6}
\end{aligned}
$$

Exercise 2

Let $f(z)$ be as in Exercise 1. Evaluate $\int_{\gamma} f(z) d z$ when $\gamma_{r}(t)=r e^{i t}$, $0 \leq t \leq 2 \pi$, and r takes the values $1 / 2,3 / 2$, and $5 / 2$.

Solution:

First note that the paths are null-homologous and that we have the following winding numbers

$$
\begin{array}{ll}
\eta\left(\gamma_{1 / 2}, z_{0}\right)=0, & z_{0} \in\{ \pm 1, \pm 2\} \\
\eta\left(\gamma_{3 / 2}, 1\right)=\eta\left(\gamma_{3 / 2},-1\right)=1 & \\
\eta\left(\gamma_{3 / 2}, 2\right)=\eta\left(\gamma_{3 / 2},-2\right)=0 & \\
\eta\left(\gamma_{5 / 2}, z_{0}\right)=1, & z_{0} \in\{ \pm 1, \pm 2\}
\end{array}
$$

Then it follows from the residue theorem(Theorem 3.12), using the residues calculated in Exercise 1, that

$$
\int_{\gamma_{1 / 2}} f(z) d z=\int_{\gamma_{3 / 2}} f(z) d z=\int_{\gamma_{5 / 2}} f(z) d z=0
$$

ExERCISE 3

Apply the residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{1}{x^{2}+x+1} d x$.

Solution:

With the path $\gamma_{r}(t)=r e^{i t}, 0 \leq t \leq \pi, r>0$, define the closed path
$\sigma_{r}=[-r, r] * \gamma_{r}$. Then we can write

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{1}{x^{2}+x+1} d x & =\lim _{r \rightarrow \infty} \int_{-r}^{r} \frac{1}{x^{2}+x+1} d x \\
& =\lim _{r \rightarrow \infty} \int_{\sigma_{r}} \frac{1}{z^{2}+z+1} d z-\int_{\gamma_{r}} \frac{1}{z^{2}+z+1} d z \tag{1}
\end{align*}
$$

provided all involved integrals exist. The integral over σ_{r} can be computed using the residue theorem and the integral over γ_{r} can be shown to converge to 0 as $r \rightarrow \infty$.

To apply the residue theorem, let's first find the poles. We have

$$
\frac{1}{z^{2}+z+1}=\frac{1}{z-\frac{-1+\sqrt{3} i}{2}} \frac{1}{z-\frac{-1-\sqrt{3} i}{2}}
$$

From Theorem 3.6 we get that $\frac{-1 \pm \sqrt{3} i}{2}$ are poles of order 1 and the residue at $\frac{-1+\sqrt{3} i}{2}$ is $-\frac{i}{\sqrt{3}}$. For large enough $r>0, \frac{-1+\sqrt{3} i}{2}$ is inside σ_{r} so the winding number $n\left(\sigma_{r}, \frac{-1+\sqrt{3} i}{2}\right)=1$ and $\frac{-1-\sqrt{3} i}{2}$ is always outside σ_{r} so its winding number is $0, n\left(\sigma_{r}, \frac{-1-\sqrt{3} i}{2}\right)=0$. We now get from the residue theorem(Theorem 3.12) that

$$
\begin{equation*}
\int_{\sigma_{r}} \frac{1}{z^{2}+z+1} d z=2 \pi i \frac{-i}{\sqrt{3}}=\frac{2 \pi}{\sqrt{3}} \tag{2}
\end{equation*}
$$

To deal with the integral over γ_{r}, first note that

$$
\left|\int_{\gamma_{r}} \frac{1}{z^{2}+z+1} d z\right| \leq \int_{\gamma_{r}} \frac{1}{\left|z^{2}+z+1\right|} d|z|
$$

From the reverse triangle inequality $(\mid\|a\|-\|b\|\|\leq\| a \pm b \|)$ followed by the triangle inequality we get

$$
\frac{1}{\left|z^{2}+z+1\right|} \leq \frac{1}{|z|^{2}-|z+1|} \leq \frac{1}{|z|^{2}-|z|-1}
$$

Now we have

$$
\begin{aligned}
\left|\int_{\gamma_{r}} \frac{1}{z^{2}+z+1} d z\right| & \leq \int_{\gamma_{r}} \frac{1}{|z|^{2}-|z|-1} d|z| \\
& =\int_{0}^{\pi} \frac{r}{r^{2}-r-1} d t \\
& =\frac{\pi}{r-1-\frac{1}{r}}
\end{aligned}
$$

From this we see that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \int_{\gamma_{r}} \frac{1}{z^{2}+z+1} d z=0 \tag{3}
\end{equation*}
$$

From (1),(2) and (3) we conclude that

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+x+1} d x=\frac{2 \pi}{\sqrt{3}}
$$

ExERCISE 4

Apply the residue theorem to evaluate $\int_{0}^{2 \pi} \frac{1}{2-\sin (t)} d t$.

Solution:

By using the path $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$ and $\sin (t)=\frac{e^{i t}-e^{-i t}}{2 i}$ we have

$$
\frac{1}{2-\sin (t)}=\frac{1}{2-\frac{e^{i t}-e^{-i t}}{2 i}}=\frac{\gamma^{\prime}(t)}{i \gamma(t)\left(2-\frac{\gamma(t)-\gamma(t)^{-1}}{2 i}\right)}
$$

and this allow us to transform the integral into a complex path integral:

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{1}{2-\sin (t)} d t & =\int_{0}^{2 \pi} \frac{\gamma^{\prime}(t)}{i \gamma(t)\left(2-\frac{\gamma(t)-\gamma(t)^{-1}}{2 i}\right)} d t \\
& =\int_{\gamma} \frac{1}{i z\left(2-\frac{z-z^{-1}}{2 i}\right)} d z \\
& =\int_{\gamma} \frac{-2}{(z-(2-\sqrt{3}) i)(z-(2+\sqrt{3}) i)} d z
\end{aligned}
$$

Using Theorem 3.6 we find that $(2-\sqrt{3}) i$ is a pole of order 1 and the residue of the integrand in this pole is $-\frac{i}{\sqrt{3}}$ (again calculated as in Remark 3.7). From the residue theorem we now get that

$$
\int_{0}^{2 \pi} \frac{1}{2-\sin (t)} d t=\frac{2 \pi}{\sqrt{3}}
$$

Exercise 5

Let f be analytic in a domain that contains $A=\{1 \leq|z| \leq 2\}$. Assume that $f(z) \neq 0$ whenever $z \in S_{1}=\partial B(0,1)$ or $z \in S_{2}=\partial B(0,2)$. Prove that

$$
\frac{1}{2 \pi} \int_{S_{2}} \frac{f^{\prime}(z)}{f(z)} d z-\frac{1}{2 \pi} \int_{S_{1}} \frac{f^{\prime}(z)}{f(z)} d z
$$

is equal to the sum of the orders of the zeros of f in A.

Solution:

By the exercise assumption, there exist a domain D which contains A. Since f is analytic in D the any accumulation points of the set of zeros must be on the boundary ∂D, by Theorem 2.22 . A doesn't intersect ∂D since A is a closed subset and it follows that A can contain at most finitely many zeros of f. By a similar reasoning, there exist a neighborhood B of A which contains only the zeros of f which belong to A.

Next consider the paths $\gamma_{2}=2 e^{i t}, \gamma_{1}=e^{i t}$ for $0 \leq t \leq 2 \pi$. For both of these paths we have the winding number 1 at the origin

$$
n\left(\gamma_{1}, 0\right)=n\left(\gamma_{2}, 0\right)=1 .
$$

Hence the cycle $\sigma=\left(\overleftarrow{\gamma_{1}}, \gamma_{2}\right)$ is nullhomologous in B. Next let $a_{1}, \ldots, a_{N} \in$ A be all zeros of f in A and let k_{1}, \ldots, k_{N} be the corresponding multiplicities. Then we can now apply the argument principle(Theorem 4.5) to coclude that

$$
\frac{1}{2 \pi i} \int_{\sigma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{N} k_{j} n\left(\sigma, a_{j}\right)
$$

If we write the integral as two integrals over γ_{1}, γ_{2} and use $n\left(\sigma, a_{j}\right)=1$ then we get

$$
\frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f^{\prime}(z)}{f(z)} d z-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{N} k_{j} .
$$

Exercise 6

Let D be a domain, and suppose that $f_{j}, j \geq 1$, are analytic injections converging locally uniformly in D to a function f. Prove that f is either a constant function or injective in D.

Solution:

Let $w \in D$ and define the sequence

$$
g_{j}(z)=f_{j}(z)-f_{j}(w) .
$$

Clearly g_{j} is analytic in D and it converges locally uniformly to $f(z)-$ $f(w)$. Since f_{j} is injective, we know that $g_{j}(z) \neq 0$ for $z \in D \backslash\{w\}$. Now we get from Hurvitz's theorem(Theorem 4.9) that either

$$
g(z)=0, \quad \forall z \in D \backslash\{w\}
$$

or

$$
g(z) \neq 0, \quad \forall z \in D \backslash\{w\} .
$$

In the former case we conclude that f is constant(equal to $f(w)$ for all $z \in D)$ and in the latter that f is injective(since w is arbitrary).

