Complex analysis 2

Exercises 4

David Johansson

April 26, 2024

Exercise 1

Determine the Laurent series representation of $f(z)=\frac{1}{z(1-z)}$ in the sets

1. $0<|z|<1$,
2. $1<|z|<\infty$.

Solution:

When $|z|<1$ we have $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ and the convergence is absolute. So for $0<|z|<1$ in 1 we have

$$
f(z)=\frac{1}{z} \sum_{n=0}^{\infty} z^{n}=\sum_{n=0}^{\infty} z^{n-1}=\frac{1}{z}+1+z+z^{2}+\ldots
$$

For part 2, let $w=\frac{1}{z}$. Then $|w|<1$ and

$$
\frac{1}{1-w}=\frac{-z}{1-z}
$$

so we can write

$$
\begin{aligned}
f(z) & =-\frac{1}{z^{2}} \cdot \frac{-z}{1-z}=-w^{2} \frac{1}{1-w}=-w^{2} \sum_{n=0}^{\infty} w^{n} \\
& =-\sum_{n=0} \frac{1}{z^{n+2}}=-\frac{1}{z^{2}}-\frac{1}{z^{3}}-\frac{1}{z^{4}}-\ldots
\end{aligned}
$$

ExERCISE 2

Determine the Laurent series representation of $f(z)=\frac{1}{(z-1)(z-2)}$ in the sets

1. $|z|<1$,
2. $1<|z|<2$,
3. $|z|>2$.

Solution:

By partial fractions we can write

$$
f(z)=\frac{1}{1-z}-\frac{1}{2} \frac{1}{1-\frac{z}{2}}
$$

In part 1 both $|z|<1$ and $|z / 2|<1$, so we get

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}, \quad \frac{1}{1-\frac{z}{2}}=\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}}
$$

and we get

$$
f(z)=\sum_{n=0}^{\infty}\left(1-\frac{1}{2^{n+1}}\right) z^{n}
$$

In part 2 we set $w=\frac{1}{z}$ to get $|w|<1$ and get as in the previous exercise that

$$
\frac{1}{1-z}=-w \frac{1}{1-w}=-w \sum_{n=0}^{\infty} w^{n}=-\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}
$$

and conclude that

$$
f(z)=-\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} z^{n}-\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}
$$

In part 3 we still have

$$
\frac{1}{1-z}=-\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}
$$

and to deal with the other term we set $w=\frac{2}{z}$ to get $|w|<1$ and

$$
\frac{1}{1-\frac{z}{2}}=-w \frac{1}{1-w}=-\frac{2}{z} \sum_{n=0}^{\infty} \frac{2^{n}}{z^{n}}
$$

and conclude that

$$
f(z)=-\sum_{n=0}^{\infty} \frac{1+2^{n+1}}{z^{n+1}}
$$

ExERCISE 3

Determine the Laurent series representation of $f(z)=\frac{\sin (\pi z)}{(z-1)^{3}}$ in the set $0<|z-1|<\infty$.

Solution:

The Taylor series of $\sin (\pi z)$ around $z_{0}=1$ is

$$
\sin (\pi z)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2 n+1}}{(2 n+1)!}(z-1)^{2 n+1}
$$

so we get

$$
\begin{aligned}
f(z) & =\frac{1}{(z-1)^{3}} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2 n+1}}{(2 n+1)!}(z-1)^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2 n+1}}{(2 n+1)!}(z-1)^{2(n-1)} \\
& =-\frac{\pi}{(z-1)^{2}}+\frac{\pi^{3}}{3!}-\frac{\pi^{5}}{5!}(z-1)+\frac{\pi^{7}}{7!}(z-1)^{2}-\frac{\pi^{9}}{9!}(z-1)^{3}+\ldots
\end{aligned}
$$

Exercise 4

What type of singularity do the following functions have at $z=0$?

1. $\frac{z}{\sin (z)}$
2. $\frac{\cos (z)}{z\left(z^{2}-1\right)}$
3. $\frac{1}{1-\cos (z)}$
4. $e^{-\frac{1}{z^{2}}}$

Solution:

For part 1 we can use Riemann's removable singularity theorem on the function. Using a Taylor series, we have

$$
z \frac{z}{\sin (z)}=z \frac{1}{1+\sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k+1)!}} \rightarrow 0 \text { as } z \rightarrow 0
$$

so 0 is a removable singularity.
In part 2 we don't have a removable singularity, because

$$
z \frac{\cos (z)}{z\left(z^{2}-1\right)}=\frac{\cos (z)}{\left(z^{2}-1\right)} \rightarrow-1 \text { as } z \rightarrow 0
$$

But since $\frac{\cos (z)}{\left(z^{2}-1\right)}$ is analytic away from ± 1, Theorem 3.6 says that 0 is a pole of order 1 of $\frac{\cos (z)}{z\left(z^{2}-1\right)}$.

In part 3 we have by using Taylor expansion that

$$
\begin{aligned}
\frac{1}{1-\cos (z)} & =\frac{1}{\sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}}=\frac{1}{z^{2}} \frac{1}{\sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2(k-1)}}{(2 k)!}} \\
& =\frac{1}{z^{2}} \frac{1}{1+\sum_{k=2}^{\infty} \frac{(-1)^{k} z^{2(k-1)}}{(2 k)!}}
\end{aligned}
$$

and we see that 0 is a pole of order 2 .
In part 4 just note that e^{z} and $-z^{2}$ are entire(holomorphic/analytic everywhere) and then the same is true for their composition $e^{-z^{2}}$. Now Theorem 3.11 says that the composition of any entire function which is not a polynomial and $\frac{1}{z}$ has an essential singularity at the origin. Since $e^{-\frac{1}{z^{2}}}$ is the composition of $e^{-z^{2}}$ and $\frac{1}{z}$ it follows from the theorem that 0 is an essential singularity.

Exercise 5

Determine the residue $\operatorname{Res}(f, 0)$ for each of the functions f in the previous exercise.

Solution:

For a removable singularity the residue is 0 , so $\operatorname{Res}\left(\frac{z}{\sin (z)}, 0\right)=0$.
For parts 2,3 we use Remark 3.7, which says that if a function f has a pole of order k and can be written $f(z)=\left(z-z_{0}\right)^{k} g(z)$ with g analytic, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{g^{(k-1)}\left(z_{0}\right)}{(k-1)!}
$$

In part 2 we get

$$
\operatorname{Res}\left(\frac{\cos (z)}{z\left(z^{2}-1\right)}, 0\right)=\frac{\cos (0)}{\left(0^{2}-1\right)}=-1
$$

and in part 3 we get

$$
\operatorname{Res}\left(\frac{1}{1-\cos (z)}, 0\right)=0 .
$$

To see this, recall that

$$
\frac{1}{1-\cos (z)}=\frac{1}{z^{2}} \frac{1}{1+\sum_{k=2}^{\infty} \frac{(-1)^{k} z^{2(k-1)}}{(2 k)!}}
$$

and since the power series has only even powers, its derivative has odd powers and therefore evaluate to 0 at 0 .

From the proof of Theorem 3.11 we see that the residue of a function $g(z)=f(1 / z)$ where f is entire is equal to the first term in the Taylor expansion of $f(z)$. In this case $f(z)=e^{-z^{2}}$ so the first term in the Taylor series is $f^{\prime}(0)=0$. So we get

$$
\operatorname{Res}\left(e^{-\frac{1}{z^{2}}}, 0\right)=0
$$

ExERCISE 6

Let $P(z)=\left(z-z_{1}\right)^{k_{1}} \cdot \ldots \cdot\left(z-z_{n}\right)^{k_{n}}$ where $z_{1}, \ldots, z_{n} \in \mathbb{C}$ are distinct and $k_{1}, \ldots, k_{n} \geq 1$. Show that

$$
\frac{1}{P(z)}=\sum_{j=1}^{n} \sum_{m=1}^{k_{j}} \alpha_{k, m}\left(z-z_{j}\right)^{-m}
$$

for some $\alpha_{j, m} \in \mathbb{C}$.

Solution:

For any $z \in \mathbb{C} \backslash\left\{z_{1}, \ldots, z_{n}\right\}$, we can define the function

$$
z \mapsto \frac{1}{P(z)}=\frac{1}{\prod_{i=1}^{n}\left(z-z_{i}\right)^{k_{i}}}=: Q(z)
$$

Since $P\left(z_{i}\right)=0$ then Q has singularities at $z_{i}, i \in\{1, \ldots, n\}$. Next we write

$$
Q(z)=\frac{1}{\left(z-z_{i}\right)^{k_{i}}} \frac{1}{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(z-z_{j}\right)^{k_{j}}}
$$

and since $z \mapsto \frac{1}{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(z-z_{j}\right)^{k_{j}}}$ is analytic close to z_{i}, it follows from Theorem 3.6 that z_{i} is a pole of order k_{i} of Q. This means that Q has a Laurent series with a prinicpal part containing finitely many terms,

$$
Q(z)=\sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{l}}+\sum_{l=0}^{\infty} \beta_{l}\left(z-z_{i}\right)^{l} .
$$

Now $S(z)=\sum_{l=0}^{\infty} \beta_{l}\left(z-z_{i}\right)^{l}$ is analytic close to z_{i}, so

$$
\lim _{z \rightarrow z_{i}}\left(z-z_{i}\right)\left(Q(z)-\sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{l}}\right)=\lim _{z \rightarrow z_{i}}\left(z-z_{i}\right) S(z)=0 \cdot S\left(z_{i}\right)=0
$$

This shows that z_{i} is a removable singularity of $Q(z)-\sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{l}}$. Also, note that while Q still has singularities at the other $z_{j}, j \in\{1, \ldots, n\}$, $j \neq i$, the sum $\sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{l}}$ does not. Repeating the above procedure for all $i \in\{1, \ldots, n\}$ we get coefficients $\alpha_{i, j}$ for $i \in\{1, \ldots, n\}$ and $l \in$
$\left\{1, \ldots, k_{i}\right\}$ and can consider the sum

$$
\sum_{i=1}^{n} \sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{l}}
$$

Next we define the function $T: \mathbb{C} \backslash\left\{z_{1}, \ldots, z_{n}\right\} \rightarrow \mathbb{C}$ by

$$
T(z)=Q(z)-\sum_{i=1}^{n} \sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{l}}
$$

then T is analytic away from z_{1}, \ldots, z_{n}. From the above discussion we also conclude that these singularities z_{1}, \ldots, z_{n} are removable and we can therefore extend T to the entire complex plane \mathbb{C}. Now T is entire(holomorphic/analytic in the whole plane \mathbb{C}). By continuity, T is bounded in any compact set. To see that it is bounded everywhere, consider z for $|z|>R$ for large enough R that $\left|z_{i}\right| \leq R$ for all $i \in$ $\{1, \ldots, n\}$. Then we get by using the reverse triangle inequality that

$$
R-\left|z_{i}\right|<|z|-\left|z_{i}\right|=\| z\left|-\left|z_{i}\right|\right| \leq\left|z-z_{i}\right|
$$

and from this we conclude that

$$
|T(z)| \leq C\left(\prod_{i=1}^{n} \frac{1}{\left(R-\left|z_{i}\right|\right)^{k_{i}}}+\sum_{i=1}^{n} \frac{1}{\left(R-\left|z_{i}\right|\right)^{k_{i}}}\right)
$$

From this we see that $T(z) \rightarrow 0$ as $|z| \rightarrow \infty$ but for now we need in particular that it shows that $T(z)$ is bounded for large $|z|$. So T is a bounded and entire function, so by using Corollary 5.3.4 in the notes(Liouville's Theorem) we get that $T(z)$ is constant. Since $T(z) \rightarrow 0$ as $|z| \rightarrow \infty$ we conclude that this constant is 0 , so $T(z)=0$ which we can rewrite as

$$
\frac{1}{P(z)}=Q(z)=\sum_{i=1}^{n} \sum_{l=1}^{k_{i}} \frac{\alpha_{i, l}}{\left(z-z_{i}\right)^{i}}
$$

