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Exercise 1

Determine the Laurent series representation of f(z) = 1
z(1−z) in the sets

1. 0 < |z| < 1,

2. 1 < |z| < ∞.

Solution:

When |z| < 1 we have
∑∞

n=0 z
n = 1

1−z and the convergence is absolute.
So for 0 < |z| < 1 in 11 we have

f(z) =
1

z

∞∑
n=0

zn =
∞∑
n=0

zn−1 =
1

z
+ 1 + z + z2 + . . .

For part 22, let w = 1
z . Then |w| < 1 and

1

1− w
=

−z

1− z

so we can write

f(z) = − 1

z2
· −z

1− z
= −w2 1

1− w
= −w2

∞∑
n=0

wn

= −
∑
n=0

1

zn+2
= − 1

z2
− 1

z3
− 1

z4
− . . .

■
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Exercise 2

Determine the Laurent series representation of f(z) = 1
(z−1)(z−2) in the

sets

1. |z| < 1,

2. 1 < |z| < 2,

3. |z| > 2.

Solution:

By partial fractions we can write

f(z) =
1

1− z
− 1

2

1

1− z
2

.

In part 11 both |z| < 1 and |z/2| < 1, so we get

1

1− z
=

∞∑
n=0

zn,
1

1− z
2

=
∞∑
n=0

zn

2n

and we get

f(z) =

∞∑
n=0

(1− 1

2n+1
)zn.

In part 22 we set w = 1
z to get |w| < 1 and get as in the previous exercise

that
1

1− z
= −w

1

1− w
= −w

∞∑
n=0

wn = −
∞∑
n=0

1

zn+1

and conclude that

f(z) = −
∞∑
n=0

1

2n+1
zn −

∞∑
n=0

1

zn+1
.

In part 33 we still have

1

1− z
= −

∞∑
n=0

1

zn+1

2



and to deal with the other term we set w = 2
z to get |w| < 1 and

1

1− z
2

= −w
1

1− w
= −2

z

∞∑
n=0

2n

zn

and conclude that

f(z) = −
∞∑
n=0

1 + 2n+1

zn+1

■

Exercise 3

Determine the Laurent series representation of f(z) = sin(πz)
(z−1)3

in the set

0 < |z − 1| < ∞.

Solution:

The Taylor series of sin(πz) around z0 = 1 is

sin(πz) =

∞∑
n=0

(−1)n+1π2n+1

(2n+ 1)!
(z − 1)2n+1

so we get

f(z) =
1

(z − 1)3

∞∑
n=0

(−1)n+1π2n+1

(2n+ 1)!
(z − 1)2n+1

=
∞∑
n=0

(−1)n+1π2n+1

(2n+ 1)!
(z − 1)2(n−1)

= − π

(z − 1)2
+

π3

3!
− π5

5!
(z − 1) +

π7

7!
(z − 1)2 − π9

9!
(z − 1)3 + . . .

■
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Exercise 4

What type of singularity do the following functions have at z = 0?

1. z
sin(z)

2. cos(z)
z(z2−1)

3. 1
1−cos(z)

4. e−
1
z2

Solution:

For part 11 we can use Riemann’s removable singularity theorem on the
function. Using a Taylor series, we have

z
z

sin(z)
= z

1

1 +
∑∞

k=1
(−1)kz2k

(2k+1)!

→ 0 as z → 0,

so 0 is a removable singularity.
In part 22 we don’t have a removable singularity, because

z
cos(z)

z(z2 − 1)
=

cos(z)

(z2 − 1)
→ −1 as z → 0.

But since cos(z)
(z2−1)

is analytic away from ±1, Theorem 3.6 says that 0 is a

pole of order 1 of cos(z)
z(z2−1)

.

In part 33 we have by using Taylor expansion that

1

1− cos(z)
=

1∑∞
k=1

(−1)kz2k

(2k)!

=
1

z2
1∑∞

k=1
(−1)kz2(k−1)

(2k)!

=
1

z2
1

1 +
∑∞

k=2
(−1)kz2(k−1)

(2k)!

and we see that 0 is a pole of order 2.
In part 44 just note that ez and −z2 are entire(holomorphic/analytic

everywhere) and then the same is true for their composition e−z2 . Now
Theorem 3.11 says that the composition of any entire function which is
not a polynomial and 1

z has an essential singularity at the origin. Since

e−
1
z2 is the composition of e−z2 and 1

z it follows from the theorem that
0 is an essential singularity. ■
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Exercise 5

Determine the residue Res(f, 0) for each of the functions f in the previous
exercise.

Solution:

For a removable singularity the residue is 0, so Res( z
sin(z) , 0) = 0.

For parts 22,33 we use Remark 3.7, which says that if a function f has
a pole of order k and can be written f(z) = (z−z0)

kg(z) with g analytic,
then

Res(f, z0) =
g(k−1)(z0)

(k − 1)!
.

In part 22 we get

Res(
cos(z)

z(z2 − 1)
, 0) =

cos(0)

(02 − 1)
= −1

and in part 33 we get

Res(
1

1− cos(z)
, 0) = 0.

To see this, recall that

1

1− cos(z)
=

1

z2
1

1 +
∑∞

k=2
(−1)kz2(k−1)

(2k)!

and since the power series has only even powers, its derivative has odd
powers and therefore evaluate to 0 at 0.

From the proof of Theorem 3.11 we see that the residue of a function
g(z) = f(1/z) where f is entire is equal to the first term in the Taylor
expansion of f(z). In this case f(z) = e−z2 so the first term in the Taylor
series is f ′(0) = 0. So we get

Res(e−
1
z2 , 0) = 0.

■

5



Exercise 6

Let P (z) = (z − z1)
k1 · . . . · (z − zn)

kn where z1, . . . , zn ∈ C are distinct
and k1, . . . , kn ≥ 1. Show that

1

P (z)
=

n∑
j=1

kj∑
m=1

αk,m(z − zj)
−m

for some αj,m ∈ C.

Solution:

For any z ∈ C \ {z1, . . . , zn}, we can define the function

z 7→ 1

P (z)
=

1∏n
i=1(z − zi)ki

=: Q(z)

Since P (zi) = 0 then Q has singularities at zi, i ∈ {1, . . . , n}. Next we
write

Q(z) =
1

(z − zi)ki
1∏n

j=1
j ̸=i

(z − zj)kj

and since z 7→ 1∏n
j=1
j ̸=i

(z−zj)
kj

is analytic close to zi, it follows from The-

orem 3.6 that zi is a pole of order ki of Q. This means that Q has a
Laurent series with a prinicpal part containing finitely many terms,

Q(z) =

ki∑
l=1

αi,l

(z − zi)l
+

∞∑
l=0

βl(z − zi)
l.

Now S(z) =
∑∞

l=0 βl(z − zi)
l is analytic close to zi, so

lim
z→zi

(z − zi)
(
Q(z)−

ki∑
l=1

αi,l

(z − zi)l

)
= lim

z→zi
(z − zi)S(z) = 0 · S(zi) = 0.

This shows that zi is a removable singularity of Q(z)−
∑ki

l=1
αi,l

(z−zi)l
. Also,

note that while Q still has singularities at the other zj , j ∈ {1, . . . , n},
j ̸= i, the sum

∑ki
l=1

αi,l

(z−zi)l
does not. Repeating the above procedure

for all i ∈ {1, . . . , n} we get coefficients αi,j for i ∈ {1, . . . , n} and l ∈
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{1, . . . , ki} and can consider the sum

n∑
i=1

ki∑
l=1

αi,l

(z − zi)l
.

Next we define the function T : C \ {z1, . . . , zn} → C by

T (z) = Q(z)−
n∑

i=1

ki∑
l=1

αi,l

(z − zi)l

then T is analytic away from z1, . . . , zn. From the above discussion
we also conclude that these singularities z1, . . . , zn are removable and
we can therefore extend T to the entire complex plane C. Now T is
entire(holomorphic/analytic in the whole plane C). By continuity, T
is bounded in any compact set. To see that it is bounded everywhere,
consider z for |z| > R for large enough R that |zi| ≤ R for all i ∈
{1, . . . , n}. Then we get by using the reverse triangle inequality that

R− |zi| < |z| − |zi| = ||z| − |zi|| ≤ |z − zi|

and from this we conclude that

|T (z)| ≤ C
( n∏

i=1

1

(R− |zi|)ki
+

n∑
i=1

1

(R− |zi|)ki
)
.

From this we see that T (z) → 0 as |z| → ∞ but for now we need
in particular that it shows that T (z) is bounded for large |z|. So T
is a bounded and entire function, so by using Corollary 5.3.4 in the
notesnotes(Liouville’s Theorem) we get that T (z) is constant. Since T (z) → 0
as |z| → ∞ we conclude that this constant is 0, so T (z) = 0 which we
can rewrite as

1

P (z)
= Q(z) =

n∑
i=1

ki∑
l=1

αi,l

(z − zi)l
.

■
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