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EXERCISE 1

Determine the Laurent series representation of f(z) = ﬁ in the sets
1. 0< 2] < 1,

2. 1< 2| < .

SOLUTION:

When |z| < 1 we have > o0 /2" = 1= and the convergence is absolute.
So for 0 < |z| < 1 in 1 we have
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For part 2, let w = 1. Then |w| < 1 and
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EXERCISE 2

Determine the Laurent series representation of f(z) = m in the
sets

1. |2 <1,
2. 1< 2] <2,

3. |z > 2.

SOLUTION:

By partial fractions we can write

1 1 1
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In part 1 both |2| < 1 and |z/2| < 1, so we get
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and we get
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In part 2 we set w = % to get |w| < 1 and get as in the previous exercise
that
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In part 3 we still have
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and to deal with the other term we set w = 2 to get |w| < 1 and
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and conclude that
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EXERCISE 3

Determine the Laurent series representation of f(z) =
0<l]z—1| < 0.

SOLUTION:

The Taylor series of sin(mrz) around zp = 1 is
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so we get
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EXERCISE 4

What type of singularity do the following functions have at z = 0?

1. =2

sin(z)

cos(z)
T o2(22-1)

* 1—cos(z)

_1
4, e =2

SOLUTION:

For part 1 we can use Riemann’s removable singularity theorem on the
function. Using a Taylor series, we have

1
z S — 0 as z — 0,

sin(z) 1 + D o1 2?4]:;%

so 0 is a removable singularity.
In part 2 we don’t have a removable singularity, because

cos(z)  cos(z)

EE-1) (2o

— —1 as z — 0.

But since ( > os(z 1)) is analytic away from =£1, Theorem 3.6 says that 0 is a

cos(z)

pole of order 1 of D)
In part 3 we have by using Taylor expansion that
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and we see that 0 is a pole of order 2.

In part 4 just note that e* and —2z2 are entire(holomorphic/analytic
everywhere) and then the same is true for their composition e *". Now
Theorem 3.11 says that the composition of any entire function which is

not a polynomial and % has an essential singularity at the origin. Since
1
e 22 is the composition of e~ and % it follows from the theorem that

0 is an essential singularity.



EXERCISE 5

Determine the residue Res(f, 0) for each of the functions f in the previous
exercise.

SOLUTION:

For a removable singularity the residue is 0, so Res(%, 0) =0.
For parts 2,3 we use Remark 3.7, which says that if a function f has

a pole of order k and can be written f(z) = (z—29)*g(2) with g analytic,

e g%~ (z)
Res(f, 20) = W
In part 2 we get

cos(0

cos(z)

Res(m,

and in part 3 we get

Res( ,0) = 0.

1 — cos(z)
To see this, recall that
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and since the power series has only even powers, its derivative has odd
powers and therefore evaluate to 0 at 0.

From the proof of Theorem 3.11 we see that the residue of a function
g(z) = f(1/z) where f is entire is equal to the first term in the Taylor
expansion of f(z). In this case f(z) = e~ so the first term in the Taylor
series is f/(0) = 0. So we get

Res(e z%,O) = 0.



EXERCISE 6

Let P(z) = (z — 21)" - ... (2 — 2,)*" where z1,..., 2, € C are distinct
and kq,...,k, > 1. Show that

~ 3 a5

j=1m=1
for some «;,, € C.
SOLUTION:
For any z € C\ {z1,...,2,}, we can define the function
1 1
Z = = 7n = Q(Z)

P(z)  [Liei(z —z)k

Since P(z;) = 0 then @ has singularities at z;, i € {1,...,n}. Next we

write
1 1
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is analytic close to z;, it follows from The-

Q(z) =
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and since z — —————
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orem 3.6 that z; is a pole of order k; of @Q. This means that () has a
Laurent series with a prinicpal part containing finitely many terms,
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Now S(2) = Y 120 Bi(z — 2)! is analytic close to z;, so
lim (2 — 2 ( Ek: il ) — lim (2 — 2;)8(2) = 0- S(z) = 0.
2=z — (2 — z) 2=z

This shows that z; is a removable singularity of Q(z) —Zﬁl (z—i,;l-)l . Also,

note that while @ still has singularities at the other z;, j € {1,...,n},
j # i, the sum Zz 1 (Z%Z’)l does not. Repeating the above procedure
for all i € {1,...,n} we get coefficients «; ; for i € {1,...,n} and | €




{1,...,k;} and can consider the sum

n k;

ij -
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Next we define the function 7": C\ {z1,...,2,} — C by

T(z)=QE) - )Y =iy

(z — %)

then T is analytic away from z1,...,2,. From the above discussion
we also conclude that these singularities z1, ..., z, are removable and
we can therefore extend T to the entire complex plane C. Now T is
entire(holomorphic/analytic in the whole plane C). By continuity, T’
is bounded in any compact set. To see that it is bounded everywhere,
consider z for |z| > R for large enough R that |z;| < R for all i €
{1,...,n}. Then we get by using the reverse triangle inequality that

— lzi| < l2] = || = 2] = |ail| < [z — 2l

and from this we conclude that
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From this we see that T'(z) — 0 as |z| — oo but for now we need
in particular that it shows that T(z) is bounded for large |z|. So T
is a bounded and entire function, so by using Corollary 5.3.4 in the
notes(Liouville’s Theorem) we get that T'(z) is constant. Since T'(z) — 0
as |z| — oo we conclude that this constant is 0, so T'(z) = 0 which we

can rewrite as
n k;
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