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Exercise 1

Show that f(z) =
∑∞

n=1
1

(z−n)2
is well-defined and analytic in C \ N.

Solution:

To show that it’s well-defined we just want to show that the series con-
verges. But by additionally showing that it converges locally uniformly,
we’ll get that it is analytic as well. So we just need to prove that the
series converges locally uniformly.

Let K ⊂ C \ N be any compact subset. For any z we have

|z − n|2 = zz − nz − nz + n2

= |z|2 − 2nRe(z) + n2

≥ n(n− 2Re(z))

Since K is compact and z 7→ Re(z) is continuous, there exists a z0 ∈ K
which minimizes −2Re(z). Then

|z − n|2 ≥ n(n− 2Re(z0))

For this z0 there exist an N0 such that if n ≥ N0 then n−Re(z0) ≥ n/2.
Note that z0 and hence also N0 depend only on K. Then we have for
n ≥ N0 that

|z − n|2 ≥ n2

and hence
1

|z − n|2
≤ 1

n2
.
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Now the series
∞∑

n=N0

1

(z − n)2

converges uniformly and is analytic since

∞∑
n=N0

1

|z − n|2
≤

∞∑
n=1

1

n2
=

π2

6
.

Now we can write

∞∑
n=1

1

(z − n)2
=

N0∑
n=1

1

(z − n)2
+

∞∑
n=N0

1

(z − n)2

where the infinite series on the right is analytic and the finite sum is
clearly analytic since it’s a finite sum of analytic functions. In conclusion,
the series

∞∑
n=1

1

(z − n)2

is analytic on any compact set K ⊂ C \ N and is therefore also analytic
on all of C \ N. ■

Exercise 2

Determine the radii and disks of convergence for the following power
series

a)
∑∞

n=1
zn

n

b)
∑∞

n=0 5
n(z − i)n

c)
∑∞

n=0(z − 2)n!

d)
∑∞

n=0 n!z
n

Solution:

In a)a) we have an = 1/n and the radius of convergence is

ρ−1 = lim sup
n

|an|1/n = inf
n
{sup{|ak|1/k : k ≥ n}}.

As n increases the inner supremum is nonincreasing, since the set over
which the supremum is taken is getting smaller. So the outer infimum
is the limit of this nonincreasing sequence, which exists as long as the
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sequence is bounded. To find what the limit is, it’s enough to find the
limit of some tail of the sequence. To do this, note that the sequence
(|an|1/n)n∈N is eventually decreasing. We can see this by considering the
function f(x) = x1/x, whose derivative is

f ′(x) =
x1/x

x2
(1− ln(x))

which is eventually negative. This means that for some N0 large enough
sup{|ak|1/k : k ≥ n} = |an|1/n for all n ≥ N0. The sequence is also
bounded below by 0, so it definitely converges. To find the limit we can
use L’Hôpital, after writing

|an|1/n = n1/n = e
1
n
ln(n).

Then we find that limn→∞|an|1/n = 1 = ρ−1. So the radius of conver-
gence is ρ = 1 and the disc of convergence is B(0, 1)

In b)b) we have an = 5n, so the radius of convergence is

ρ−1 = inf
n
{sup{|ak|1/k : k ≥ n}} = inf{sup{5}} = 5.

The disc of convergence is B(i, 15).
In c)c), we have

an =

{
1 if n = k! for some k

0 otherwise

The radius of convergence is

ρ−1 = inf
n
{sup{|ak|1/k : k ≥ n}} = inf{sup{1}} = 1

and the disc of convergence B(2, 1)
For d)d) we have an = n!. We can use a similar trick as when computing

arithmetic progressions. If we consider the square a2n then we have

a2n = (n!)2 = 1 · 2 · 3 · . . . · n
× n · n− 1 · n− 3 · . . . · 1
= [1 · n] · [2(n− 1)] · [3(n− 2)] · . . . · [n · 1].

There are n factors within brackets [ ] and each such factor is greater
than n. So we get

a2n ≥ n · n · . . . · n = nn.
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Taking the 2n-root we get

a1/nn ≥
√
n.

This show that sup{|ak|1/k : k ≥ n} ≥ sup{
√
k : k ≥ n} = ∞ and hence

the radius of convergence is ρ = 0. ■

Exercise 3

Prove(using induction, for instance) Abel’s partial summation formula

n∑
k=1

akbk = ansn +

n−1∑
k=1

(ak − ak+1)sk, ak, bk ∈ C,

where sj =
∑j

k=1 bk. (Note: there appear to be a mistake in the exercise
sheet on the website)

Solution:

I will not actually use induction to prove this. Instead I just expand the
sum on the right-hand side and do some manipulations untill the desired
result pop out. Since sk = sk+1 − bk+1 we have

n−1∑
k=1

(ak − ak+1)sk =
n−1∑
k=1

aksk −
n−1∑
k=1

ak+1sk+1 +
n−1∑
k=1

ak+1bk+1

=

n−1∑
k=1

aksk −
n∑

k=2

aksk +

n∑
k=2

akbk

= a1s1 − ansn +

n∑
k=2

akbk

= −ansn +

n∑
k=1

akbk.

Moving ansn to the other side gives the desired equality. ■

Exercise 4

Use the previous exercise to show that the series

∞∑
n=1

zn

n
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converges for any z ∈ ∂B(0, 1) with z ̸= 1, but diverges when z = 1.

Solution:

Applying the equality in the previous exercise with an = 1
n and bn = zn

gives
N∑

n=1

zn

n
=

1

N

N∑
n=1

zn +

N−1∑
n=1

( 1

n
− 1

n+ 1

) n∑
k=1

zk (1)

Using the formula for geometric series and the fact that |zN+1| = 1 we
have

1

N

N∑
n=1

zn =
1

N

z − zN+1

1− z
→ 0.

Again using the geometric series, we have

N−1∑
n=1

( 1

n
− 1

n+ 1

) n∑
k=1

zk =

N−1∑
n=1

( 1

n
− 1

n+ 1

)z − zn+1

1− z

=
N−1∑
n=1

1

n(n+ 1)

z − zn+1

1− z

=
z

1− z

N−1∑
n=1

1

n(n+ 1)
− 1

1− z

N−1∑
n=1

1

n(n+ 1)
zn+1.

Both series on the last line converges(the one involving zn+1 is easily
seen to converge absolutely and hence converges) and therefore

N−1∑
n=1

( 1

n
− 1

n+ 1

) n∑
k=1

zk

also converges. Now both series on the right in (11) converges and then
the same is true for the left-hand side. All of the above require z ̸= 1
since we divide by 1− z. If z = 1 then the original series is

∞∑
n=1

zn

n
=

∞∑
n=1

1

n

which is well-known to be a divergent series. ■

Exercise 5

Determine the Taylor series representations of f(z) = Log(z) centered

5



at z0 = 1 and g(z) = sin(z) centered at z0 = 0. What are the disks of
convergence?

Solution:

For the logarithm we have

f (k)(z) = (−1)k+1 (k − 1)!

zk

and the Taylor series around z0 = 1 is

f(z) =

∞∑
n=1

(−1)n+1

n
(z − 1)n.

Doing something similar as in Exercise 2 part a)a) we get a radius of
convergence of 1 and the disc of convergence is B(1, 1).

Next we have
g(4k)(z) = sin(z)

g(4k+1)(z) = cos(z)

g(4k+2)(z) = − sin(z)

g(4k+3)(z) = − cos(z)

so the Taylor series around z0 = 0 is

g(z) =
∞∑
n=1

(−1)n+1

(2n− 1)!
z2n−1.

Similar to Exercise 2 part d)d) we get radius of convergence ∞ so the disc
of convergence is all of C. ■

Exercise 6

Give an example of a nonconstant analytic function f : B(0, 1) → C
that has infinitely many distinct zeros in B(0, 1). Why does this not
contradict Theorem 2.22?

Solution:

A standard example of a wildly oscillating function is sin(1/x) for x ∈ R,
x ̸= 0. To get a function which oscillates close to the boundary B(0, 1),
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let’s consider the function

sin
( 1

z − 1

)
.

Since the (complex) sin is 0 if and only if the argument is kπ for some
k ∈ Z, we get

sin
( 1

z − 1

)
= 0

if and only if

z = 1 +
1

kπ
.

Taking k = −n for n ∈ N, we get a sequence

zn = 1− 1

nπ
. (2)

in B(0, 1) converging to 1 such that sin(zn) = 0. If we instead consider
positive k, then we get zeros outside of B(0, 1). So the zeros inside
B(0, 1) are given precisely by (22). That is, the set of zeros of the function

B(0, 1) ∋ z 7→ sin
(

1
z−1

)
has only one accumulation point and it is 1.

But 1 ̸∈ B(0, 1), which means that the second part of Theorem 2.22 is
not satisfied. If the accumulation point would be inside B(0, 1) then this
would be a counter example to Theorem 2.22. ■

7


