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Exercise 1

If
∑∞

n=1 zn converges absolutely, show that
∑∞

n=1 zn converges and∣∣∣∣∣
∞∑
n=1

zn

∣∣∣∣∣ ≤
∞∑
n=1

|zn|.

Solution:

For k > l then ∣∣∣∣∣
k∑

n=1

zn −
l∑

n=1

zn

∣∣∣∣∣ =
∣∣∣∣∣

k∑
n=l

zn

∣∣∣∣∣ =
k∑

n=l

|zn| ≤ ε

so
∑∞

n=1 zn indeed converges. Next∣∣∣∣∣
∞∑
n=1

zn

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
n=1

zn −
k∑

n=1

zn

∣∣∣∣∣+
∣∣∣∣∣

k∑
n=1

zn

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
n=1

zn −
k∑

n=1

zn

∣∣∣∣∣+
k∑

n=1

|zn|

≤

∣∣∣∣∣
∞∑
n=1

zn −
k∑

n=1

zn

∣∣∣∣∣︸ ︷︷ ︸
<ε

+

∣∣∣∣∣
k∑

n=1

|zn| −
∞∑
n=1

|zn|

∣∣∣∣∣︸ ︷︷ ︸
<ε

+
∞∑
n=1

|zn|

≤ 2ε+

∞∑
n=1

|zn|.
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Since this is true for any ε > 0 we conclude that∣∣∣∣∣
∞∑
n=1

zn

∣∣∣∣∣ ≤
∞∑
n=1

|zn|.

■

Exercise 2

Let sk : G → C be continuous functions converging to some s : G → C
locally uniformly in an open G. Show that if γ : [a, b] → G is a piecewise
C1-path then

lim
k→∞

∫
γ
sk(z) dz =

∫
γ
s(z) dz.

Solution:

Since γ is continuous and [a, b] compact, γ∗ = γ([a, b]) ⊂ G is compact.
Then ∥sk − s∥C(γ∗) → 0 by the assumption. From Corollary 4.2.12 in
the lecture noteslecture notes from Complex analysis 1 we get∣∣∣∣∫

γ
sk(z) dz −

∫
γ
s(z) dz

∣∣∣∣ ≤ ∥sk − s∥C(γ∗) length (γ) → 0.

■

Exercise 3

Prove that the Riemann ζ-function

ζ(z) =
∞∑
n=1

1

nz

is well-defined and analytic in the half-plane {z ∈ C : Re(z) > 1}.

Solution:

Write z = x+ iy where x > 1. Then

|nz| = |e(x+iy) ln(n)| = |ex ln(n)eiy ln(z)| = |ex ln(n)| = nx.
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For n ≥ 2,

1

nx
=

∫ n

n−1

1

nx
dt ≤

∫ n

n−1

1

tx
dt =

1

1− x

( 1

nx−1
− 1

(n− 1)x−1

)
and

k∑
n=2

1

nx
≤

k∑
n=2

1

1− x

( 1

nx−1
− 1

(n− 1)x−1

)
=

1

x− 1
− 1

x− 1

1

kx−1
→ 0 as k → ∞.

So by using

Mn =
1

1− x

( 1

nx−1
− 1

(n− 1)x−1

)
in the Weierstrass M -test, we get that the series

∞∑
n=1

1

nz

converges uniformly and hence ζ(z) is well-defined. Since each function
term in the series is analytic, it follows from Theorem 2.13 that the limit
ζ(z) is analytic. ■

Exercise 4

Prove that the distasnce between a compact K ⊂ C and a closed F ⊂ C
with K ∩ F ̸= ∅ is positive.

Solution:

If it is not true, then for any r > 0 there exists zr ∈ K and wr ∈ F such
that

|zr − wr| ≤ r.

Taking r = 1/n we get sequences zn, wn such that |zn−wn| ≤ 1/n. Since
K is compact, the sequence zn is bounded and hence has a convergent
subsequence, znk

→ z ∈ K. Then

|wnk
− z| ≤ |wnk

− znk
|+ |znk

− z| → 0

so wnk
→ z. But since F is closed this implies z ∈ F , which contradicts

K ∩ F ̸= ∅. ■
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Exercise 5

Prove the Heine-Borel property: if K ⊂ C is compact then any open
cover of K has a finite subcover.

Solution:

Suppose to the contrary that there exists an open cover G = {Uα}α∈A of
K which does not have a finite subcover. From this we create a sequence
that will lead to a contradiction.

• First pick any Uα1 ∈ G and pick x1 ∈ Uα1 . Then K \ Uα1 is again
compact and doesn’t have a finite subcover.

• I claim that there exist an open ball B ⊂ C that intersects K \Uα1

and such that B ⊂
⋃

α∈A Uα but does not have a finite subcover in
G. This follows by noting that K \ Uα1 can be covered by finitely
many balls with any fixed but small enough radius. If each of those
finitely many balls had a finite subcover in G then their finite union
would also have a finite subcover, which is a contradiction. I will
however not prove that K \ Uα1 can be covered by finitely many
balls in such a way, but I believe it is fairly intuitive for C or even
Rn.

• Let B1 be such a ball with radius at most 1 and which intersects
K \ Uα1 .

• Pick x2 ∈ B1 and let Uα2 ∈ G be a set containing x2 and let
B2 ⊂ B1 be another ball whose radius is less than 1/2 and such
that it intersects K \

⋃2
j=1 Uαj .

• In general, pick xn ∈ Bn−1 and let Uαn ∈ G be a set containing
xn. Then there still must exist an open ball Bn ⊂ Bn−1 of radius
less than 1/n and such that Bn intersects K \

⋃n
j=1 Uαj .

• Next note that, by construction,

B1 ⊃ B2 ⊃ . . . ⊃ Bn ⊃ . . .

From this we get that the sequence xn is Cauchy, since for any
N ∈ N and any n > m ≥ N we have xn, xm ∈ Bm ⊂ BN and then

|xn − xm| ≤ 2

N
.

So there exist a limit x ∈ K, xn → x.
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• Since xn converges to x, for any ε > 0 there exist a ball B(x, ε)
centered at x and of radius ε which contains all but at most finitely
many xn. Since G is a cover and x ∈ K, there exist Uα0 ∈ G
containing x and since Uα0 is open, any small enough ball around
x is contained in Uα0 . Let ε0 > 0 be such ball B(x, ε0) ⊂ Uα0 .

• Next note that

x ∈
∞⋂
n=1

Bn ⊂ Bk

for any k ∈ N. Since Bk has radius at most 1/k, it is contained
in B(x, 2k ) and the closure Bk is contained at least in B(x, 3k ). For
k > 3

ε0
, B(x, 3k ) ⊂ B(x, ε0). This implies that for such k,

Bk ⊂ B(x, ε0) ⊂ Uα0

so that Bk is covered by Uα0 ∈ G, which is a contradiction.

■

Exercise 6

If U ⊂ C is open and fn → f uniformly on any closed ball in U , show
that fn → f locally uniformly in U .

Solution:

Let K ⊂ U be any compact set. Since U is open, for each x ∈ K there
is a radius rx such that the closed ball B(x, rx) is contained in U . With
such radii, we can get a trivial open cover of K, namely,

K ⊂
⋃
x∈K

B(x, rx).

By the previous exercise, there is a finite subcover {B(x1, r1), . . . B(xk, rk)}.
For each ε > 0 and each j ∈ {1, . . . , k} there is an Nj such that if n ≥ Nj

∥fn − f∥C(B(xj ,rj))
< ε.

Choosing N = max{N1, . . . , Nk} we have for n ≥ N that

∥fn − f∥C(K) ≤ max{∥fn − f∥C(B(xj ,rj))
: j ∈ {1, . . . , k}} < ε.

which shows that fn → f locally uniformly since K was an arbitrary
compact subset. ■
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