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Exercise 1

Let G ⊂ C be a nonempty open set. For any z ∈ G, define

Cz = {w ∈ G : ∃ path γ : [a, b]→ G with γ(a) = z and γ(b) = w}.

Prove that Cz is the maximal connected open subset of G containing z.
Show that for z ̸= w one has either Cz = Cw or Cz ∩ Cw = ∅. Finally,
show that G is the disjoint union of its maximal connected open subsets
(called the components of G).

Solution:

Note that now after I have written these solutions, I realize that the
terms path connected and connected might be used interchangably in
this course. That does make sense since even if these concepts do have
different definitions in general spaces, they are equivalent in Euclidean
spaces. If they are indeed used interchangably then my solution might
look a bit unnecessarily difficult, since I also prove the relation between
path connectedness and connectedness.

To show that Cz is a connected component, I want to use that Cz

is both open and closed to show that Cz contains a connected compo-
nent and then prove by contradiction that Cz is equal to that connected
component.

• To see that it is open, take any w ∈ Cz. There exists an open ball
B(w, ε) ∈ G since G is open. The ball is convex and clearly path
connected. Then B(w, ε) ⊆ Cz, showing that Cz is open.

• To see that it is closed, take w ∈ ∂Cz on the boundary. Then the
open ball B(w, ε) has a nonempty and open intersection with Cz.
But since B(w, ε) is path-connected, this shows that there exists
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paths from w to points inside Cz which means that w ∈ Cz. So Cz

is both open and closed.

• Next I want to show that if a connected component Y has nonempty
intersection with Cz then Y ⊆ Cz. Since Cz is both open and
closed, Y ∩ Cz is both open and closed closed in Y . Then Y ∩ Cz

and Y \ Cz are two open sets in Y that disconnect Y , which con-
tradicts the connectedness of Y . This shows that Y ⊆ Cz.

• Finally, we conclude that Y = Cz by proving that also Cz ⊆ Y , and
we do this by showing that Cz is connected. If to the contrary Cz

is not connected, let U, V ⊂ Cz be two nonempty open subsets that
form a partition and take a ∈ U , b ∈ V . Let γ : [0, 1]→ X be a path
between a, b. Then [0, 1] = γ−1(U) ∪ γ−1(V ) is a partition of [0, 1]
into relatively open subsets, which contradicts the connectedness
of [0, 1]. So Cz must be connected and hence Cz ⊆ Y . We conclude
that Cz is a maximal connected set(or a connected component of
G), which is the first part of the exercise.

For the second part, Cz is clearly a path-connected set since all points
have a path to z. It is also a maximal path-connected set(or a path com-
ponent of G). To see this, first note that any maximal path-connected
set whose intersection with Cz is nonempty must contain all of Cz. So
there’s a maximal path-connected set X with Cz ⊆ X. But X contains
z so any point in X has a path to z, so X ⊆ Cz and we get X = Cz.
So Cz is indeed a path-component of G. Now for two sets Cz, Cw we
obviously have either Cz ∩ Cw = ∅ or Cz ∩ Cw ̸= ∅. In the latter case,
we must have Cz = Cw by the maximality of both Cz, Cw and the fact
that they are both path-connected. This proves the second part.

For the last part, note that any singleton set {p} is path connected.
So G is in a trivial way the union of path connected sets. Since every
path connected set is contained in a path component we get that G is a
union of path components. And we saw in the second part of the exercise
that these path components are disjoint, so G a disjoint union of path
components. But we established above that the path components are
also connected components and that they are all open so we conclude
that G is a disjoint union of open connected components, which proves
the last part of the exercise. ■

.

Exercise 2

Let σ = (γ1, γ2, γ3), where γ1(t) = 3eit, γ2(t) = 1 + e−it and γ3(t) =
−1 + e−it for 0 ≤ t ≤ 2π. Determine the components of C \ |σ| and the
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possible values η(σ, z) for z ∈ C \ |σ|. Is σ null-homologous in B(0, 4),
in B(0, 4) \ {−1} or in B(0, 4) \ {−1, 1}?

Solution:

Let B(z, r) be the open ball of radius r centered at z. Then the compo-
nents are C\B(0, 3), B(1, 1), B(−1, 1) and B(0, 3)\ (B(1, 1)∪B(−1, 1))
and the corresponding winding numbers are

η(σ,C \B(0, 3)) = 0,

η(σ,B(1, 1)) = 0,

η(σ,B(−1, 1)) = 0,

η(σ,B(0, 3) \ (B(1, 1) ∪B(−1, 1))) = 1.

σ is null-homologous in B(0, 4), B(0, 4)\{−1} and B(0, 4)\{−1, 1}. ■

Exercise 3

Let f be analytic in G ⊂ C, and for z, w ∈ G define

g(z, w) =

{
f(w)−f(z)

w−z , z ̸= w,

f ′(z), z = w.

Show that g(z, w) is continuous in G×G.

Solution:

To show continuity, let (z0, w0) be arbitrary and (zn, wn) a sequence
converging to (z0, w0). We have to consider the cases

z0 ̸= w0 and wn ̸= zn, (1)

z0 = w0 and wn ̸= zn, (2)

z0 = w0 and wn = zn. (3)

Since z0 ̸= w0 in case (11), we have for large enough n that zn ̸= wn. So
the case z0 ̸= w0 and wn = zn doesn’t need to be handled. In the case
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(11) we get by adding and subtracting f(wn) + f(zn) in the first term,

|g(z0, w0)− g(zn, wn)| = |
f(w0)− f(z0)

z0 − w0
− f(wn)− f(zn)

zn − wn
|

= |f(w0)− f(wn) + f(zn)− f(z0)

z0 − w0
+

f(wn)− f(zn)

z0 − w0
− f(wn)− f(zn)

zn − wn
|

≤ |f(w0)− f(wn)|+ |f(zn)− f(z0)|
|z0 − w0|

+ |f(wn)− f(zn)

z0 − w0
− f(wn)− f(zn)

zn − wn
|

Since f is continuous,

|f(w0)− f(wn)|+ |f(zn)− f(z0)|
|z0 − w0|

≤ 2ε

|z0 − w0|

for n large enough. Similarly,

|f(wn)− f(zn)

z0 − w0
− f(wn)− f(zn)

zn − wn
| ≤ |f(wn)− f(zn)||

1

z0 − w0
− 1

zn − wn
|

≤ C| 1

z0 − w0
− 1

zn − wn
|

≤ Cε

and C doesn’t depend on n since the sequence f(wn)− f(zn) is conver-
gent. So we have

|g(z0, w0)− g(zn, wn)| ≤ Cε.

For case (22), first note that

f(wn)− f(zn) =

∫
[wn,zn]

f ′(s) ds

so that

|g(z0, w0)− g(zn, wn)| = |f ′(z0)−
f(wn)− f(zn)

zn − wn
|

≤ |f ′(z0)−

∫
[wn,zn]

f ′(s) ds

zn − wn
|

≤ |

∫
[wn,zn]

f ′(z0)− f ′(s) ds

zn − wn
|

≤

∫
[wn,zn]

ds ∥f ′(z0)− f ′(s)∥L∞([wn,zn])

|zn − wn|
≤ ∥f ′(z0)− f ′(s)∥L∞([wn,zn]).
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Now note that since zn, wn converges to z0 = w0, the entire line segment
[wn, zn] gets arbitrarily close to the point z0 as n gets large. By continuity
of f ′ there exists n large enough that |f ′(z0) − f ′(s)| ≤ ε for any s ∈
[wn, zn] and we conclude that

|g(z0, w0)− g(zn, wn)| ≤ ε.

In case (33) we have from continuity of f ′ that for large enough n,

|g(z0, w0)− g(zn, wn)| = |f ′(z0)− f ′(zn)| ≤ ε.

■

Exercise 4

If D ⊂ C is a bounded domain and C \D is path-connected, show that
D is simply connected. Show that the conclusion may fail if one drops
the assumpion that D is bounded.

Solution:

By Corollay 5.2.8 in the notesnotes for complex analysis 1, the winding num-
ber η(γ, z) is constant in any connected open subset U ⊂ γ∗ and that
if in addition U is unbounded then η(γ, z) = 0, where γ∗ is the im-
age/trace of the closed path. Since for any closed path γ in D we have
C \D ⊆ C \ γ∗ and since C \D is unbounded,

η(γ, z) = 0 ∀z ∈ C \D.

So any closed path in D is null-homologous in D and D is therefore
simply connected.

If the boundedness of D is dropped, then we still assume it to be a
connected open set(domains are connected). So if we takeD = C\B(0, 1)
then it is connected, open and unbounded, while C \ D = B(0, 1) is
connected, open and bounded. If γ(t) = 2eit for t ∈ [0, 2π] then γ is
a path in D with η(γ, z) = 1 for any z ∈ B(0, 1). So γ is not null-
homologous in D and D is not simply connected. ■
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Exercise 5

Let σ = (γi, γ0, γ−i) where γz = z+ eit

2 , 0 ≤ t ≤ 2π. Evaluate
∫
σ

ez

z3+z
dz.

Solution:

Before evaluating any integrals, let’s write

1

z3 + z
=

1

z
− 1

2(z − i)
− 1

2(z + i)

so that the integral is split into 3 integrals∫
σ

ez

z3 + z
dz =

∫
σ

ez

z
dz − 1

2

∫
σ

ez

z − i
dz − 1

2

∫
σ

ez

z + i
dz.

The function ez

z is analytic on the interior of γi and γ−i, so the integrals
over those two paths are equal to 0. So we get∫

σ

ez

z
dz =

∫
γ0

ez

z
dz.

Similarly, ∫
σ

ez

z − i
dz =

∫
γi

ez

z − i
dz

and ∫
σ

ez

z + i
dz =

∫
γ−i

ez

z + i
dz

We can evaluate each of these integrals using the Cauchy integral for-
mula, ∫

γ0

ez

z
dz = 2πie0∫

γi

ez

z − i
dz = 2πiei∫

γ−i

ez

z + i
dz = 2πie−i

and conclude that ∫
σ

ez

z3 + z
dz = πi(2− ei − e−i).

■
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Exercise 6

Use the previous exercise and the global Cauchy theorem to evaluate∫
γ

ez

z3 + z
dz, where γ(t) = 2eit, 0 ≤ t ≤ 2π.

Solution:

Let σ = (←−γ i,
←−γ 0,
←−γ −i, γ). Then∫

γ

ez

z3 + z
dz =

∫
σ

ez

z3 + z
dz +

∑
p∈{i,−i,0}

∫
γp

ez

z3 + z
dz

=

∫
σ

ez

z3 + z
dz + πi(2− ei − e−i).

To evaluate the integral over σ, I want to conclude that σ is null-
homologous somewhere and the use Cauchy’s integral formula. Let
Br = B(i, r) ∪ B(0, r) ∪ B(−i, r) be the union of the three open balls
around i,−i, 0 of radius r. For any z ∈ B1/2, η(γ, z) = 1 and exactly one
of η(←−γ i, z), η(

←−γ i, z), η(
←−γ i, z) is equal to −1 and the other two are equal

to 0. So for any z ∈ B1/2, η(σ, z) = 0. This does not, however, show
that σ is null-homologous in C \B1/2 since this is a closed set and null-

homologous was defined for open sets. C \B1/4 is closed and η(σ, z) = 0

for any z ∈ B1/4, so σ is null-homologous in C \ B1/4. It follows from
the global Cauchy theorem that∫

σ

ez

z3 + z
dz = 0

since ez

z3+z
is analytic in C \B1/4 and we conclude that∫

γ

ez

z3 + z
dz = πi(2− ei − e−i).

■
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