Complex analysis 2

Supplementary exercises ${ }^{1}$

1. Draw the images of cycles $(\omega),(\theta), \sigma=(\gamma, \eta)$ and $\tau=(\theta, \overleftarrow{\eta})$ when

$$
\begin{array}{ll}
\gamma(t)=2-e^{i t}, & \eta(t)=-2+e^{i t} \\
\omega(t)=4 \cos (t)+i \cos (t), & \theta(t)=4 \cos (t)+i 2 \sin (t), \quad 0 \leq t \leq 2 \pi .
\end{array}
$$

2. Let the cycles $(\omega),(\theta), \sigma$ and τ be as in Exercise 1 . Let $D=\mathbb{C} \backslash\{-2,2\}$. Show that the following pairs of cycles are homologous in D :
(i) (ω) and (θ),
(ii) σ and (θ),
(iii) τ and (γ).
3. Prove that the formula

$$
f(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{2^{n}+z^{n}}
$$

defines an analytic function in $B(0,1)$.
4. Let

$$
f(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}} z^{2 k} \quad \text { and } \quad g(z)=\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{2^{k-1}} z^{2 k-1} .
$$

Find the radii of convergence of both power series.
5. Evaluate the power series f, g in Exercise 4 (i.e. find simpler expressions that do not involve sums for f, g).
6. What kind of isolated singularity do the following functions f have at $z=0$?
(i) $f(z)=z^{2} e^{1 / z}$
(ii) $f(z)=\left(e^{z}-e z\right) / z^{4}$
(iii) $f(z)=\cos (z+\pi / 2) / z$
7. Find the residue of $z \mapsto \frac{\cos (z)}{\log (z)}$ at $z=1$.

[^0]8. Let
$$
f(z)=\frac{z}{z^{2}+1} \quad \text { and } \quad \gamma(t)=3 e^{i t}, 0 \leq t \leq 2 \pi
$$
(i) Find the poles of f and evaluate the corresponding residues.
(ii) Apply the residue theorem to evaluate $\int_{\gamma} f(z) d z$.
9. Fix $a>0$. Apply the residue theorem to evaluate
$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)^{2}} d x
$$
10. Fix $a>1$. Apply the residue theorem to evaluate
$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{a+\cos (x)} d x
$$
11. Let $f: B(0,1) \rightarrow \mathbb{C}$ be analytic and satisfy $f\left(i 2^{-n}\right)=-2^{-n}$ for all $n \in \mathbb{N}$. Prove that $f(z)=i z$ for all $z \in B(0,1)$.
12. Suppose \mathcal{F} consists of those analytic functions $f: B(0,1) \rightarrow \mathbb{C} \backslash\{1\}$ for which
$$
\left|\frac{f(z)}{1-f(z)}\right| \leq|z| \quad \text { for all } z \in B(0,1)
$$

Prove that \mathcal{F} is a normal family in $B(0,1)$.
13. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non-negative real numbers that satisfies $\lim \sup _{n \rightarrow \infty} a_{n}^{1 / n}=1$, and let \mathcal{F} be a family of functions $f: B(0,1) \rightarrow \mathbb{C}$ that are analytic and satisfy

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad \text { where }\left|c_{n}\right| \leq a_{n} \text { for all } n \in \mathbb{N} \text {. }
$$

Prove that \mathcal{F} is a normal family in $B(0,1)$.
14. Prove or disprove: there is a conformal surjection from the punctured disk $B^{*}(0,1)=B(0,1) \backslash\{0\}$ onto the annulus $B(0,2) \backslash \bar{B}(0,1)$.
15. Find a Möbius transformation $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ for which $f(1)=-1, f(0)=i$ and $f(\infty)=-i$.
16. With f as in Exercise 15, find the images $f(\mathbb{R})$ and $f(\mathbb{H})$ of the real line and the half-plane

$$
\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\} .
$$

[^0]: ${ }^{1}$ You can submit the solutions to at most 12 exercises to David Johansson by 20 May. These will be counted toward the bonus points (maximum 5) in the course exam.

