Complex analysis 1

Supplementary exercises

1. Let $z=1+2 i$ and $w=3+4 i$. Express the following points in the form $x+i y$:

$$
z=3 i w, \quad 2|w|^{2}+(1-i) z^{2}, \quad\left(z+5 z^{-1}\right)^{-1}, \quad \text { and } \quad \bar{w}^{-1}-w .
$$

Find $\operatorname{Arg}(z)$ and $\operatorname{Arg}(w)$, then $\arg (z)$ and $\arg (w)$. Find the value of $z w$ by the "geometric technique", using polar coordinate representations. Check that your result agrees with the "analytic" way of computing $z w$, based on the definition of the complex product.
2. Describe geometrically the sets of points z in the complex plane satisfying the following:
(a) $\operatorname{Re}(z)>3$
(b) $|z-i|=|z-1|$
(b) $|z|=\operatorname{Re}(z)+1$
3. Show that for any $z \in \mathbb{C}$ with $z \neq 1$ and any integer $n \geq 0$, one has

$$
1+z+z^{2}+\ldots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

4. Prove the parallelogram law

$$
|z+w|^{2}+|z-w|^{2}=2|z|^{2}+2|w|^{2}, \quad z, w \in \mathbb{C} .
$$

5. Let $f(z)=e^{z}$ and $Q:=[0,1] \times[0, \pi]$. What does $f(Q)$ look like?
6. Show that for any $z, w \in \mathbb{C}$ one has the formulas

$$
\begin{aligned}
\sin (z+w) & =\sin z \cos w+\cos z \sin w, \\
\cos (z+w) & =\cos z \cos w-\sin z \sin w .
\end{aligned}
$$

7. Prove by using the definitions that $D(z, r)$ is an open set and $\bar{D}(z, r)$ is a closed set.
8. Let $z \in \mathbb{C}$ with $|z|=1$, but $z \neq 1$. Show that the limit $\lim _{n \rightarrow \infty} z^{n}$ does not exist. Draw a picture!
(More exercises on the next page)
9. Prove that the sets $D(z, r)$ and $\mathbb{C} \backslash\{0\}$ are connected, and that $D(-2,1) \cup$ $D(2,1)$ is not connected. (See Example 2.4.2.)
10. Determine the largest open set where the function is analytic, and compute the derivative of

$$
z^{4}(1-z)^{6}, \quad\left[(z+1)\left(z^{3}-8\right)\right]^{4}, \quad(z-2 \sqrt{z})^{-1}
$$

11. Let $U \subset \mathbb{C}$ be open, and let $f: U \rightarrow \mathbb{C}$ be complex differentiable at $z \in U$. Assume $f^{\prime}(z) \neq 0$. Show that there exists a radius $r>0$ such that

$$
f(w) \neq f(z), \quad w \in D(z, r) \backslash\{z\} .
$$

12. If f is n times complex differentiable in a connected open set $U \subset \mathbb{C}$ and $f^{(n)}(z)=0$ for $z \in U$, show that f is a polynomial in z of degree at most $n-1$.
13. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a path. Suppose $z_{1}, z_{2} \in \gamma^{*}$ are distinct points with

$$
\operatorname{card} \gamma^{-1}\left(\left\{z_{j}\right\}\right)=1, \quad j \in\{1,2\}
$$

Show that $\overleftarrow{\gamma}$ is not a reparametrisation of γ. Show by example that one point is not enough to guarantee the same conclusion.
14. Compute the path integrals

$$
\int_{\gamma_{r}} \frac{-3 z+2}{z^{2}-8 z+12} d z
$$

where $\gamma_{r}(t)=r e^{i t}, r \in[0,2 \pi]$, and $r>0$ is such that the integrand is continuous on γ_{r}^{*} (so that the integral is well-defined). Which values of " r " do you have to exclude?
15. Compute the path integrals

$$
\int_{\partial D(0,1)} \frac{d z}{z^{n}}, \quad n \geq 2 .
$$

16. Compute the path integral

$$
\int_{\gamma} z e^{z} d z
$$

where γ is the path $\gamma(t)=t e^{2 \pi i t}, t \in[0,1]$. (Hint: integration by parts.)
17. Calculate the integral

$$
\int_{0}^{\infty} \frac{d x}{x^{10}+1}
$$

