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Exercise 1

Let γ and β be closed, piecewise C1-paths in C with the same initial
point. Show that the winding numbers satisfies

n←−γ (z) = −nγ(z), z ∈ C \ γ∗,
nγ⋆β(z) = nγ(z) + nβ(z), z ∈ C \ (γ∗ ∪ β∗)

Solution:

The function γ∗ ∋ y 7→ 1
y−z is continuous since z ̸∈ γ∗. Then we get

from Proposition 4.2.15 that

nγ(z) =
1

2πi

∫
γ

1

y − z
dy = − 1

2πi

∫
←−γ

1

y − z
dy = −n←−γ (z).

Similarly, (γ ⋆ β)∗ ∋ y 7→ 1
y−z is continuous when z ̸∈ (γ ⋆ β)∗, so we

again get from Proposition 4.2.15 that

nγ⋆β(z) =
1

2πi

∫
γ⋆β

1

y − z
dy

=
1

2πi

∫
γ

1

y − z
dy +

1

2πi

∫
β

1

y − z
dy

= nγ(z) + nβ(z).

■
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Exercise 2

Let η be the circle path η(t) = eit, t ∈ [0, 2π]. Compute the path integral∫
η

√
9− z2 dz,

where
√
· is the principal square root.

Solution:

Since B(0, 3) ∋ z 7→ z
√
9− z2 =: f(z) is analytic and η∗ ∈ B(0, 3) then∫

η

√
9− z2 dz =

∫
η

f(z)

z
dz = 2πi f(0)︸︷︷︸

=0

nη(0) = 0

by Theorem 5.2.13. ■

Exercise 3

With η as above, compute ∫
η

1

z2 − 5
2z + 1

dz.

Solution:

First note that z2 − 5
2z + 1 = (z − 2)(z − 1

2) and

1

z2 − 5
2z + 1

=
2

3

( 1

z − 2
− 1

z − 1
2

)
.

Then∫
η

1

z2 − 5
2z + 1

dz = 2πi
2

3

( 1

2πi

∫
η

1

z − 2
dz︸ ︷︷ ︸

=0

− 1

2πi

∫
η

1

z − 1
2

dz︸ ︷︷ ︸
=1

)

= −4πi

3

where the first integral is 0 since the integrand is analytic inside γ and
the second integral is evaluated using Theorem 5.2.13. ■
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Exercise 4

Compute ∫ 2π

0

1

5− 4 cos θ
dθ.

Solution:

Again using the same path η(θ) = eiθ, θ ∈ [0, 2π] as before, we have

cos(θ) =
η(θ) + 1

η(θ)

2

and

1 =
1

iη(θ)
η′(θ).

Inserting this in the integral, we get∫ 2π

0

1

5− 4 cos(θ)
dθ =

∫ 2π

0

1

5− 2(η(θ) + 1
η(θ))

1

iη(θ)
η′(θ) dz

=

∫
η

1

5− 2(z + 1
z )

1

iz
dz

= − 1

2i

∫
η

1

z2 − 5
2z + 1

dz =
2π

3

where the last equality comes from Exercise 3. ■

Exercise 5

Let γr(t) = reit, t ∈ [0, π]. Show that

lim
r→0

∫
γr

eiz

z
dz = iπ and lim

R→∞

∫
γR

eiz

z
dz = 0.

Solution:

Let’s start with the limit r → 0. I start by Taylor expanding eiz at 0
using Proposition 3.1.6:

eiz = 1 + iz + ε(z)z
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where ε(z) → 0 when z → 0. Then∫
γr

eiz

z
dz =

∫
γr

1

z
+ i+ ε(z) dz (1)

Using Corollary 4.2.12 we have∣∣∣∣∫
γr

i+ ε(z) dz

∣∣∣∣ ≤ (1 + ∥ε∥L∞(γ∗
r )
) length(γr).

Note that length(γr) = πr → 0. So if only ∥ε∥L∞(γ∗
r )

is bounded in r
then this converges to 0. Actually, ε(z) is analytic and therefore bounded
on compact sets, by Proposition 2.3.9. To see that it is analytic, write

ε(z) =
eiz

z
− 1

z
− i.

Since the right-hand side is analytic outside of z = 0, the same is true
for ε(z). Then ε(z) is also continuous outside of z = 0. But it is also
continuous at z = 0 since we know that ε(z) → 0 as z → 0. By Corollary
5.3.9 we get that ε(z) is analytic in some neighborhood of 0. Let U be
a neighborhood of the origin and C a constant such that |ε(z)| ≤ C for
all z ∈ U . Since γ∗r ⊂ U for all small enough r > 0, this shows that

∥ε∥L∞(γ∗
r )

≤ C

and we conclude that

lim
r→0

∫
γr

i+ ε(z) dz = 0. (2)

Next we have ∫
γr

1

z
dz =

∫ π

0

1

reit
ireit dt

=

∫ π

0
i dt

= iπ.

(3)

Combining (11),(22),(33) we get

lim
r→0

∫
γr

eiz

z
dz = iπ.

Now let’s prove that

lim
R→∞

∫
γR

eiz

z
dz = 0.
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Let’s start by just estimating the integral from above:∣∣∣∣∫
γR

eiz

z
dz

∣∣∣∣ ≤ ∫
γR

|eiz|
|z|

|dz|

=

∫
γR

|eiRe(z)−Im(z)|
|z|

dz

=

∫
γR

e− Im(z)

|z|
dz

=

∫ π

0

e−R sin(t)

|Reit|
|iReit| dz

=

∫ π

0
e−R sin(t) dz.

(4)

One way to handle this is to use the dominated convergence theorem.
Since I don’t know if students are expected to know about dominated
convergence in this course, I’ll present an alternative solution. But the
price of not using powerful tools like dominated convergence is that it
gets more involved. Let’s start by writing∫ π

0
e−R sin(t) dt =

∫ 1
2

0
e−R sin(t) dt+

∫ π− 1
2

1
2

e−R sin(t) dt+

∫ π

π− 1
2

e−R sin(t) dt.

Using sin(t) = sin(π − t) and a change of variables, we find∫ 1
2

0
e−R sin(t) dt =

∫ π

π− 1
2

e−R sin(t) dt,

and we get∫ π

0
e−R sin(t) dt = 2

∫ 1
2

0
e−R sin(t) dt+

∫ π− 1
2

1
2

e−R sin(t) dt (5)

It’s well-known that −t ≤ sin(t) ≤ t for t ≥ 0, but if we additionally have
t ≤ 1 then this can actually be improved to 5

6 t ≤ sin(t) ≤ t. To see this,
we can use another basic but perhaps less well-known inequality(see e.g.
[11, Theorem 8.4.8]) for sin(t), namely

t− 1

6
t3 ≤ sin(t)
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for t ≥ 0. When 0 ≤ t ≤ 1 then −t ≤ −t3 and it follows that

5

6
t ≤ sin(t)

for 0 ≤ t ≤ 1. From this we get

e−R sin(t) ≤ e−R
5
6
t

for 0 ≤ t ≤ 1. Also, e−R sin(t) attains its maximum over [12 , π − 1
2 ] at the

boundary points, so

e−R sin(t) ≤ e−R sin( 1
2
)

when 1
2 ≤ t ≤ π − 1

2 . To see this, we can look at its derivative,

−R cos(t)e−R sin(t), which is negative when t < π/2 and positive when
t > π/2. Now we have∫ 1

2

0
e−R sin(t) dt ≤

∫ 1
2

0
e−R

5
6
t dt =

6

5R

(
1− e−

5R
12
)
→ 0. (6)

Note also that esin(
1
2
) > 1, so we get∫ π− 1

2

1
2

e−R sin(t) dt ≤
∫ π− 1

2

1
2

(e−R sin( 1
2
)) dt =

( 1

esin(
1
2
)

)R
(π − 1) → 0. (7)

From (55),(66),(77) we get

lim
R→∞

∫ R

0
e−R sin(t) dt = 0.

and it follows that

lim
R→∞

∫
γR

eiz

z
dz = 0.

■

Exercise 6

Show that

lim
R→∞

∫ R

−R

sin(t)

t
dt = π.

Solution:

I want relate the integral to a complex path integral. Specifically, I want
to integrate on the paths [−R,− 1

R ] and [ 1R , R], so I first need to show
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that we can ignore the path [− 1
R ,

1
R ]. Using symmetry around the origin

and sin(t) ≤ t for t ≥ 0 we have∣∣∣∣∣
∫ 1

R

− 1
R

sin(t)

t
dt

∣∣∣∣∣ ≤
∫ 1

R

− 1
R

|sin(t)|
|t|

dt ≤ 2

∫ 1
R

0
dt =

2

R
→ 0.

On the remaining part of the interval [−R,R], I want to use complex
path integrals. Note that for z ∈ R, sin(z) = Im(eiz). Consider the two
paths [−R,− 1

R ](t) = −R(1− t)− t
R and [ 1R , R](t) = 1

R(1− t)+Rt. Then
we get, by using variable substitution,∫ R

1
R

sin(t)

t
dt =

∫ 1

0

sin( 1
R(1− t) +Rt)

1
R(1− t) +Rt

(R− 1

R
) dt

= Im
(∫

[ 1
R
,R]

eiz

z
dz

)
and similarly, ∫ − 1

R

−R

sin(t)

t
dt = Im

(∫
[−R,− 1

R
]

eiz

z
dz

)
.

Using the paths γR, γ 1
R
and limits from from Exercise 5, we get∫

[−R,− 1
R
]∪[ 1

R
,R]

eiz

z
dz =

∫
[−R,− 1

R
]⋆γ 1

R
⋆[ 1

R
,R]⋆γR

eiz

z
dz

︸ ︷︷ ︸
=0

−
∫
γ 1
R

eiz

z
dz

︸ ︷︷ ︸
→iπ

−
∫
γR

eiz

z
dz︸ ︷︷ ︸

→0

→ iπ.

The integral over the closed path is 0 since the function is analytic ana-
lytic away from z = 0. Combining all the above we get

lim
R→∞

∫ R

−R

sin(t)

t
dt = lim

R→∞

∫ 1
R

− 1
R

sin(t)

t
dt

+ lim
R→∞

Im
(∫

[−R,− 1
R
]

eiz

z
dz +

∫
[ 1
R
,R]

eiz

z
dz

)
= π.

■
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