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Exercise 1

Draw a rough sketch of the following paths in C and explain briefly how
the curve traces out its trajectory:

(i) γ(t) = t2 + it4 for t ∈ [−1, 1],

(ii) γ(t) = e−it2 for t ∈ [0,
√
2π],

(iii) γ(t) = 2 cos(t) + i sin(t) for t ∈ [0, 2π].

(a) path in part (i)(i) (b) path in part (ii)(ii)

(c) path in part (iii)(iii)
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Solution:

In part (i)(i) we have a path that looks like the parabola y = x2 since the
imaginary part is quadratic in the real part. The one perhaps noteworthy
thing I suppose is the speed at which we traverse the path, which is quite
uneven because of the nonlinearities. When t = 0 and we’re in the middle
of the index set then we have traversed exactly half the path. But when
t = −1/2 and we’re only a quarter way through the index set then we’re
already more that a quarter through the path because of the nonlinear
behaviour.

In part (ii)(ii), the path looks like the unit cirle which we traverse clock-
wise. Again the speed at which we traverse the path varies a lot. Exactly
half way through the index set, at t =

√
π/

√
2, we have only traversed

a quarter of the circle.
In part (iii)(iii), I believe we have an ellipse and we traverse anti-clockwise.

In this case we again traverse the path with with varying speed. At t = π
exactly half way through the index set, we have traversed half the path.
But at t = π/4 at an 8th through the index set then we have traversed
more than one 8th of the path. ■

Exercise 2

If γ(t) = teit for 0 ≤ t ≤ π, evaluate

(i)
∫
γ z̄ dz,

(ii)
∫
γ |z| |dz|,

(iii)
∫
γ |z| dz.

Solution:

So γ(t) = teit and γ′(t) = (1 + it)eit. Then∫
γ
z̄ dz =

∫ π

0

¯γ(t)γ′(t) dt =

∫ π

0
t+ it2 dt =

π2

2
+ i

π3

3
.

Next,∫
γ
|z| |dz| =

∫ π

0
|γ(t)||γ′(t)| dt =

∫ π

0
t
√
1 + t2 dt =

1

3
[(1 + π2)3/2 − 1]
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and finally ∫
γ
|z| dz =

∫ π

0
|γ(t)|γ′(t) dz =

∫ π

0
(t+ it2)eit dt

=

∫ π

0
t cos(t) dt︸ ︷︷ ︸
=−2

−
∫ π

0
t2 sin(t) dt︸ ︷︷ ︸
=π2−4

+ i

∫ π

0
t sin(t) dt︸ ︷︷ ︸
=π

+i

∫ π

0
t2 cos(t) dt︸ ︷︷ ︸
−2π

=2− π2 − iπ.

■

Exercise 3

Evaluate
∫
γ z

2 dz and
∫
γ e

z dz, where γ(t) = t+ i t
2

π for 0 ≤ t ≤ π.

Solution:

We can use the fundamental theorem of calculus to compute∫
γ
z2 dz =

1

3
z3
∣∣∣z=γ(π)

z=γ(0)
=

1

3
(π + iπ)3 =

2π3

3
(−1 + i)

and ∫
γ
ez dz = ez

∣∣z=γ(π)

z=γ(0)
= eπ(1+i) − e0 = −(eπ + 1)

■

Exercise 4

Prove proposition 4.2.10: Let U ⊂ C be open and let γ : [a, b] → U be
a piecewise C1-path. Assume that f, g : U → C are analytic. Assume
additionally that f ′, g′ are continuous. Show that∫

γ
f(z)g′(z) dz = [f(γ(b))g(γ(b))− f(γ(a))g(γ(a))]−

∫
γ
f ′(z)g(z) dz

Solution:

This follows straight from Theorem 4.3.4 in the lecture notes. Since
f, g are analytic, the product fg is also analytic and (fg)′ = f ′g + fg′.
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Clearly fg is a primitive of (fg)′, so from the fundamental theorem of
calculus we get∫

γ
f(z)g′(z) dz =

∫
γ
(fg)′(z) dz −

∫
γ
f ′(z)g(z) dz

= f(γ(b))g(γ(b))− f(γ(a))g(γ(a))−
∫
γ
f ′(z)g(z) dz.

■

Exercise 5

Consider the map f(z) = z̄, defined for z ∈ C.

(a) Show that f does not have a primitive in any open set U ⊂ C.

(b) In Theorem 5.1.4, if U is convex and a ∈ U , we explicitly defined

F (z) :=

∫
[a,z]

f(ζ) dζ.

and showed that F is a primitive of f . What goes wrong in the
proof when f(z) = z̄ and why isn’t F above a primitive of f?
Calculate F explicitly!

Solution:

If f had a primitive then we would have∫
γ
f(z) dz = 0

for any closed C1-path γ. But for any path γ(t) = z0 + reit, t ∈ [0, 2π],
we have ∫

γ
f(z) dz =

∫ 2π

0
iz̄0re

it + ir2 dt = 2πr2i.

So f(z) cannot have a primitive.
For the second part, the proof that the given function F (z) is a

primitive relies on Cauchy’s theorem for triangles(Theorem 5.1.1) which
assumes f to be analytic. So unless the assumptions in Theorem 5.1.1
can be weakened to not use analyticity then this is a reason why the
theorem doesn’t apply to f(z) = z̄. But the analyticity assumption
in Theorem 5.1.1 really is used in the proof, since the formula f(z) =
f(z0) + f ′(z0)(z − z0) + e(z)(z − z0) is used. Finally, we check what the
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function F (z) actually is in this case

F (z) =

∫
[a,z]

s̄ ds =

∫ 1

0
ā+ t|z − a|2 dt = ā+

1

2
|z − a|2.

This is not a primitive of any function since it’s not even differentiable.
■

Exercise 6

Let U = C \ {0}, let f : U → C, f(z) = 1/z, and let ∆ be a triangle
containing the origin. Assume it to be known that

∫
∂∆ f(z) dz = 2πi.

Why does this not contradict Cauchys theorem(Theorem 5.1.1)? What
would go wrong in the proof of Cauchy’s theorem if one tries to apply
the proof to this f? Finally, prove that

∫
∂∆ f(z) dz = 2πi for a suitable

triangle ∆ containing 0.

Solution:

Theorem 5.1.1 requires continuity of f(z) in U and in particular bound-
edness, which does not hold for f(z) in this exercise. The boundedness
of f(z) is used in the proof of Theorem 5.1.1 to ensure that the norm
∥f∥L∞(∆) is finite. So the argument fails for f(z) = 1/z.

Next let’s compute
∫
∂∆ f(z) dz for some triangle ∆ containing the

origin. I’ll use the triangle with the corners a = −1, b = 1 − i and
c = 1 + i,

∂∆ = [a, b] ⋆ [b, c] ⋆ [c, a].

and then∫
∂∆

f(z) dz =

∫
[a,b]

f(z) dz +

∫
[b,c]

f(z) dz +

∫
[c,a]

f(z) dz.

We can compute the integral over [b, c] using the fundamental theorem
of calculus since the principal logarithm is a primitive of f(z) on [b, c].
Then we find ∫

[b,c]
f(z) dz = i

π

2
.

I’ll use a limit argument to handle the paths [a, b] and [c, a]. For ε ∈ (0, 1)
arbitrary, define the two paths

λε(t) = [a, b](t) = −(1− t) + (1− i)t for t ∈ [0, ε],

ηε(t) = [a, b](t) = −(1− t) + (1− i)t for t ∈ [ε, 1].
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then [a, b] = λε ⋆ ηε and∫
[a,b]

f(z) dz =

∫
λε

f(z) dz +

∫
ηε

f(z) dz

Now the principal logarithm is a primitive of f(z) on ηε, so we get∫
ηε

f(z) dz =Log(ηε(1))− Log(ηε(ε))

=Log(1− i)− Log(−1 + 2ε− iε)

= log(
√
2)− i

π

4

−
[
log(

√
(−1 + 2ε)2 + ε2)︸ ︷︷ ︸
→0 as ε→0

+iArg(−1 + 2ε− iε)︸ ︷︷ ︸
→−π as ε→0

]
→ log(

√
2)− i

π

4
+ iπ.

Note that I’m not using limεArg(zε) = Arg(limε zε) to evaluate the limit
of Arg(z), since Arg(z) is not continuous at the negative real line so this
equatliy doesn’t hold. But to justify that the claimed limit holds, recall
from Remark 1.3.14 in the lecture notes that Arg(z) can be defined in

terms of arccos
(
Re(z)
|z|

)
. It’s not mentioned specifically how this is done,

but the following seems reasonable

Arg(z) =


arccos

(
Re(z)
|z|

)
for Im(z) > 0,

0 for Re(z) > 0 and Im(z) = 0,

− arccos
(
Re(z)
|z|

)
for Im(z) < 0.

Now I think it should be clear that Arg(−1+2ε−iε) → −π as ε → 0 since
Re(−1+2ε−iε)
|(−1+2ε−iε)| → −1 from below negative real line. Next, we estimate the
integral over λε by something that converges to 0,∣∣∣∣∫

λε

f(z) dz

∣∣∣∣ ≤ ∥f∥L∞(λε) length(λε) ≤ ∥f∥L∞(∂∆) length(λε).

Since f is bounded on ∂∆ and length(λε) → 0, we see that∫
λε

f(z) dz → 0
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as ε → 0. Now we get∫
[a,b]

f(z) dz =

∫
λε

f(z) dz +

∫
ηε

f(z) dz → log(
√
2)− i

π

4
+ iπ

In the exact same way we compute∫
[c,a]

f(z) dz = − log(
√
2)− i

π

4
+ iπ

We finally have∫
∂∆

f(z) dz =

∫
[a,b]

f(z) dz +

∫
[b,c]

f(z) dz +

∫
[c,a]

f(z) dz

= log(
√
2)− i

π

4
+ iπ + i

π

2
− log(

√
2)− i

π

4
+ iπ

= 2πi.

■
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