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Exercise 1

Let U ⊂ C be open, let f, g : U → C be complex differentiable at z with
g′(z) ̸= 0, and let f(z) = 0 = g(z). Show that

lim
w→z

w∈C\{z}

f(w)

g(w)
=

f ′(z)

g′(z)
.

Solution:

Since we will divide by g(w) and g(z) = 0, I want to first make sure that
g(w) ̸= 0 for w close enough to z. This follows from proposition 3.1.6:

g(w) = g(z) + g′(z)(w − z) + εg(w)(w − z).

Since g(z) = 0 and εg(w) → 0 as w → z then

|g′(z)(w − z)| ≤ |g′(z)(w − z) + εg(w)(w − z)|+ |εg(w)(w − z)|
= |g(w)|+ |eg(w)(w − z)|

and from this we get

|g(w)| ≥ |g′(z)(w − z)| − |εg(w)(w − z)|
= (|g′(z)| − |εg(w|)|w − z|
> 0

for w close enough to z, since εg(w) → 0 as w → z. So for w close
enough to z, g(w) ̸= 0 and f(w)/g(w) therefore makes sense.

Again from proposition 3.1.6 we get

f(w) = f(z) + f ′(z)(w − z) + εf (w)(w − z).
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Using this and f(z) = 0 = g(z) we have

lim
w→z

f(w)

g(w)
= lim

w→z

f ′(z)(w − z) + εf (w)(w − z)

g′(z)(w − z) + εg(w)(w − z)

= lim
w→z

f ′(z) + εf (w)

g′(z) + εg(w)

=
f ′(z)

g′(z)
.

■

Exercise 2

Let U ⊂ C be open and connected and f : U → C analytic. Assume
that one of the following two functions is constant on U :

u = Re(f), v = Im(f).

Show that f is constant in U .

Solution:

Since f is analytic, u, v satisfy the Cauchy-Riemann equations,{
∂xu = ∂yv

∂yu = −∂xv.

and we see that if one of u, v have partial derivatives equal to 0 then the
other has it too. So if either one of u, v is constant then the other must
be as well. Now we get from corollary 3.2.7 that f ′(z) = 0 for all z ∈ U
and then theorem 3.3.1 says that f(z) is constant in U . ■

Exercise 3

Let U ⊂ C be open, and let f = u + iv : U → C. Assume additionally
that u, v are twwice continuously differentiable. Let ∆ be the Laplace
operator. Show that u and v are harmonic:

(∆u)(z) = 0 = (∆v)(z), ∀z ∈ U.

Does the converse hold?
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Solution:

Since u, v are twice continuously differentiable, ∂xyu = ∂yxu and ∂xyv =
∂yxv. We again use the Cauchy-Riemann equations,{

∂xu = ∂yv

∂yu = −∂xv.

Then we see that

∂xxu = ∂xyv = ∂yxv = −∂yyu

which is after a little rearrangement says that ∆u = 0. Similarly, for v,

∂xxv = −∂xyu = −∂yxu = −∂yyv

and we get ∆v = 0.
The converse is not true. Take for example f(z) = Re(z). Then

∂xu = 1, ∂yu = 0, ∂xv = 0, ∂yv = 0 so the Cauchy-Riemann equations
are not satisfied and f is therefore not analytic, but u is harmonic,
∆u = 0. ■

Exercise 4

Show that the complex path integral is linear: if γ : [a, b] → C is a
piecewise C1-path, f, g : γ∗ :→ C are continuous, and α, β ∈ C, then∫

γ
(αf + βg)(z) dz = α

∫
γ
f(z) dx+ β

∫
γ
g(z) dz.

Solution:

I’ll show the multiplication and addition properties separately, but by
combining them we get the desired formula. We mostly reuse linearity
from real analysis, but have to pay attention to the complex multiplica-
tion when factorizing. To make the notation shorter, let r = Re(α), s =
Re(α) and u(t) = Re(f(γ(t))γ′(t)), v(t) = Im(f(γ(t))γ′(t)) then r, s are
real and u, v are real-valued and take a real parameter. Then∫

γ
αf(z) dz =

∫ b

a
Re[αf(γ(t))γ′(t)] dt+ i

∫ b

a
Im[αf(γ(t))γ′(t)] dt

=

∫ b

a
ru(t)− sv(t) dt+ i

∫ b

a
rv(t) + su(t) dt
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= r

∫ b

a
u(t) dt− s

∫ b

a
v(t) dt+ ir

∫ b

a
v(t) dt+ is

∫ b

a
u(t) dt

= (r + si) ·
∫ b

a
u(t) + iv(t) dt = α

∫ b

a
f(γ(t))γ′(t) dt

= α

∫
γ
f(z) dz.

Next, we have the additive property,∫
γ
f(z) + g(z) dz =

∫ b

a
Re[f(γ(t))γ′(t) + g(γ(t))γ′(t)] dt

+ i

∫ b

a
Im[f(γ(t))γ′(t) + g(γ(t))γ′(t)] dt

=

∫ b

a
Re[f(γ(t))γ′(t)] dt+

∫ b

a
Re[g(γ(t))γ′(t)] dt

+ i
(∫ b

a
Im[f(γ(t))γ′(t)] dt+

∫ b

a
Re[g(γ(t))γ′(t)] dt

)
=

∫ b

a
Re[f(γ(t))γ′(t)] dt+ i

∫ b

a
Im[f(γ(t))γ′(t)] dt

+

∫ b

a
Re[g(γ(t))γ′(t)] dt+ i

∫ b

a
Re[g(γ(t))γ′(t)] dt

=

∫
γ
f(z) dz +

∫
γ
g(z) dz.

■

Exercise 5

Calculate the following complex path integrals:∫
[−i,1+2i]

Im(z) dz and

∫
∂D(z0,r)

z̄ dz

where ∂D(z0, r) refers to the path γ(t) = z0 + reit, t ∈ [0, 2π].

Solution:

If γ(t) = (1− t)(−i) + t(1 + 2i) for t ∈ [0, 1] then γ′(t) = 1 + 3i and∫
γ
Im(z) dz =

∫ 1

0
Im(γ(t))γ′(t) dt =

∫ 1

0
(3t− 1)(1 + 3i) dt =
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=
3

2
− 1 + i(

9

2
− 3) =

1

2
+ i

3

2
.

For the other integral, γ(t) = z0 + reit for t ∈ [0, 2π] and γ′(t) = ireit,∫
γ
z̄ dz =

∫ 2π

0
γ(t)γ′(t) dt =

∫ 2π

0
(z0 + re−it)ireit dt

=

∫ 2π

0
z0ire

it + ir2 dt =

∫ 2π

0
ir2 dt = i2πr2.

Note that the integral of z0ire
it is 0 since eit is 2π-periodic. ■

Exercise 6

We know that f : C → C is analytic, f(0) = i and u = Re(f) is given by

u(x, y) = 2x3y − 2xy3 + x2 − y2.

Find v = Im(f).

Solution:

Since f is analytic, u, v satisfy the Cauchy-Riemann equations,{
6x2y − 2y3 + 2x = ∂xu = ∂yv,

2x3 − 6xy2 − 2y = ∂yu = −∂xv.

Integrating the first equation in y, we get

v(x, y) = 3x2y2 − y4

2
+ 2xy + C(x).

Inserting this expression into the second of the C-R equations gives

2x3 − 6xy2 − 2y = −(6xy2 + 2y + C ′(x))

which simplifies to
C ′(x) = −2x3

from which we get C(x) = −x4

2 +D for some constant D. From f(0) = i
we conclude that 1 = v(0) = C(0) = D. Finally, v(x, y) is given by

v(x, y) = 3x2y2 − y4 + x4

2
+ 2xy + 1.

■

5


