Complex analysis 1

Exercises 4

David Johansson

February 12, 2024

Exercise 1

For each of the following functions determine the largest open set in \mathbb{C} where the function is analytic, and use the differentiation rules in the lecture notes to calculate its complex derivative:
(a) $f(z)=z^{4}-2 i z^{3}+1$
(b) $g(z)=(z-i) /(z+i)$
(c) $h(z)=z^{4}(1-z)^{6}$
(d) $k(z)=\sqrt{2 z}$

Solution:

From the definition of the complex derivative we see that the functions $z \mapsto z$ and $z \mapsto 1$ are differentiable everywhere in \mathbb{C}, with derivatives 1 and 0 respectively, and are therefore analytic everywhere. By using proposition 3.1.7 it then follows that complex polynomials in the variable z are analytic everywhere and that the differentiation formulas for real polynomials also hold for complex polynomials. So $f(z), h(z)$ are analytic everywhere and

$$
f^{\prime}(z)=4 z^{3}-6 i z^{2}
$$

and

$$
h^{\prime}(z)=4 z^{3}(1-z)^{6}-6 z^{4}(1-z)^{5}=2 z^{3}(1-z)^{5}(2-5 z) .
$$

Since $z \mapsto z-1$ and $z \mapsto z+i$ are analytic everywhere and $z+i \neq 0$ in $\mathbb{C} \backslash\{-i\}, g(z)$ is analytic in $\mathbb{C} \backslash\{-i\}$ with derivative $g^{\prime}(z)=\frac{2 i}{(z+1)^{2}}$.

Lastly, if $p(z)=2 z$ then $k(z)=\sqrt{\cdot} \circ p(z)=\sqrt{2 z}$ where $\sqrt{\cdot}$ is the principal square root. The principal square root is analytic in $\mathbb{C} \backslash(-\infty, 0]$ and $p(z)$ is analytic everywhere so the composition $k(z)$ is analytic in $\mathbb{C} \backslash(-\infty, 0]$ by proposition 3.1 .12 and the derivative is $k^{\prime}(z)=1 / \sqrt{2 z}$. Also, $\mathbb{C} \backslash(-\infty, 0]$ is the largest open set in which $k(z)$ is analytic. Let $q(z)=z / 2$ then q is analytic everywhere and then $k \circ q(z)=\sqrt{z}$ is analytic where k is analytic. So since \sqrt{z} is only analytic in $\mathbb{C} \backslash(-\infty, 0]$, $k(z)$ cannot be analytic in a larger domain than this.

ExERCISE 2

Let $f: U \rightarrow \mathbb{C}, g: U \rightarrow \mathbb{C}$ and $h: U \rightarrow \mathbb{C}$ be analytic in U with $h(z) \neq 0$ for all $z \in U$. Prove that $f g$ and f / h are analytic in U and

$$
\begin{aligned}
(f g)^{\prime}(z) & =f^{\prime}(z) g(z)+f(z) g^{\prime}(z) \\
(f / h)^{\prime}(z) & =\frac{f^{\prime}(z) h(z)-f(z) h^{\prime}(z)}{h(z)^{2}}
\end{aligned}
$$

SOLUTION:

In order to avoid using the $\varepsilon-\delta$ definition of a limit, I'll use proposition 3.1.6, namely that for each function $p \in\{f, g, h\}$ there exists a corresponding function ε_{p} such that $p(w)=p(z)+p^{\prime}(z)(w-z)+\varepsilon_{p}(w)(w-z)$ and $\varepsilon_{p}(w) \rightarrow 0$ as $w \rightarrow z$. Then

$$
\begin{aligned}
f(w) g(w)= & f(z) g(z)+f^{\prime}(z) g(z)(w-z)+g^{\prime}(z) f(z)(w-z) \\
& +\varepsilon_{f}(w)\left[g(z)+g^{\prime}(z)(w-z)\right](w-z) \\
& +\varepsilon_{g}(w)\left[f(z)+f^{\prime}(z)(w-z)\right](w-z) \\
& +\left[\varepsilon_{f}(w) \varepsilon_{g}(w)+f^{\prime}(z) g^{\prime}(z)\right](w-z)^{2}
\end{aligned}
$$

Using this in the definition of the derivative we get

$$
\begin{aligned}
(f g)^{\prime}(z)= & \lim _{w \rightarrow z} \frac{f(w) g(w)-f(z) g(z)}{w-z} \\
= & \lim _{w \rightarrow z} \frac{f(z) g(z)+f^{\prime}(z) g(z)(w-z)+g^{\prime}(z) f(z)(w-z)-f(z) g(z)}{w-z} \\
& +\lim _{w \rightarrow z} \frac{\varepsilon_{f}(w)\left[g(z)+g^{\prime}(z)(w-z)\right](w-z)}{w-z} \\
& +\lim _{w \rightarrow z} \frac{\varepsilon_{g}(w)\left[f(z)+f^{\prime}(z)(w-z)\right](w-z)}{w-z} \\
& +\lim _{w \rightarrow z} \frac{\left[\varepsilon_{f}(w) \varepsilon_{g}(w)+f^{\prime}(z) g^{\prime}(z)\right](w-z)^{2}}{w-z}
\end{aligned}
$$

$$
\begin{aligned}
= & f^{\prime}(z) g(z)+g^{\prime}(z) f(z) \\
& +\lim _{w \rightarrow z} \varepsilon_{f}(w)\left[g(z)+g^{\prime}(z)(w-z)\right] \\
& +\lim _{w \rightarrow z} \varepsilon_{g}(w)\left[f(z)+f^{\prime}(z)(w-z)\right] \\
& +\lim _{w \rightarrow z}\left[\varepsilon_{f}(w) \varepsilon_{g}(w)+f^{\prime}(z) g^{\prime}(z)\right](w-z) \\
= & f^{\prime}(z) g(z)+g^{\prime}(z) f(z) .
\end{aligned}
$$

Since this works for any z, the product $f g$ is analytic.
Let's now obtain the derivative of f / h. First, we have

$$
\begin{aligned}
\left(\frac{1}{h}\right)^{\prime}(z) & =\lim _{w \rightarrow z} \frac{\frac{1}{h(w)}-\frac{1}{h(z)}}{w-z} \\
& =\lim _{w \rightarrow z} \frac{h(z)-h(w)}{h(z) h(w)(w-z)} \\
& =\lim _{w \rightarrow z} \frac{h(z)-h(z)-h^{\prime}(z)(w-z)-\varepsilon_{h}(w)(w-z)}{h(z)\left[h(z)+h^{\prime}(z)(w-z)+\varepsilon_{h}(w)(w-z)\right](w-z)} \\
& =\lim _{w \rightarrow z} \frac{-h^{\prime}(z)}{h(z)^{2}+h(z)\left[h^{\prime}(z)(w-z)+\varepsilon_{h}(w)(w-z)\right]} \\
& +\lim _{w \rightarrow z} \frac{-\varepsilon_{h}(w)}{h(z)^{2}+h(z)\left[h^{\prime}(z)(w-z)+\varepsilon_{h}(w)(w-z)\right]} \\
& =\frac{-h^{\prime}(z)}{h(z)^{2}}
\end{aligned}
$$

Then we have, using the product rule, that

$$
\left(\frac{f}{h}\right)^{\prime}(z)=f^{\prime}(z) \frac{1}{h(z)}+f(z) \frac{-h^{\prime}(z)}{h(z)^{2}}=\frac{f^{\prime}(z) h(z)-h^{\prime}(z) f(z)}{h(z)^{2}}
$$

ExERCISE 3

Prove that $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\bar{z}$ is not complex differentiable at any point of \mathbb{C}.

Solution:

We prove that the limit

$$
\lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z}=\lim _{w \rightarrow z} \frac{\bar{w}-\bar{z}}{w-z}
$$

doesn't exist. To do this we construct two sequences that result in
different limits. The sequences $w_{n}=z+\frac{1}{n}$ and $u_{n}=z+i \frac{1}{n}$ have limit
z. Then

$$
\frac{\bar{w}_{n}-\bar{z}}{w_{n}-z}=\frac{\frac{1}{n}}{\frac{1}{n}}=1
$$

but

$$
\frac{\bar{u}_{n}-\bar{z}}{u_{n}-z}=\frac{-i \frac{1}{n}}{i \frac{1}{n}}=-1
$$

ExERCISE 4

Let $f: U \rightarrow \mathbb{C}$ be analytic and define $g(z)=\overline{f(\bar{z})}$. Show that g is analytic in $\left.U^{*}=\bar{z}: z \in U\right\}$ and $g^{\prime}(z)=\overline{f^{\prime}(\bar{z})}$.

Solution:

Note that if we denote $u=\bar{w}, v=\bar{z}$ then

$$
\left.\begin{aligned}
\left|\frac{f(w)-f(z)}{w-z}-f^{\prime}(z)\right| & =\left|\frac{f(\overline{\bar{w}})-f(\overline{\bar{z}})}{w-z}-f^{\prime}(\overline{\bar{z}})\right| \\
& =\left\lvert\, \frac{f(\overline{\bar{w}})-f(\overline{\bar{z}})}{w-z}-f^{\prime}(\overline{\bar{z}})\right.
\end{aligned} \right\rvert\,
$$

So if $\delta>0$ is such that $|w-z|<\delta$ implies

$$
\left|\frac{f(w)-f(z)}{w-z}-f^{\prime}(z)\right|<\varepsilon
$$

then $|u-v|=|w-z|<\delta$ implies

$$
\left|\frac{g(u)-g(v)}{u-v}-g^{\prime}(v)\right|=\left|\frac{f(w)-f(z)}{w-z}-f^{\prime}(z)\right|<\varepsilon
$$

So g is indeed differentiable.

Exercise 5

Let $S=\{z \in \mathbb{C}:|\operatorname{Re}|<\pi / 2\}$ and $f: S \rightarrow \mathbb{C} \backslash[1, \infty), f(z)=\sin (z)$. Assuming that f is known to be bijective with continuous inverse, define

$$
\operatorname{Arcsin}(w):=f^{-1}(w), \quad w \in \mathbb{C} \backslash[1, \infty)
$$

Show that Arcsin is analytic in $\mathbb{C} \backslash[1, \infty)$.

Solution:

Differentiability of $\operatorname{Arcsin}(w)$ follows from proposition 3.1.13, provided $f(z)=\sin (z)$ is differentiable at $z=\operatorname{Arcsin}(w)$ with nonzero derivative,

$$
f^{\prime}(z)=f^{\prime}(\operatorname{Arcsin}(w)) \neq 0
$$

But $f^{\prime}(z)=\cos (z)$ and for $z=x+i y \in S$,

$$
\operatorname{Re}\left(f^{\prime}(z)\right)=\operatorname{Re}(\cos (z))=\frac{1}{2}\left(e^{-y}+e^{y}\right) \cos (x) \neq 0
$$

So $f^{\prime}(z) \neq 0$ for all $z \in S$. So $\operatorname{Arcsin}(w)$ is analytic and

$$
\operatorname{Arcsin}^{\prime}(w)=\frac{1}{\cos (\operatorname{Arcsin}(w))}
$$

ExERCISE 6

Assume the formula

$$
\operatorname{Arcsin}(w)=-i \log \left[\sqrt{1-w^{2}}+i w\right], \quad w \in \mathbb{C} \backslash[1, \infty)
$$

Prove that

$$
\operatorname{Arcsin}^{\prime}(w)=\frac{1}{\sqrt{1-w^{2}}}
$$

SOLUTION:

From the previous exercise we know that

$$
\operatorname{Arcsin}^{\prime}(w)=\frac{1}{\cos (\operatorname{Arcsin}(w))}
$$

Using the provided formula for $\operatorname{Arcsin}(w)$ and the definition of $\cos (z)$,
we have

$$
\begin{aligned}
\cos (\operatorname{Arcsin}(w)) & =\cos \left(-i \log \left[\sqrt{1-w^{2}}+i w\right]\right) \\
& =\frac{1}{2}\left(e^{i\left[-i \log \left(\sqrt{1-w^{2}}+i w\right)\right]}+e^{-i\left[-i \log \left(\sqrt{1-w^{2}}+i w\right)\right]}\right) \\
& =\frac{1}{2}\left(e^{\log \left(\sqrt{1-w^{2}}+i w\right)}+e^{-\log \left(\sqrt{1-w^{2}}+i w\right)}\right) \\
& =\frac{1}{2}\left(\sqrt{1-w^{2}}+i w+\frac{1}{\sqrt{1-w^{2}}+i w}\right) \\
& =\frac{1}{2}\left(\sqrt{1-w^{2}}+i w+\frac{\sqrt{1-w^{2}}-i w}{\left(\sqrt{1-w^{2}}-i w\right)\left(\sqrt{1-w^{2}}+i w\right)}\right) \\
& =\frac{1}{2}\left(\sqrt{1-w^{2}}+i w+\sqrt{1-w^{2}}-i w\right) \\
& =\sqrt{1-w^{2}} .
\end{aligned}
$$

We indeed get

$$
\operatorname{Arcsin}^{\prime}(w)=\frac{1}{\sqrt{1-w^{2}}}
$$

