Complex analysis 1 Exercises 3

David Johansson February 2, 2024

Exercise 1

Express in the form x + iy:

- a) $Log(-e^2)$
- b) $\operatorname{Log}(-1 i\sqrt{3})$
- c) $i^{\text{Log}(i)}$
- d) $(\sqrt{3}+i)^{6-i}$

SOLUTION:

Part a):

The principal argument is $\operatorname{Arg}(-e^2) = \pi$, so we get

$$Log(-e^2) = log(|-e^2|) + i \operatorname{Arg}(-e^2)$$
$$= 2 + i\pi$$

Part b): The principal argument is $\operatorname{Arg}(1 - i\sqrt{3}) = -\frac{\pi}{3}$ and the modulus $|1 - i\sqrt{3}| = 2$, so we get

$$\operatorname{Log}(1 - i\sqrt{3}) = \log(2) - i\frac{\pi}{3}$$

Part c): First we have $Log(i) = i\frac{\pi}{2}$. Now we have from the definition of complex power functions that

$$i^{\text{Log}(i)} = e^{\text{Log}(i)^2} = e^{i^2 \frac{\pi^2}{4}} = e^{-\frac{\pi^2}{4}}$$

Part d): Using the definition of complex powers,

$$(\sqrt{3}+i)^{6-i} = e^{(6-i)\log(\sqrt{3}+i)}$$

= $e^{(6-i)(\log(2)+i\frac{\pi}{2})}$
= $e^{\log(2^6)}e^{-i\log(2)}e^{i\pi}e^{\frac{\pi}{6}}$
= $-64e^{\frac{\pi}{6}}e^{-i\log(2)}$.

This isn't on the form x + iy but I'll consider it close enough since it's in polar form and most of the expression has been simplified.

EXERCISE 2

Find complex numbers z, w such that $\operatorname{Arg}(zw) \neq \operatorname{Arg}(z) + \operatorname{Arg}(w)$ and $\operatorname{Log}(zw) \neq \operatorname{Log}(z) + \operatorname{Log}(w)$.

SOLUTION:

For z = -1, w = i we have $\operatorname{Arg}(zw) = \operatorname{Arg}(-i) = -\frac{\pi}{2}$ which is not equal to $\operatorname{Arg}(z) + \operatorname{Arg}(w) = \pi + \frac{\pi}{2} = \frac{3\pi}{2}$. For the logarithms we have

$$Log(z) + Log(w) = Log(-1) + Log(i) = i\pi + i\frac{\pi}{2} = i\frac{3\pi}{2}$$

but this is not equal to

$$\operatorname{Log}(-i) = -i\frac{\pi}{2}.$$

EXERCISE 3

Verify that $\text{Log}(1-z^2) = \text{Log}(1-z) + \text{Log}(1+z)$ when |z| < 1. What can be said about Log[(1-z)/1+z]? (Hint: it may help to draw a picture)

SOLUTION:

From $|\operatorname{Re}(z)| \le |z|$ and |z| < 1 we get $-1 < \operatorname{Re}(z) < 1$ and from this it

follows that

$$\begin{aligned} &\operatorname{Re}(1-z) = 1 - \operatorname{Re}(z) > 1 - 1 = 0, \\ &\operatorname{Re}(1+z) = 1 + \operatorname{Re}(z) > 1 - 1 = 0, \\ &\operatorname{Re}(1-z^2) = 1 - \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 \ge 1 - \operatorname{Re}(z)^2 > 1 - 1 = 0. \end{aligned}$$

From this we conclude that $\operatorname{Arg}(1-z), \operatorname{Arg}(1+z) \in (-\frac{\pi}{2}, \frac{\pi}{2})$ so that $\operatorname{Arg}(1-z) + \operatorname{Arg}(1+z) \in (-\pi, \pi)$. Then

$$Arg(1-z) + Arg(1+z) = Arg(1-z^2)$$

from which we conclude that

$$Log(1 - z^2) = log(|(1 - z)(1 + z)|) + i \operatorname{Arg}(1 - z^2)$$

= log(|1 - z|) + log(|1 + z|) + i(\operatorname{Arg}(1 - z) + \operatorname{Arg}(1 + z))
= Log(1 - z) + Log(1 + z).

Next we have

$$\operatorname{Re}(\frac{1}{z+z}) = \operatorname{Re}(\frac{1+\bar{z}}{|1+z|^2}) = \frac{1}{|1+z|^2}\operatorname{Re}(1+\bar{z}) > 0,$$

so we again get $\mathrm{Arg}(\frac{1}{1+z})\in(-\frac{\pi}{2},\frac{\pi}{2})$ and conclude that

$$\operatorname{Arg}(\frac{1-z}{1+z}) = \operatorname{Arg}(1-z) + \operatorname{Arg}(\frac{1}{1+z}).$$

Combining this with $\operatorname{Arg}(\frac{1}{w}) = \operatorname{Arg}(\frac{\bar{w}}{|w|^2}) = \operatorname{Arg}\bar{w} = -\operatorname{Arg}(w)$ we get

$$\operatorname{Arg}(\frac{1-z}{1+z}) = \operatorname{Arg}(1-z) - \operatorname{Arg}(1+z)$$

and from this we finally conclude that

$$Log(\frac{1-z}{1+z}) = Log(1-z) - Log(1+z)$$

Exercise 4

Which of the following sets are open, closed, org neither open nor closed?

a)
$$A = \{z \in \mathbb{C} : 1 < |z| < 2\}$$

b)
$$B = \{z \in \mathbb{C} : -\pi < \operatorname{Im}(z) \le \pi\}$$

- c) $C = \{z \in \mathbb{C} : |\operatorname{Re}(z)| + |\operatorname{Re}(z)| \le 1\}$
- d) $D = \{z \in \mathbb{C} : \operatorname{Re}(z) \text{ and } \operatorname{Im}(z) \text{ are rational} \}$

SOLUTION:

Part a)

The set A is open since for any $z_0 \in A$, the open ball $B(z_0, r/2)$ centered at z_0 is a neighborhood of z_0 and is a subset of A if we pick $r = \text{dist}(z_0, \{|z| = 1\} \cup \{|z| = 2\}).$

Part b)

The set *B* is not open since the sequence $z_n = i(-\pi + \frac{1}{n})$ belongs to *B* but the limit $-i\pi$ is not in *B*. It is also not open since for any radius r > 0 the open ball $B(i\pi, r)$ around $i\pi$ is not a subset of *B*.

Part c)

The set C is closed. Let $z_n \to z$ be an arbitrary convergent sequence with $z_n \in C$. Then for any $\varepsilon > 0$

$$|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le |\operatorname{Re}(z_n)| + |\operatorname{Im}(z_n)| + |z - z_n| \le 1 + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we get $|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le 1$ and C is closed. **Part d**)

Note that $0 \in D$ and for any $n \in \mathbb{N}$ the ball $B(0, \frac{1}{n})$ centered at 0 contains $\frac{\pi}{4n}$ but $D \cap B(0, \frac{1}{n})$ doesn't. Hence 0 is not an interior point of D and therefore D is not open. In the same way we see that D^c is not open, by noting that $\pi \in D^c$ but $B(\pi, \frac{1}{n})$ contains $\pi + \frac{\pi}{4n}$ while $D \cap B(\pi, \frac{1}{n})$ doesn't. So π is not an interior point of D^c and hence D is not closed.

EXERCISE 5

- a) Show that $z \mapsto \overline{z}$ and $z \mapsto |z|$ are continuous in \mathbb{C} .
- b) Show that $z \mapsto \frac{1}{z}$ is continuous in $\mathbb{C} \setminus \{0\}$.
- c) Show that the principal square root $\sqrt{\cdot} : \mathbb{C} \to \mathbb{C}$ is continuous in $\mathbb{C} \setminus (-\infty, 0]$, but not continuous in $\mathbb{C} \setminus \{0\}$. How about continuity at 0? Finally, is $\sqrt{\cdot} : (-\infty, 0) \to \mathbb{C}$ continuous?

SOLUTION:

Part a)

Continuity of $z \mapsto \overline{z}$ follows from

$$|\bar{z} - \bar{w}| = |z - w|$$

Next, it follows from the triangle inequality that

$$||z| - |w|| \le |z - w|$$

so $z \mapsto |z|$ is continuous.

Part b)

To show that $z \mapsto \frac{1}{z}$ is continuous, let $z_n \in \mathbb{C} \setminus \{0\}$ be an arbitrary convergent sequence with limit $z \neq 0$. First I want to conclude that $\frac{1}{|z_n|}$ is bounded. Suppose to the contrary that it isn't, so that for every $M \in \mathbb{N}$ there exists $n_M \in \mathbb{N}$ such that $\frac{1}{|z_{n_M}|} > M$. But then $|z_{n_M}| < \frac{1}{M}$. Since M is arbitrary, this show that $z_{n_M} \to 0$, which is a contradiction. So $\frac{1}{|z_n|}$ is a bounded sequence. Let's denote an upper bound by K. Then

$$\frac{1}{z} - \frac{1}{z_n} |z| = \frac{|z_n - z|}{|z_n z|} = \frac{1}{|z|} \frac{1}{|z_n|} |z - z_n| \le \frac{K}{|z|} |z - z_n| \to 0$$

Since the sequence z_n is arbitrary, this shows continuity of $z \mapsto \frac{1}{z}$. Part c)

The principal square root is $\sqrt{z} = \sqrt{|z|}e^{i\frac{\operatorname{Arg}(z)}{2}}$ when $z \neq 0$ and $\sqrt{0} = 0$ and its continuity on $\mathbb{C} \setminus (-\infty, 0]$ follows by the fact that products and compositions preserve continuity. More specifically $z \mapsto |z|$, $\mathbb{R} \ni \theta \mapsto e^{i\theta}$ are continuous everywhere and $z \mapsto \operatorname{Arg}(z)$ is continuous on $\mathbb{C} \setminus (-\infty, 0]$. Then we see that \sqrt{z} is continuous on $\mathbb{C} \setminus (-\infty, 0]$. To see that it is not continuous across the negative real axis, let $z_n = -1 - i\frac{1}{n}$. The sequence is convergent, $z_n \to -1$ and

 $\lim_{n \to \infty} \operatorname{Arg}(z_n) = -\pi$

but

ŀ

$$\operatorname{Arg}(\lim_{n \to \infty} z_n) = \operatorname{Arg}(-1) = \pi.$$

 So

$$\lim_{n \to \infty} \sqrt{z_n} = \lim_{n \to \infty} \sqrt{|z_n|} e^{i\frac{\operatorname{Arg}(z_n)}{2}} = e^{-i\frac{\pi}{2}} = -i$$

but

$$\sqrt{\lim_{n \to \infty} z_n} = \sqrt{\left|\lim_{n \to \infty} z_n\right|} e^{i\frac{\operatorname{Arg}(\lim_{n \to \infty} z_n)}{2}} = e^{i\frac{\pi}{2}} = i$$

and it is therefore not continuous at -1. Replacing -1 with any real number x < 0 should prove that it's not continuous anywhere on $(-\infty, 0)$. However, it is continuous at 0, which follows by the continuity of $z \mapsto |z|$ and the continuity of the real square root $\sqrt{\cdot} : [0, \infty) \to [0, \infty)$ at 0. To see this, let $z_n \to 0$. Then $|z_n| \to 0$ and

$$|\sqrt{z_n}| = |\sqrt{|z_n|}e^{i\frac{\operatorname{Arg}(z_n)}{2}}| = \sqrt{|z_n|} \to 0.$$

Lastly when $\sqrt{\cdot}: (-\infty, 0) \to \mathbb{C}$ is restricted to the negative real axis,

$$\sqrt{z} = \sqrt{|z|}e^{-i\frac{\pi}{2}} = i\sqrt{|z|}$$

and this is continuous.

EXERCISE 6

A square root function $g: X \to \mathbb{C}$ is any function satisfying $g(w)^2 = w$ for all $w \in X \subseteq \mathbb{C}$. Show that there does *not* exist a continuous square root function $g: S^1 \to \mathbb{C}$, where S^1 is the unit circle.(Hint: one approach is to try to solve $g(w)^2 = w$ and to derive a contradiction)

SOLUTION:

We know that the principal square root $w \mapsto \sqrt{w}$ is not continuous on S^1 since it's discontinuous at -1 and the same for the other square root $w \mapsto -\sqrt{w}$. But for any fixed $w \in S^1$, the only two square roots are \sqrt{w} and $-\sqrt{w}$. So any square root function g(w) must assign one of \sqrt{w} and $-\sqrt{w}$ to each w. So let C_1 be the set on which $g(w) = \sqrt{w}$ and C_2 be the set on which $g(w) = -\sqrt{w}$,

$$g(w) = \begin{cases} \sqrt{w}, & w \text{ in } C_1, \\ -\sqrt{w}, & w \text{ in } C_2, \end{cases}$$

and suppose that g is continuous. Then C_1, C_2 are a partition of S_1 , so $S^1 = C_1 \cup C_2$ and $C_1 \cap C_2 = \emptyset$. I claim that there always exist a point $z_0 \in S^1$ in one of the sets which is a limit point of the other. If this is not true then every point of both C_1 and C_2 are interior points so that both C^1 and C^2 are open. But this contradicts the assumption that C_1, C_2 are a partition of S_1 because if C_1 is open then $C_2 = S^1 \setminus C_1$ is closed and C_2 cannot be both open and closed since S^1 is connected. Suppose without loss of generality that $z_0 \in C_1$ (the case $z_0 \in C_2$ is identical) and let $w_n \in C_2$ be a sequence converging to z_0 . Using the continuity of g,

$$\sqrt{z_0} = g(z_0) = \lim_{n \to \infty} g(w_n) = \lim_{n \to \infty} -\sqrt{z_n} = -\sqrt{z_0}$$

which is a contradiction.

١