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Exercise 1

Express in the form x+ iy:

a) Log(−e2)

b) Log(−1− i
√
3)

c) iLog(i)

d) (
√
3 + i)6−i

Solution:

Part a)a):
The principal argument is Arg(−e2) = π, so we get

Log(−e2) = log(|−e2|) + iArg(−e2)

= 2 + iπ

Part b)b): The principal argument is Arg(1 − i
√
3) = −π

3 and the

modulus |1− i
√
3| = 2, so we get

Log(1− i
√
3) = log(2)− i

π

3

Part c)c): First we have Log(i) = iπ2 . Now we have from the definition
of complex power functions that

iLog(i) = eLog(i)
2
= ei

2 π2

4 = e−
π2

4
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Part d)d): Using the definition of complex powers,

(
√
3 + i)6−i = e(6−i) Log(

√
3+i)

= e(6−i)(log(2)+iπ
2
)

= elog(2
6)e−i log(2)eiπe

π
6

= −64e
π
6 e−i log(2).

This isn’t on the form x + iy but I’ll consider it close enough since it’s
in polar form and most of the expression has been simplified. ■

Exercise 2

Find complex numbers z, w such that Arg(zw) ̸= Arg(z) + Arg(w) and
Log(zw) ̸= Log(z) + Log(w).

Solution:

For z = −1, w = i we have Arg(zw) = Arg(−i) = −π
2 which is not equal

to Arg(z) + Arg(w) = π + π
2 = 3π

2 . For the logarithms we have

Log(z) + Log(w) = Log(−1) + Log(i) = iπ + i
π

2
= i

3π

2

but this is not equal to

Log(−i) = −i
π

2
.

■

Exercise 3

Verify that Log(1− z2) = Log(1− z) + Log(1 + z) when |z| < 1. What
can be said about Log[(1 − z)/1 + z]? (Hint: it may help to draw a
picture)

Solution:

From |Re(z)| ≤ |z| and |z| < 1 we get −1 < Re(z) < 1 and from this it
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follows that

Re(1− z) = 1− Re(z) > 1− 1 = 0,

Re(1 + z) = 1 + Re(z) > 1− 1 = 0,

Re(1− z2) = 1− Re(z)2 + Im(z)2 ≥ 1− Re(z)2 > 1− 1 = 0.

From this we conclude that Arg(1 − z),Arg(1 + z) ∈ (−π
2 ,

π
2 ) so that

Arg(1− z) + Arg(1 + z) ∈ (−π, π). Then

Arg(1− z) + Arg(1 + z) = Arg(1− z2)

from which we conclude that

Log(1− z2) = log(|(1− z)(1 + z)|) + iArg(1− z2)

= log(|1− z|) + log(|1 + z|) + i(Arg(1− z) + Arg(1 + z))

= Log(1− z) + Log(1 + z).

Next we have

Re(
1

z + z
) = Re(

1 + z̄

|1 + z|2
) =

1

|1 + z|2
Re(1 + z̄) > 0,

so we again get Arg( 1
1+z ) ∈ (−π

2 .
π
2 ) and conclude that

Arg(
1− z

1 + z
) = Arg(1− z) + Arg(

1

1 + z
).

Combining this with Arg( 1
w ) = Arg( w̄

|w|2 ) = Arg w̄ = −Arg(w) we get

Arg(
1− z

1 + z
) = Arg(1− z)−Arg(1 + z)

and from this we finally conclude that

Log(
1− z

1 + z
) = Log(1− z)− Log(1 + z)

■

Exercise 4

Which of the following sets are open, closed, org neither open nor closed?

a) A = {z ∈ C : 1 < |z| < 2}

b) B = {z ∈ C : −π < Im(z) ≤ π}
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c) C = {z ∈ C : |Re(z)|+ |Re(z)| ≤ 1}

d) D = {z ∈ C : Re(z) and Im(z) are rational}

Solution:

Part a)a)
The set A is open since for any z0 ∈ A, the open ball B(z0, r/2)

centered at z0 is a neighborhood of z0 and is a subset of A if we pick
r = dist(z0, {|z| = 1} ∪ {|z| = 2}).
Part b)b)

The set B is not open since the sequence zn = i(−π + 1
n) belongs to

B but the limit −iπ is not in B. It is also not open since for any radius
r > 0 the open ball B(iπ, r) around iπ is not a subset of B.
Part c)c)

The set C is closed. Let zn → z be an arbitrary convergent sequence
with zn ∈ C. Then for any ε > 0

|Re(z)|+ |Im(z)| ≤ |Re(zn)|+ |Im(zn)|+ |z − zn|
≤ 1 + ε.

Since ε > 0 is arbitrary, we get |Re(z)|+ |Im(z)| ≤ 1 and C is closed.
Part d)d)

Note that 0 ∈ D and for any n ∈ N the ball B(0, 1
n) centered at 0

contains π
4n but D ∩ B(0, 1

n) doesn’t. Hence 0 is not an interior point
of D and therefore D is not open. In the same way we see that Dc

is not open, by noting that π ∈ Dc but B(π, 1
n) contains π + π

4n while
D ∩B(π, 1

n) doesn’t. So π is not an interior point of Dc and hence D is
not closed. ■

Exercise 5

a) Show that z 7→ z̄ and z 7→ |z| are continuous in C.

b) Show that z 7→ 1
z is continuous in C \ {0}.

c) Show that the principal square root
√
· : C → C is continuous in

C \ (−∞, 0], but not continuous in C \ {0}. How about continuity
at 0? Finally, is

√
· : (−∞, 0) → C continuous?

Solution:

Part a)a)
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Continuity of z 7→ z̄ follows from

|z̄ − w̄| = |z − w|.

Next, it follows from the triangle inequality that

||z| − |w|| ≤ |z − w|

so z 7→ |z| is continuous.
Part b)b)

To show that z 7→ 1
z is continuous, let zn ∈ C \ {0} be an arbitrary

convergent sequence with limit z ̸= 0. First I want to conclude that
1

|zn| is bounded. Suppose to the contrary that it isn’t, so that for every

M ∈ N there exists nM ∈ N such that 1
|znM

| > M . But then |znM | < 1
M .

Since M is arbitrary, this show that znM → 0, which is a contradiction.
So 1

|zn| is a bounded sequence. Let’s denote an upper bound by K. Then

|1
z
− 1

zn
| = |zn − z

znz
| = 1

|z|
1

|zn|
|z − zn| ≤

K

|z|
|z − zn| → 0

Since the sequence zn is arbitrary, this shows continuity of z 7→ 1
z .

Part c)c)

The principal square root is
√
z =

√
|z|ei

Arg(z)
2 when z ̸= 0 and

√
0 =

0 and its continuity on C\ (−∞, 0] follows by the fact that products and
compositions preserve continuity. More specifically z 7→ |z|, R ∋ θ 7→ eiθ

are continuous everywhere and z 7→ Arg(z) is continuous on C\ (−∞, 0].
Then we see that

√
z is continuous on C \ (−∞, 0]. To see that it is not

continuous across the negative real axis, let zn = −1− i 1n . The sequence
is convergent, zn → −1 and

lim
n→∞

Arg(zn) = −π

but
Arg( lim

n→∞
zn) = Arg(−1) = π.

So
lim
n→∞

√
zn = lim

n→∞

√
|zn|ei

Arg(zn)
2 = e−iπ

2 = −i

but √
lim
n→∞

zn =
√
| lim
n→∞

zn|ei
Arg(limn→∞ zn)

2 = ei
π
2 = i

and it is therefore not continuous at −1. Replacing −1 with any real
number x < 0 should prove that it’s not continuous anywhere on (−∞, 0).
However, it is continuous at 0, which follows by the continuity of z 7→ |z|
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and the continuity of the real square root
√
· : [0,∞) → [0,∞) at 0. To

see this, let zn → 0. Then |zn| → 0 and

|
√
zn| = |

√
|zn|ei

Arg(zn)
2 | =

√
|zn| → 0.

Lastly when
√
· : (−∞, 0) → C is restricted to the negative real axis,

√
z =

√
|z|e−iπ

2 = i
√
|z|

and this is continuous. ■

Exercise 6

A square root function g : X → C is any function satisfying g(w)2 = w
for all w ∈ X ⊆ C. Show that there does not exist a continuous square
root function g : S1 → C, where S1 is the unit circle.(Hint: one approach
is to try to solve g(w)2 = w and to derive a contradiction)

Solution:

We know that the principal square root w 7→
√
w is not continuous on

S1 since it’s discontinuous at −1 and the same for the other square root
w 7→ −

√
w. But for any fixed w ∈ S1, the only two square roots are

√
w

and −
√
w. So any square root function g(w) must assign one of

√
w and

−
√
w to each w. So let C1 be the set on which g(w) =

√
w and C2 be

the set on which g(w) = −
√
w,

g(w) =

{√
w, w in C1,

−
√
w, w in C2,

and suppose that g is continuous. Then C1, C2 are a partition of S1, so
S1 = C1 ∪ C2 and C1 ∩ C2 = ∅. I claim that there always exist a point
z0 ∈ S1 in one of the sets which is a limit point of the other. If this is not
true then every point of both C1 and C2 are interior points so that both
C1 and C2 are open. But this contradicts the assumption that C1, C2

are a partition of S1 because if C1 is open then C2 = S1 \ C1 is closed
and C2 cannot be both open and closed since S1 is connected. Suppose
without loss of generality that z0 ∈ C1(the case z0 ∈ C2 is identical) and
let wn ∈ C2 be a sequence converging to z0. Using the continuity of g,

√
z0 = g(z0) = lim

n→∞
g(wn) = lim

n→∞
−
√
zn = −

√
z0

which is a contradiction. ■
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