Complex analysis 1

Exercises 3

David Johansson

February 2, 2024

Exercise 1

Express in the form $x+i y$:
a) $\log \left(-e^{2}\right)$
b) $\log (-1-i \sqrt{3})$
c) $i^{\log (i)}$
d) $(\sqrt{3}+i)^{6-i}$

Solution:

Part a):

The principal argument is $\operatorname{Arg}\left(-e^{2}\right)=\pi$, so we get

$$
\begin{aligned}
\log \left(-e^{2}\right) & =\log \left(\left|-e^{2}\right|\right)+i \operatorname{Arg}\left(-e^{2}\right) \\
& =2+i \pi
\end{aligned}
$$

Part b): The principal argument is $\operatorname{Arg}(1-i \sqrt{3})=-\frac{\pi}{3}$ and the modulus $|1-i \sqrt{3}|=2$, so we get

$$
\log (1-i \sqrt{3})=\log (2)-i \frac{\pi}{3}
$$

Part c): First we have $\log (i)=i \frac{\pi}{2}$. Now we have from the definition of complex power functions that

$$
i^{\log (i)}=e^{\log (i)^{2}}=e^{i \frac{2 \frac{\pi}{}^{2}}{4}}=e^{-\frac{\pi^{2}}{4}}
$$

Part d): Using the definition of complex powers,

$$
\begin{aligned}
(\sqrt{3}+i)^{6-i} & =e^{(6-i) \log (\sqrt{3}+i)} \\
& =e^{(6-i)\left(\log (2)+i \frac{\pi}{2}\right)} \\
& =e^{\log \left(2^{6}\right)} e^{-i \log (2)} e^{i \pi} e^{\frac{\pi}{6}} \\
& =-64 e^{\frac{\pi}{6}} e^{-i \log (2)}
\end{aligned}
$$

This isn't on the form $x+i y$ but I'll consider it close enough since it's in polar form and most of the expression has been simplified.

Exercise 2

Find complex numbers z, w such that $\operatorname{Arg}(z w) \neq \operatorname{Arg}(z)+\operatorname{Arg}(w)$ and $\log (z w) \neq \log (z)+\log (w)$.

Solution:

For $z=-1, w=i$ we have $\operatorname{Arg}(z w)=\operatorname{Arg}(-i)=-\frac{\pi}{2}$ which is not equal to $\operatorname{Arg}(z)+\operatorname{Arg}(w)=\pi+\frac{\pi}{2}=\frac{3 \pi}{2}$. For the logarithms we have

$$
\log (z)+\log (w)=\log (-1)+\log (i)=i \pi+i \frac{\pi}{2}=i \frac{3 \pi}{2}
$$

but this is not equal to

$$
\log (-i)=-i \frac{\pi}{2}
$$

Exercise 3

Verify that $\log \left(1-z^{2}\right)=\log (1-z)+\log (1+z)$ when $|z|<1$. What can be said about $\log [(1-z) / 1+z]$? (Hint: it may help to draw a picture)

Solution:

From $|\operatorname{Re}(z)| \leq|z|$ and $|z|<1$ we get $-1<\operatorname{Re}(z)<1$ and from this it
follows that

$$
\begin{aligned}
\operatorname{Re}(1-z) & =1-\operatorname{Re}(z)>1-1=0 \\
\operatorname{Re}(1+z) & =1+\operatorname{Re}(z)>1-1=0 \\
\operatorname{Re}\left(1-z^{2}\right) & =1-\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2} \geq 1-\operatorname{Re}(z)^{2}>1-1=0 .
\end{aligned}
$$

From this we conclude that $\operatorname{Arg}(1-z), \operatorname{Arg}(1+z) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ so that $\operatorname{Arg}(1-z)+\operatorname{Arg}(1+z) \in(-\pi, \pi)$. Then

$$
\operatorname{Arg}(1-z)+\operatorname{Arg}(1+z)=\operatorname{Arg}\left(1-z^{2}\right)
$$

from which we conclude that

$$
\begin{aligned}
\log \left(1-z^{2}\right) & =\log (|(1-z)(1+z)|)+i \operatorname{Arg}\left(1-z^{2}\right) \\
& =\log (|1-z|)+\log (|1+z|)+i(\operatorname{Arg}(1-z)+\operatorname{Arg}(1+z)) \\
& =\log (1-z)+\log (1+z)
\end{aligned}
$$

Next we have

$$
\operatorname{Re}\left(\frac{1}{z+z}\right)=\operatorname{Re}\left(\frac{1+\bar{z}}{|1+z|^{2}}\right)=\frac{1}{|1+z|^{2}} \operatorname{Re}(1+\bar{z})>0
$$

so we again get $\operatorname{Arg}\left(\frac{1}{1+z}\right) \in\left(-\frac{\pi}{2} \cdot \frac{\pi}{2}\right)$ and conclude that

$$
\operatorname{Arg}\left(\frac{1-z}{1+z}\right)=\operatorname{Arg}(1-z)+\operatorname{Arg}\left(\frac{1}{1+z}\right)
$$

Combining this with $\operatorname{Arg}\left(\frac{1}{w}\right)=\operatorname{Arg}\left(\frac{\bar{w}}{|w|^{2}}\right)=\operatorname{Arg} \bar{w}=-\operatorname{Arg}(w)$ we get

$$
\operatorname{Arg}\left(\frac{1-z}{1+z}\right)=\operatorname{Arg}(1-z)-\operatorname{Arg}(1+z)
$$

and from this we finally conclude that

$$
\log \left(\frac{1-z}{1+z}\right)=\log (1-z)-\log (1+z)
$$

Exercise 4

Which of the following sets are open, closed, org neither open nor closed?
a) $A=\{z \in \mathbb{C}: 1<|z|<2\}$
b) $B=\{z \in \mathbb{C}:-\pi<\operatorname{Im}(z) \leq \pi\}$
c) $C=\{z \in \mathbb{C}:|\operatorname{Re}(z)|+|\operatorname{Re}(z)| \leq 1\}$
d) $D=\{z \in \mathbb{C}: \operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are rational $\}$

Solution:

Part a)

The set A is open since for any $z_{0} \in A$, the open ball $B\left(z_{0}, r / 2\right)$ centered at z_{0} is a neighborhood of z_{0} and is a subset of A if we pick $r=\operatorname{dist}\left(z_{0},\{|z|=1\} \cup\{|z|=2\}\right)$.
Part b)
The set B is not open since the sequence $z_{n}=i\left(-\pi+\frac{1}{n}\right)$ belongs to B but the limit $-i \pi$ is not in B. It is also not open since for any radius $r>0$ the open ball $B(i \pi, r)$ around $i \pi$ is not a subset of B.
Part c)
The set C is closed. Let $z_{n} \rightarrow z$ be an arbitrary convergent sequence with $z_{n} \in C$. Then for any $\varepsilon>0$

$$
\begin{aligned}
|\operatorname{Re}(z)|+|\operatorname{Im}(z)| & \leq\left|\operatorname{Re}\left(z_{n}\right)\right|+\left|\operatorname{Im}\left(z_{n}\right)\right|+\left|z-z_{n}\right| \\
& \leq 1+\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we get $|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leq 1$ and C is closed.
Part d)
Note that $0 \in D$ and for any $n \in \mathbb{N}$ the ball $B\left(0, \frac{1}{n}\right)$ centered at 0 contains $\frac{\pi}{4 n}$ but $D \cap B\left(0, \frac{1}{n}\right)$ doesn't. Hence 0 is not an interior point of D and therefore D is not open. In the same way we see that D^{c} is not open, by noting that $\pi \in D^{c}$ but $B\left(\pi, \frac{1}{n}\right)$ contains $\pi+\frac{\pi}{4 n}$ while $D \cap B\left(\pi, \frac{1}{n}\right)$ doesn't. So π is not an interior point of D^{c} and hence D is not closed.

Exercise 5

a) Show that $z \mapsto \bar{z}$ and $z \mapsto|z|$ are continuous in \mathbb{C}.
b) Show that $z \mapsto \frac{1}{z}$ is continuous in $\mathbb{C} \backslash\{0\}$.
c) Show that the principal square root $\sqrt{ }: \mathbb{C} \rightarrow \mathbb{C}$ is continuous in $\mathbb{C} \backslash(-\infty, 0]$, but not continuous in $\mathbb{C} \backslash\{0\}$. How about continuity at 0 ? Finally, is $\sqrt{\cdot}:(-\infty, 0) \rightarrow \mathbb{C}$ continuous?

Solution:

Part a)

Continuity of $z \mapsto \bar{z}$ follows from

$$
|\bar{z}-\bar{w}|=|z-w| .
$$

Next, it follows from the triangle inequality that

$$
\| z|-|w|| \leq|z-w|
$$

so $z \mapsto|z|$ is continuous.
Part b)
To show that $z \mapsto \frac{1}{z}$ is continuous, let $z_{n} \in \mathbb{C} \backslash\{0\}$ be an arbitrary convergent sequence with limit $z \neq 0$. First I want to conclude that $\frac{1}{\left|z_{n}\right|}$ is bounded. Suppose to the contrary that it isn't, so that for every $M \in \mathbb{N}$ there exists $n_{M} \in \mathbb{N}$ such that $\frac{1}{\left|z_{n_{M}}\right|}>M$. But then $\left|z_{n_{M}}\right|<\frac{1}{M}$. Since M is arbitrary, this show that $z_{n_{M}} \rightarrow 0$, which is a contradiction. So $\frac{1}{\left|z_{n}\right|}$ is a bounded sequence. Let's denote an upper bound by K. Then

$$
\left|\frac{1}{z}-\frac{1}{z_{n}}\right|=\left|\frac{z_{n}-z}{z_{n} z}\right|=\frac{1}{|z|} \frac{1}{\left|z_{n}\right|}\left|z-z_{n}\right| \leq \frac{K}{|z|}\left|z-z_{n}\right| \rightarrow 0
$$

Since the sequence z_{n} is arbitrary, this shows continuity of $z \mapsto \frac{1}{z}$.
Part c)
The principal square root is $\sqrt{z}=\sqrt{|z|} e^{i \frac{\operatorname{Arg}(z)}{2}}$ when $z \neq 0$ and $\sqrt{0}=$ 0 and its continuity on $\mathbb{C} \backslash(-\infty, 0]$ follows by the fact that products and compositions preserve continuity. More specifically $z \mapsto|z|, \mathbb{R} \ni \theta \mapsto e^{i \theta}$ are continuous everywhere and $z \mapsto \operatorname{Arg}(z)$ is continuous on $\mathbb{C} \backslash(-\infty, 0]$. Then we see that \sqrt{z} is continuous on $\mathbb{C} \backslash(-\infty, 0]$. To see that it is not continuous across the negative real axis, let $z_{n}=-1-i \frac{1}{n}$. The sequence is convergent, $z_{n} \rightarrow-1$ and

$$
\lim _{n \rightarrow \infty} \operatorname{Arg}\left(z_{n}\right)=-\pi
$$

but

$$
\operatorname{Arg}\left(\lim _{n \rightarrow \infty} z_{n}\right)=\operatorname{Arg}(-1)=\pi
$$

So

$$
\lim _{n \rightarrow \infty} \sqrt{z_{n}}=\lim _{n \rightarrow \infty} \sqrt{\left|z_{n}\right|} e^{i \frac{\operatorname{Arg}\left(z_{n}\right)}{2}}=e^{-i \frac{\pi}{2}}=-i
$$

but

$$
\sqrt{\lim _{n \rightarrow \infty} z_{n}}=\sqrt{\left|\lim _{n \rightarrow \infty} z_{n}\right|} e^{\left.i \frac{\operatorname{Arg}(\lim n \rightarrow \infty}{2} z_{n}\right)}{ }^{i \frac{\pi}{2}}=i
$$

and it is therefore not continuous at -1 . Replacing -1 with any real number $x<0$ should prove that it's not continuous anywhere on $(-\infty, 0)$. However, it is continuous at 0 , which follows by the continuity of $z \mapsto|z|$
and the continuity of the real square root $\sqrt{ } \cdot[0, \infty) \rightarrow[0, \infty)$ at 0 . To see this, let $z_{n} \rightarrow 0$. Then $\left|z_{n}\right| \rightarrow 0$ and

$$
\left|\sqrt{z_{n}}\right|=\left|\sqrt{\left|z_{n}\right|} e^{i \frac{A \operatorname{rg}\left(z_{n}\right)}{2}}\right|=\sqrt{\left|z_{n}\right|} \rightarrow 0
$$

Lastly when $\sqrt{ } \cdot(-\infty, 0) \rightarrow \mathbb{C}$ is restricted to the negative real axis,

$$
\sqrt{z}=\sqrt{|z|} e^{-i \frac{\pi}{2}}=i \sqrt{|z|}
$$

and this is continuous.

Exercise 6

A square root function $g: X \rightarrow \mathbb{C}$ is any function satisfying $g(w)^{2}=w$ for all $w \in X \subseteq \mathbb{C}$. Show that there does not exist a continuous square root function $g: S^{1} \rightarrow \mathbb{C}$, where S^{1} is the unit circle.(Hint: one approach is to try to solve $g(w)^{2}=w$ and to derive a contradiction)

Solution:

We know that the principal square root $w \mapsto \sqrt{w}$ is not continuous on S^{1} since it's discontinuous at -1 and the same for the other square root $w \mapsto-\sqrt{w}$. But for any fixed $w \in S^{1}$, the only two square roots are \sqrt{w} and $-\sqrt{w}$. So any square root function $g(w)$ must assign one of \sqrt{w} and $-\sqrt{w}$ to each w. So let C_{1} be the set on which $g(w)=\sqrt{w}$ and C_{2} be the set on which $g(w)=-\sqrt{w}$,

$$
g(w)= \begin{cases}\sqrt{w}, & w \text { in } C_{1}, \\ -\sqrt{w}, & w \text { in } C_{2}\end{cases}
$$

and suppose that g is continuous. Then C_{1}, C_{2} are a partition of S_{1}, so $S^{1}=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}=\emptyset$. I claim that there always exist a point $z_{0} \in S^{1}$ in one of the sets which is a limit point of the other. If this is not true then every point of both C_{1} and C_{2} are interior points so that both C^{1} and C^{2} are open. But this contradicts the assumption that C_{1}, C_{2} are a partition of S_{1} because if C_{1} is open then $C_{2}=S^{1} \backslash C_{1}$ is closed and C_{2} cannot be both open and closed since S^{1} is connected. Suppose without loss of generality that $z_{0} \in C_{1}$ (the case $z_{0} \in C_{2}$ is identical) and let $w_{n} \in C_{2}$ be a sequence converging to z_{0}. Using the continuity of g,

$$
\sqrt{z_{0}}=g\left(z_{0}\right)=\lim _{n \rightarrow \infty} g\left(w_{n}\right)=\lim _{n \rightarrow \infty}-\sqrt{z_{n}}=-\sqrt{z_{0}}
$$

which is a contradiction.

