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Exercise 1

Compute (1 + i)6.

Solution:

First write 1+i in the form reiw, so that it’s easy to compute exponents.
The modulus is r = |1+i| =

√
2 and the argument is w = Arg(1+i) = π

4 .

So 1 + i =
√
2ei

π
4 and (1 + i)6 =

√
2
6
ei

6π
4 = 8ei

3π
2 = −8i ■

Exercise 2

Compute all square roots of −1 +
√
3i and all cube roots of −8. Which

of these roots are principal roots?
Hint: one of the angles in the right triangle with sides 1,

√
3 and 2

is π/3.

Solution:

Again, write the numbers in the form reiw. The modulus of −1 +
√
3i

is 2 and the argument is 2π
3 . So −1 +

√
3i = 2ei

2π
3 . The square root are

given by
√
2ei(

π
3
+πk) for k ∈ {0, 1}, the principal root corresponding to

k = 0. Explicitly, the two roots are

k = 0 →
√
2ei

π
3 =

1√
2
+

√
3√
2
i

k = 1 →
√
2ei

4π
3 =

√
2e−i 2π

3 = − 1√
2
−

√
3√
2
i.

Now we do the same for −8 = 8ei(π+2πk). So the cube roots are given by
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2ei(
π
3
+ 2πk

3
) for k ∈ {0, 1, 2}, the principal root corresponding to k = 0.

We get
k = 0 → 2ei

π
3 = 1 +

√
3i

k = 1 → 2eiπ = −2

k = 2 → 2e−iπ
3 = 1−

√
3i.

■

Exercise 3

Show the formulas for triple sines and cosines:{
sin(3α) = − sin3(α) + 3 cos2(α) sin(α), α ∈ R
cos(3α) = cos3(α)− 3 cos(α) sin2(α), α ∈ R.

Hint: Use Euler’s formula eiθ = cos(θ) + i sin(θ).

Solution:

Despite the hint to use Euler’s formula I’ll just use the formulas for a
sum of angles(Lemma 1.3.18) to prove this. My quick attempt at using
Euler’s formula led to a somewhat different looking triple angle formula.

For cosine we have

cos(2α) = cos(α+ 2α)

= cos(α) cos(2α)− sin(α) sin(2α)

= cos(α)(cos2(α)− sin2(α))− sin(α)(2 sin(α) cos(α))

= cos3(α)− 3 cos(α) sinα

and for sine we have

sin(3α) = sin(α+ 2α)

= sin(α) cos(2α) + sin(2α) cos(α)

= sin(α)(cos2(α)− sin2(α)) + (2 sin(α) cos(α)) cos(α)

= 3 cos2(α) sin(α)− sin3(α).

■
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Exercise 4

Show that for any z ∈ C one has the formulas

ez = ez̄

cos2(z) + sin2(z) = 1.

Solution:

If z = x+ iy with x, y ∈ R then we have, using the definitino ez = exeiy,
that

ez = exeiy = exe−iy = ez̄.

Next, we have by definition that cos(z) = eiz+e−iz

2 and sin(z) = eiz−e−iz

2i ,
so

cos2(z) =
1

4
(ei2z + 2 + e−i2z)

sin2(z) = −1

4
(ei2z − 2 + e−i2z).

Adding them up we get

cos2(z) + sin2(z) =
1

4
[(ei2z + 2 + e−i2z)− (ei2z − 2 + e−i2z)] = 1.

■

Exercise 5

Prove, by completing the square, that the solutions z ∈ C of a quadratic
equation az2 + bz + c = 0 where a, b, c ∈ C with a ̸= 0 are given by the
standard quadratic formula

z =
−b±

√
b2 − 4ac

2a
.

Here
√
w denotes the principal square root of w ∈ C, as usual.

Solution:

By adding and subtracting b2

4a and factorizing we have

az2 + bz + c = a[(z +
b

2a
)2 − b2 − 4ac

4a2
].
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Since a ̸= 0, az2 + bz + c = 0 is therefore equivalent to

(z +
b

2a
)2 =

b2 − 4ac

4a2
. (1)

In polar form, b−4ac
4a2

= reiw, with r, w ∈ R. So the principal root is√
b2 − 4ac

4a2
=

√
rei

w
2

and the other root is

√
rei

w+2π
2 =

√
rei

w
2 eiπ = −

√
rei

w
2 = −

√
b2 − 4ac

4a2

So taking the square roots in (11) we find

z +
b

2a
= ±

√
b2 − 4ac

4a2
. (2)

Next we want to conclude that

z +
b

2a
= ±

√
b2 − 4ac

2a

but doing this require a little more work, since
√

x
y =

√
x√
y is not true in

general when x, y ∈ C. Let’s write in polar form:

b2 − 4ac

4a2
= reiw,

b2 − 4ac = peiu,

4a2 = qeiv,

where −π < u, v, w ≤ π and p, q, r ∈ R. Now reiw = pq−1ei(u−v).
The principal square root

√
rei

w
2 is equal to the principal square root

of pq−1ei(u−v). It’s tempting to say that the principal square root of

pq−1ei(u−v) is pq−1ei
u−v
2 , but this is only true if −π < u − v ≤ π which

need not hold. What we know for certain is that −2π < u− v < 2π. If
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−2π < u− v < −π then Arg(pq−1ei(u−v)) = u− v + 2π, in which case√
b2 − 4ac

4a2
=

√
pq−1ei(u−v+2π) =

√
p

√
q
ei(

u−v
2

+π)

=

√
p

√
q
ei(

u−v
2 eiπ) = −

√
p

√
q
ei

u−v
2

= −
√
pei

w
2

√
qei

v
2

= −
√
b2 − 4ac√

4a2

= −
√
b2 − 4ac

2a
.

The same conclusion holds in the case π < u−v < 2π, but the argument
is Arg(u− v) = u− v − 2π. In the case −π < u− v < π,√

b2 − 4ac

4a2
=

√
pq−1ei(u−v) =

√
p

√
q
ei(

u−v
2

)

=

√
pei

w
2

√
qei

v
2

=

√
b2 − 4ac

2a
.

The conclusion is that the principal square root
√

b2−4ac
4a2

is either
√
b2−4ac
2a

or −
√
b2−4ac
2a . In the former case the other square root is −

√
b2−4ac
2a and

in the latter case the other square root is
√
b2−4ac
2a . So the two square

roots of b2−4ac
4a2

are ±
√
b2−4ac
2a . So it indeed follows from (22) that

z +
b

2a
= ±

√
b2 − 4ac

2a

and in turn

z =
−b±

√
b2 − 4ac

2a
.

■

Exercise 6

For any z1, z2, w1, w2 ∈ C prove Lagrange’s identity

|z1w1 + z2w2|2 = (|z1|2 + |z2|2)(|w1|2 + |w2|2)− |z1w̄2 − z2w̄1|2.

Use this to prove the Cauchy-Schwarz inequality

|z1w1 + z2w2| ≤ (|z1|2 + |z2|2)1/2(|w1|2 + |w2|2)1/2.
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Solution:

Let’s start with Lagrange’s identity. Here we just add and subtract both
|z2|2|w1|2 and |z1|2|w2|2 and factorize. This leads to

|z1w1 + z2w2|2 =|z1|2|w1|2 + z1z̄2w1w̄2 + z̄1z2w̄1w2 + |z2|2|w2|2

=(|z1|2 + |z2|2)|w1|2 − |z2|2|w1|2

+ (|z1|2 + |z2|2)|w2|2 − |z1|2|w2|2

+ z1z̄2w1w̄2 + z̄1z2w̄1w2

=(|z1|2 + |z2|2)(|w1|2 + |w2|2)
− |z2|2|w1|2 − |z1|2|w2|2 + z1z̄2w1w̄2 + z̄1z2w̄1w2

=(|z1|2 + |z2|2)(|w1|2 + |w2|2)
− (|z2|2|w1|2 − z1z̄2w1w̄2 − z̄1z2w̄1w2 + |z1|2|w2|2)

=(|z1|2 + |z2|2)(|w1|2 + |w2|2)− |z2w̄1 − z1w̄2|2.

We get the Cauchy-Schwarz inequality as follows,

|z1w1 + z2w2| = [|z1w1 + z2w2|2]1/2

= [(|z1|2 + |z2|2)(|w1|2 + |w2|2)− |z2w̄1 − z1w̄2|2]1/2

≤ [(|z1|2 + |z2|2)(|w1|2 + |w2|2)]1/2

= (|z1|2 + |z2|2)1/2(|w1|2 + |w2|2)1/2.

■
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