## Complex analysis 1

## Exercises 2

David Johansson

January 26, 2024

## Exercise 1

Compute $(1+i)^{6}$.

## Solution:

First write $1+i$ in the form $r e^{i w}$, so that it's easy to compute exponents. The modulus is $r=|1+i|=\sqrt{2}$ and the argument is $w=\operatorname{Arg}(1+i)=\frac{\pi}{4}$.
So $1+i=\sqrt{2} e^{i \frac{\pi}{4}}$ and $(1+i)^{6}=\sqrt{2}^{6} e^{i \frac{6 \pi}{4}}=8 e^{i \frac{3 \pi}{2}}=-8 i$

## Exercise 2

Compute all square roots of $-1+\sqrt{3} i$ and all cube roots of -8 . Which of these roots are principal roots?

Hint: one of the angles in the right triangle with sides $1, \sqrt{3}$ and 2 is $\pi / 3$.

## Solution:

Again, write the numbers in the form $r e^{i w}$. The modulus of $-1+\sqrt{3} i$ is 2 and the argument is $\frac{2 \pi}{3}$. So $-1+\sqrt{3} i=2 e^{i \frac{2 \pi}{3}}$. The square root are given by $\sqrt{2} e^{i\left(\frac{\pi}{3}+\pi k\right)}$ for $k \in\{0,1\}$, the principal root corresponding to $k=0$. Explicitly, the two roots are

$$
\begin{aligned}
& k=0 \rightarrow \sqrt{2} e^{i \frac{\pi}{3}}=\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{\sqrt{2}} i \\
& k=1 \rightarrow \sqrt{2} e^{i \frac{4 \pi}{3}}=\sqrt{2} e^{-i \frac{2 \pi}{3}}=-\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}} i .
\end{aligned}
$$

Now we do the same for $-8=8 e^{i(\pi+2 \pi k)}$. So the cube roots are given by
$2 e^{i\left(\frac{\pi}{3}+\frac{2 \pi k}{3}\right)}$ for $k \in\{0,1,2\}$, the principal root corresponding to $k=0$.
We get

$$
\begin{aligned}
& k=0 \rightarrow 2 e^{i \frac{\pi}{3}}=1+\sqrt{3} i \\
& k=1 \rightarrow 2 e^{i \pi}=-2 \\
& k=2 \rightarrow 2 e^{-i \frac{\pi}{3}}=1-\sqrt{3} i
\end{aligned}
$$

## ExERCISE 3

Show the formulas for triple sines and cosines:

$$
\left\{\begin{array}{l}
\sin (3 \alpha)=-\sin ^{3}(\alpha)+3 \cos ^{2}(\alpha) \sin (\alpha), \quad \alpha \in \mathbb{R} \\
\cos (3 \alpha)=\cos ^{3}(\alpha)-3 \cos (\alpha) \sin ^{2}(\alpha), \quad \alpha \in \mathbb{R}
\end{array}\right.
$$

Hint: Use Euler's formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$.

## Solution:

Despite the hint to use Euler's formula I'll just use the formulas for a sum of angles(Lemma 1.3.18) to prove this. My quick attempt at using Euler's formula led to a somewhat different looking triple angle formula. For cosine we have

$$
\begin{aligned}
\cos (2 \alpha) & =\cos (\alpha+2 \alpha) \\
& =\cos (\alpha) \cos (2 \alpha)-\sin (\alpha) \sin (2 \alpha) \\
& =\cos (\alpha)\left(\cos ^{2}(\alpha)-\sin ^{2}(\alpha)\right)-\sin (\alpha)(2 \sin (\alpha) \cos (\alpha)) \\
& =\cos ^{3}(\alpha)-3 \cos (\alpha) \sin ^{\alpha}
\end{aligned}
$$

and for sine we have

$$
\begin{aligned}
\sin (3 \alpha) & =\sin (\alpha+2 \alpha) \\
& =\sin (\alpha) \cos (2 \alpha)+\sin (2 \alpha) \cos (\alpha) \\
& =\sin (\alpha)\left(\cos ^{2}(\alpha)-\sin ^{2}(\alpha)\right)+(2 \sin (\alpha) \cos (\alpha)) \cos (\alpha) \\
& =3 \cos ^{2}(\alpha) \sin (\alpha)-\sin ^{3}(\alpha)
\end{aligned}
$$

## Exercise 4

Show that for any $z \in \mathbb{C}$ one has the formulas

$$
\begin{aligned}
\overline{e^{z}} & =e^{\bar{z}} \\
\cos ^{2}(z)+\sin ^{2}(z) & =1 .
\end{aligned}
$$

## Solution:

If $z=x+i y$ with $x, y \in \mathbb{R}$ then we have, using the definitino $e^{z}=e^{x} e^{i y}$, that

$$
\overline{e^{z}}=\overline{e^{x} e^{i y}}=e^{x} e^{-i y}=e^{\bar{z}} .
$$

Next, we have by definition that $\cos (z)=\frac{e^{i z}+e^{-i z}}{2}$ and $\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}$, so

$$
\begin{aligned}
\cos ^{2}(z) & =\frac{1}{4}\left(e^{i 2 z}+2+e^{-i 2 z}\right) \\
\sin ^{2}(z) & =-\frac{1}{4}\left(e^{i 2 z}-2+e^{-i 2 z}\right)
\end{aligned}
$$

Adding them up we get

$$
\cos ^{2}(z)+\sin ^{2}(z)=\frac{1}{4}\left[\left(e^{i 2 z}+2+e^{-i 2 z}\right)-\left(e^{i 2 z}-2+e^{-i 2 z}\right)\right]=1 .
$$

## Exercise 5

Prove, by completing the square, that the solutions $z \in \mathbb{C}$ of a quadratic equation $a z^{2}+b z+c=0$ where $a, b, c \in \mathbb{C}$ with $a \neq 0$ are given by the standard quadratic formula

$$
z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Here $\sqrt{w}$ denotes the principal square root of $w \in \mathbb{C}$, as usual.

## Solution:

By adding and subtracting $\frac{b^{2}}{4 a}$ and factorizing we have

$$
a z^{2}+b z+c=a\left[\left(z+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}\right] .
$$

Since $a \neq 0, a z^{2}+b z+c=0$ is therefore equivalent to

$$
\begin{equation*}
\left(z+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \tag{1}
\end{equation*}
$$

In polar form, $\frac{b-4 a c}{4 a^{2}}=r e^{i w}$, with $r, w \in \mathbb{R}$. So the principal root is

$$
\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}=\sqrt{r} e^{i \frac{w}{2}}
$$

and the other root is

$$
\sqrt{r} e^{i \frac{w+2 \pi}{2}}=\sqrt{r} e^{i \frac{w}{2}} e^{i \pi}=-\sqrt{r} e^{i \frac{w}{2}}=-\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
$$

So taking the square roots in (1) we find

$$
\begin{equation*}
z+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \tag{2}
\end{equation*}
$$

Next we want to conclude that

$$
z+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

but doing this require a little more work, since $\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}$ is not true in general when $x, y \in \mathbb{C}$. Let's write in polar form:

$$
\begin{aligned}
\frac{b^{2}-4 a c}{4 a^{2}} & =r e^{i w} \\
b^{2}-4 a c & =p e^{i u} \\
4 a^{2} & =q e^{i v}
\end{aligned}
$$

where $-\pi<u, v, w \leq \pi$ and $p, q, r \in \mathbb{R}$. Now $r e^{i w}=p q^{-1} e^{i(u-v)}$. The principal square root $\sqrt{r} e^{i \frac{w}{2}}$ is equal to the principal square root of $p q^{-1} e^{i(u-v)}$. It's tempting to say that the principal square root of $p q^{-1} e^{i(u-v)}$ is $p q^{-1} e^{i \frac{u-v}{2}}$, but this is only true if $-\pi<u-v \leq \pi$ which need not hold. What we know for certain is that $-2 \pi<u-v<2 \pi$. If
$-2 \pi<u-v<-\pi$ then $\operatorname{Arg}\left(p q^{-1} e^{i(u-v)}\right)=u-v+2 \pi$, in which case

$$
\begin{aligned}
\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} & =\sqrt{p q^{-1} e^{i(u-v+2 \pi)}}=\frac{\sqrt{p}}{\sqrt{q}} e^{i\left(\frac{u-v}{2}+\pi\right)} \\
& =\frac{\sqrt{p}}{\sqrt{q}} e^{i\left(\frac{u-v}{2}\right.} e^{i \pi)}=-\frac{\sqrt{p}}{\sqrt{q}} e^{i \frac{u-v}{2}} \\
& =-\frac{\sqrt{p} e^{i \frac{w}{2}}}{\sqrt{q} e^{i \frac{v}{2}}}=-\frac{\sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}} \\
& =-\frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

The same conclusion holds in the case $\pi<u-v<2 \pi$, but the argument is $\operatorname{Arg}(u-v)=u-v-2 \pi$. In the case $-\pi<u-v<\pi$,

$$
\begin{aligned}
\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} & =\sqrt{p q^{-1} e^{i(u-v)}}=\frac{\sqrt{p}}{\sqrt{q}} e^{i\left(\frac{u-v}{2}\right)} \\
& =\frac{\sqrt{p} e^{i \frac{w}{2}}}{\sqrt{q} e^{i \frac{v}{2}}}=\frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

The conclusion is that the principal square root $\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}$ is either $\frac{\sqrt{b^{2}-4 a c}}{2 a}$ or $-\frac{\sqrt{b^{2}-4 a c}}{2 a}$. In the former case the other square root is $-\frac{\sqrt{b^{2}-4 a c}}{2 a}$ and in the latter case the other square root is $\frac{\sqrt{b^{2}-4 a c}}{2 a}$. So the two square roots of $\frac{b^{2}-4 a c}{4 a^{2}}$ are $\pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$. So it indeed follows from (2) that

$$
z+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

and in turn

$$
z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

## ExERCISE 6

For any $z_{1}, z_{2}, w_{1}, w_{2} \in \mathbb{C}$ prove Lagrange's identity

$$
\left|z_{1} w_{1}+z_{2} w_{2}\right|^{2}=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)-\left|z_{1} \bar{w}_{2}-z_{2} \bar{w}_{1}\right|^{2}
$$

Use this to prove the Cauchy-Schwarz inequality

$$
\left|z_{1} w_{1}+z_{2} w_{2}\right| \leq\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)^{1 / 2}
$$

## Solution:

Let's start with Lagrange's identity. Here we just add and subtract both $\left|z_{2}\right|^{2}\left|w_{1}\right|^{2}$ and $\left|z_{1}\right|^{2}\left|w_{2}\right|^{2}$ and factorize. This leads to

$$
\begin{aligned}
\left|z_{1} w_{1}+z_{2} w_{2}\right|^{2}= & \left|z_{1}\right|^{2}\left|w_{1}\right|^{2}+z_{1} \bar{z}_{2} w_{1} \bar{w}_{2}+\bar{z}_{1} z_{2} \bar{w}_{1} w_{2}+\left|z_{2}\right|^{2}\left|w_{2}\right|^{2} \\
= & \left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left|w_{1}\right|^{2}-\left|z_{2}\right|^{2}\left|w_{1}\right|^{2} \\
& +\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left|w_{2}\right|^{2}-\left|z_{1}\right|^{2}\left|w_{2}\right|^{2} \\
& +z_{1} \bar{z}_{2} w_{1} \bar{w}_{2}+\bar{z}_{1} z_{2} \bar{w}_{1} w_{2} \\
= & \left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right) \\
& -\left|z_{2}\right|^{2}\left|w_{1}\right|^{2}-\left|z_{1}\right|^{2}\left|w_{2}\right|^{2}+z_{1} \bar{z}_{2} w_{1} \bar{w}_{2}+\bar{z}_{1} z_{2} \bar{w}_{1} w_{2} \\
= & \left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right) \\
& -\left(\left|z_{2}\right|^{2}\left|w_{1}\right|^{2}-z_{1} \bar{z}_{2} w_{1} \bar{w}_{2}-\bar{z}_{1} z_{2} \bar{w}_{1} w_{2}+\left|z_{1}\right|^{2}\left|w_{2}\right|^{2}\right) \\
= & \left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)-\left|z_{2} \bar{w}_{1}-z_{1} \bar{w}_{2}\right|^{2} .
\end{aligned}
$$

We get the Cauchy-Schwarz inequality as follows,

$$
\begin{aligned}
\left|z_{1} w_{1}+z_{2} w_{2}\right| & =\left[\left|z_{1} w_{1}+z_{2} w_{2}\right|^{2}\right]^{1 / 2} \\
& =\left[\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)-\left|z_{2} \bar{w}_{1}-z_{1} \bar{w}_{2}\right|^{2}\right]^{1 / 2} \\
& \leq\left[\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)\right]^{1 / 2} \\
& =\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{1 / 2}\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

