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EXERCISE 1

Compute (1 + )5.

SOLUTION:

First write 144 in the form re®, so that it’s easy to compute exponents.
The modulus is r = |1+i| = v/2 and the argument is w = Arg(1+4) = T

So1+4i=+2¢T and (1+4)% = v2°eiT = 8¢'F = —8;

EXERCISE 2

Compute all square roots of —1 + v/3i and all cube roots of —8. Which
of these roots are principal roots?

Hint: one of the angles in the right triangle with sides 1, v/3 and 2
is w/3.

SOLUTION:

Again, write the numbers in the form re®. The modulus of —1 + v/3i
is 2 and the argument is <. So —1 + V3i = 2¢ T . The square root are
given by 2“3t for k € {0, 1}, the principal root corresponding to
k = 0. Explicitly, the two roots are

g_ 1 V3,
k=0— 23 _\[+\f

s |2 1 \/§
k:1—>\/§ez%:\/§efz%:_7_7i'
V2 V2

im+2mk) - So the cube roots are given by

Now we do the same for —8 = 8e



2¢1(5+%5) for k € {0,1,2}, the principal root corresponding to k = 0.
We get '
k=0—2¢5 =1+3i

k=1— 2" = -2
k=227 =1—/3i.

EXERCISE 3
Show the formulas for triple sines and cosines:

{sin(?)a) = —sin®(a) + 3cos?(a)sin(a), a€R
cos(3a) = cos®(a) — 3cos(a)sin®(a), a€R.

Hint: Use Euler’s formula e = cos(f) 4 isin(#).

SOLUTION:

Despite the hint to use Euler’s formula I'll just use the formulas for a

sum of angles(Lemma 1.3.18) to prove this. My quick attempt at using

FEuler’s formula led to a somewhat different looking triple angle formula.
For cosine we have

cos(2a) = cos(a + 2a)
= cos(a) cos(2a) — sm(a) sin(2«)
cos(a)(cos®(a) — sin?(a)) — sin(a)(2sin(a) cos(a))
cos®(ar) — 3 cos(a) sin®
and for sine we have
sin(3a) = sin(a + 2a)
= sin(a) cos(2ar) + sin(2a) cos(a)
= sin(a)(cos?(ar) — sin®(a)) 4 (2sin(a) cos(a)) cos(a)
3
)-

= 3cos?(a)sin(a) — sin®(«



EXERCISE 4
Show that for any z € C one has the formulas

e? =¢€”

cos?(z) +sin?(z) = 1.

SOLUTION:

If z =  + iy with , y € R then we have, using the definitino e* = e%e®,
that

e? = e%eWW = e¥e” W = €.

iz —1iz . iz _ ,—1z
e4e = and sin(z) = <5¢

Next, we have by definition that cos(z) = —

SO

1 . .
cos?(z) = Z(eﬂz + 2 4 %)

1 . .
sin?(z) = *1(6222 — 2+ e7%),

Adding them up we get

1. , : :
cos?(z) +sin’(z) = Z[(em + 24 e %) — (2 — 2+ e ) = 1.

EXERCISE 5

Prove, by completing the square, that the solutions z € C of a quadratic
equation az? 4 bz + ¢ = 0 where a, b, c € C with a # 0 are given by the
standard quadratic formula

L —b+ b2 — 4ac
- 2a '

Here \/w denotes the principal square root of w € C, as usual.

SOLUTION:

By adding and subtracting % and factorizing we have

b
2 2
b - -~ -
az® +bz+c a[(z+2 )

b2 — dac
4a?

]



Since a # 0, az? + bz + ¢ = 0 is therefore equivalent to

b b2 — dac

2
(z+5.) = —=2— (1)
In polar form, b;jgc = e, with r,w € R. So the principal root is
b2 — 4ac ‘w
T — \/77@’ 2

and the other root is

2 _
\/» +27r \/»e w e \/7761% _ b dac
4a?
So taking the square roots in (1) we find
b b2 — 4dac
— =t —. 2
Zt 2a 4a? (2)
Next we want to conclude that
b b2 — 4dac
S L
Zt 2a 2a

but doing this require a little more work, since \/% = % is not true in
general when z,y € C. Let’s write in polar form:

2
b" —dac _ i
4a?
b? — dac = pe™,
4a* = qe™,
where —7 < w,v,w < 7 and D:q,T € R. Now re® = pglei(u=v),

The principal square root +/re’ 7 is equal to the principal square root
of pg~leiw=v)  It’s temptlng to say that the principal square root of
pg~Lel®=v) ig pg~1 ez , but this is only true if —7 < u — v < 7 which

need not hold. What we know for certain is that —27 < v —v < 27w. If



—21 < u — v < —m then Arg(pqilei(“*”)) = u — v + 27, in which case

\/m = \/pg-Tleilu—vtan) = VP iz 4m)
4q2 Vi

_ VP iegt gim) _ VP iese

_761 2
V4 V4
\/;Be’% Vb% — dac

Vae'? V4a?
Vb2 — 4dac
2a '

The same conclusion holds in the case 7 < u—v < 27, but the argument
is Arg(u —v) =u —v — 27. In the case —m <u—v <,

2 _ ru—v
1/ b ;lac — pq—lei(u—v) — @el( 7)
4a V4
Vpe's

2 Vb% — dac

\/aei% 2a

a a o o A a o /b2 _

The conclusion is that the principal square root 1/ 2=22¢ ig either Yt —4ac
p palsq 4a? 2a

_ Vb%2—4ac Vb2—4dac
2a 2a

or . In the former case the other square root is — and

in the latter case the other square root is 7”’22;4“
roots of bi;;é“c are £+ b22;4“c. So it indeed follows from (2) that
b Vb% — 4ac

ot
z+2a 2a

. So the two square

and in turn
—b+ Vb2 — 4ac
7= .
2a

EXERCISE 6
For any z1, 29, w1, ws € C prove Lagrange’s identity

|z1w1 + zowa|* = (|21]? + |22 (Jwi]? + w2 ]?) — [2102 — 20w |?
Use this to prove the Cauchy-Schwarz inequality

l21w1 + zowa| < (J21]? + |22 )2 (Jwi |? + wa] )12



SOLUTION:
Let’s start with Lagrange’s identity. Here we just add and subtract both
|22|?|w1|?* and |21 |?|ws|? and factorize. This leads to
|z1w1 4 zowa|? =|21 [ |w1|? + 2122wy + 21 20W1ws + |22)?|wo|?
=(la1|* + [z2)|wn[* — |z2[*fwn
+ (|21 + |22 w2 l® — |21 w2 ?
+ 2122w W2 + Z1 22w W2
=(la1? + [22/*) (lw1]? + [w2]?)
— |22 w1 ]? — |21 |wa|? + 21 Z2w1 g + Z1 2201 w2
=(|z1f* + [z2*) (Jwi]? + |w2|?)
— (Jz2*lw1|* — 2122w1 W2 — Z120W1w2 + |21 ]2 w2|?)
=(la1|* + [22*) (Jun [ + |w2?) — 2201 — 2102
We get the Cauchy-Schwarz inequality as follows,
|z1w1 + zowa| = [|z1w1 + 2271)2‘2]1/2
1/2

[

(121 + |22*) (Jwr |[* + [wa|?) — |zow1 — z1D2]]
[(l21] + |22 (Jwr [* + [w2*)]*/?
(

|21 + [22/%) /2 (o ? + w2 )12,

IN



