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“The natural development of this work soon led the geometers in their stud-

ies to embrace imaginary as well as real values of the variable... It came to

appear that, between two truths of the real domain, the easiest and shortest

path quite often passes through the complex domain.” (Paul Painlevé 1900)
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Preface

This course gives an introduction to complex numbers and functions

of a complex variable. Complex numbers arose in the 16th century as a

way of finding “imaginary” solutions to equations. In the 19th century

complex analysis became an important part of mathematics. Nowadays

complex numbers and functions are regarded as very “real”, and they appear

naturally in many parts of mathematics, physics and engineering.

Topics include basic properties of complex numbers, analytic functions,

complex derivatives, and complex integrals. We will also discuss (local)

Cauchy’s theorem and Cauchy integral formula, the maximummodulus prin-

ciple, and the fundamental theorem of algebra. In period 4, it is possible to

continue with the course Complex analysis 2.

The main reference for the course are these lecture notes, which borrow

heavily (and directly) from earlier lecture notes by Tero Kilpeläinen [Ki15Ki15]

and Tuomas Orponen [Or23Or23]. Further explanations and illustrations will

be given during the lectures, and therefore it is recommended to take notes

also then.

The following textbooks may be useful additional reading:

• Bruce P. Palka: An introduction to complex function theory, Springer,

1990 (the course follows parts I.1.1-V.4.3)

• Elias M. Stein, Rami Shakarchi: Complex analysis, Princeton Univer-

sity Press, 2003 (less rigorous and proceeds quickly, but explains many

things beautifully)

• Eberhard Freitag, Rolf Busam: Complex analysis, 2nd edition, Univer-

sitext, Springer, 2009 (a systematic treatment)
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CHAPTER 1

Complex numbers and the complex plane

1.1. Motivation

We begin by motivating the notion of complex numbers and discuss

briefly several applications in mathematics, physics and engineering. In this

section we only give formal (=not rigorous) arguments. Precise definitions

will be given in the later sections.

Example 1.1.1 (Quadratic equation). Consider the quadratic equation

ax2 + bx+ c = 0.

The coefficients a, b, c are real numbers, and one would like to find a real

number x solving this equation. In high school we have learned the following

quadratic formula for a solution:

(1.1.1) x =
−b±

√
b2 − 4ac

2a
.

The formula involves the discriminant ∆ = b2 − 4ac. The square root√
b2 − 4ac makes sense when b2 − 4ac ≥ 0. If b2 − 4ac > 0 we know that

there are two distinct solutions, and if b2 − 4ac = 0 we know that there is

only one solution.

We now ask: what happens when b2 − 4ac < 0? A very simple equation

where this happens is

x2 + 1 = 0.

No real number x can solve this equation, since x2 + 1 ≥ 1 for any x ∈ R.
Undeterred by this fact, we consider the possibility that some more general

number x could solve this equation. If some x is a solution, then x2 = −1.
Formally we could write

x =
√
−1.

Another solution could be x = −
√
−1. Thus, formally, we could consider

an imaginary unit

i =
√
−1.

The imaginary unit is a “generalized number” that satisfies i2 = −1.
Assuming the existence of such a number, one can formally define a complex

3



4 1. COMPLEX NUMBERS AND THE COMPLEX PLANE

number z to be an expression of the form

z = a+ bi

where a, b ∈ R. One would then like to calculate with such numbers. (The

name complex number was introduced by Gauss in 1831.)

A natural way to add two such numbers z = a+ bi and w = c+di where

a, b, c, d ∈ R would be

(1.1.2) z + w = (a+ c) + (b+ d)i.

In principle there are many choices for multiplying z and w. For instance

one could try a product z×w = (ac)+(bd)i. However, this product will not

always have nice properties. It will turn out that there is a unique product

that satisfies commutativity (z · w = w · z) and distributivity (z · (w + r) =

z · w + z · r). Formally

z · w = (a+ bi) · (c+ di) = a · (c+ di) + bi · (c+ di)

= ac+ adi+ bci+ bdi2

= (ac− bd) + (ad+ bc)i.(1.1.3)

The formulas (1.1.21.1.2) and (1.1.31.1.3) are related to an algebraic approach to

complex numbers. There is a perhaps more intuitive geometric approach,

where a complex number a+bi is identified with the vector (a, b) in R2. The

vectors (a, 0) are on the x-axis (real axis), whereas the vectors (0, b) are on

the y-axis which in this setting is called the imaginary axis.

Complex numbers were first brushed upon by the Italian mathematician

Girolamo Cardano around 1545 in his treatise of solving cubic and quartic

equations. Cardano writes (translation from Latin): “Dismissing mental

tortures, and multiplying 5 +
√
−15 by 5 −

√
−15, we obtain 25 − (−15).

Therefore the product is 40. .... and thus far does arithmetical subtlety go,

of which this, the extreme, is, as I have said, so subtle that it is useless.”
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Example 1.1.2 (Higher order equations). The second order equation

ax2+bx+c = 0 always has two complex solutions (which coincide if b2−4ac =
0), given by the quadratic formula (1.1.11.1.1). If b2 − 4ac < 0, we need to

interpret the square root as an “imaginary number” as√
b2 − 4ac =

√
(4ac− b2) · (−1) =

√
4ac− b2

√
−1 = i

√
4ac− b2.

Next let p, q ∈ R and consider the cubic equation

t3 + pt+ q = 0.

Cardano published in 1545 the solution formula

(1.1.4) t =
(
−q

2
+
√
∆
)1/3

+
(
−q

2
−
√
∆
)1/3

.

where ∆ = p3

27 + q2

4 is the discriminant. If ∆ < 0, then the equation has

three real solutions, and all three solutions can be obtained from (1.1.41.1.4)

by interpreting the roots as complex numbers. (If ∆ ≥ 0 there are three

complex solutions, at least one of which is real, obtained by a variation of

(1.1.41.1.4).)

It was proved by Niels Abel in 1824 that a general equation

xn + a1x
n−1 + . . .+ an−1x+ an = 0

of order n ≥ 5 cannot be solved in terms of radicals (roots etc). However,

the fundamental theorem of algebra states that such an equation always has

n complex solutions counting multiplicity. We will prove this theorem in the

end of the course by using complex analysis.

Complex numbers have many other striking applications in several fields

of mathematics and science. We list a few here.

Example 1.1.3 (Evaluation of integrals). Definite integrals such as∫ ∞

−∞

1

1 + xn
dx or

∫ π

−π

1

3 + cos2 t
dt

can be explicitly calculated by complex analysis and the powerful residue

theorem, as will be discussed in Complex analysis 2.

Example 1.1.4 (Number theory). The Riemann zeta function is defined

by

ζ(s) =
∞∑
n=1

1

ns
.

The sum converges for s > 1. It turns out that ζ(s) can be defined for

complex numbers s and that this function has an intimate connection with
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prime numbers. For example, the prime number theorem which states that

lim
x→∞

#{primes ≤ x}
log x
x

= 1,

was first proved in 1896 by using complex analysis and the Riemann zeta

function. The most famous unsolved problem in mathematics (and one of

the $1,000,000 Millennium problems) is the Riemann hypothesis, which asks

to prove that all nontrivial zeros of ζ(s) are of the form s = 1
2 + it for t ∈ R.

Example 1.1.5 (Fractal geometry). The Mandelbrot set is the most

famous example of a fractal (very irregular set). This set, like many other

fractals, is generated via complex analysis, by iterating the function fc(z) =

z2 + c for different complex c.

Example 1.1.6 (Physics). Many basic equations of physics, such as the

Schrödinger equation in quantum mechanics,

i∂tΨ+∆Ψ = 0,

or the time-harmonic Maxwell equations for electromagnetic waves,

∇× E = −iωµH,

∇×H = J + iωεE,

explicitly involve complex numbers.
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Example 1.1.7 (Signal processing). A time-periodic audio signal f(t)

can be decomposed in its frequency components via Fourier series

f(t) =
∞∑

k=−∞
cke

ikt,

where the complex exponential eix is defined via the Euler formula

eix = cosx+ i sinx.

We hope that these examples convince the reader that complex numbers

are not “imaginary” or “useless”, but rather a natural and powerful language

for many applications in mathematics and science. We also hope that this

course will show that complex analysis is a rich and beautiful subject in its

own right. We should mention that complex analysis has been one of the

most prominent fields in mathematics in Finland, including famous math-

ematicians such as Rolf Nevanlinna (creator of Nevanlinna theory, around

1925) and Lars Ahlfors (the only Finnish recipient of the Fields medal, in

1936).

1.2. Complex numbers: algebraic properties

Previously, we introduced complex numbers as objects z = a+ bi where

a, b ∈ R and i is a special imaginary unit satisfying i2 = −1. We make

this definition rigorous by considering vectors (a, b) ∈ R2 and by taking the

result of our formal computations, (1.1.21.1.2) and (1.1.31.1.3), as the definitions of

sum and product.

1.2.1. Complex numbers, sums and products.

Definition 1.2.1. A complex number is a vector z = (a, b) ∈ R2. The

sum z + w of two complex numbers z = (a, b) and w = (c, d) is defined to

be

z + w = (a+ c, b+ d).

The product zw = z · w is defined as

zw = (ac− bd, ad+ bc).

If n ≥ 1 is an integer, the nth power of z is

zn = z · z · . . . · z︸ ︷︷ ︸
n times.

The set of complex numbers is denoted by

C = {(a, b) : a, b ∈ R}.
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Example 1.2.2. We have

(1, 3) + (−1, 2) = (1 + (−1), 3 + 2) = (0, 5)

and

(1, 3)(−1, 2) = (1 · (−1)− 3 · 2, 1 · 2 + 3 · (−1)) = (−7,−1).

Remark 1.2.3. If z = (a, b) and w = (c, d) are complex numbers, then

z = w ⇐⇒ a = c and b = d.

The next definition allows us to identify real numbers a with complex

numbers (a, 0).

Definition 1.2.4. If a ∈ R, we identify a with the complex number

(a, 0). In particular

0 = (0, 0),

1 = (1, 0).

If z = (a, b) is a complex number, we write −z = (−a,−b).

Warning 1.2.5. Complex numbers, unlike real numbers, do not have a

natural ordering. Thus whenever we write a ≤ b etc, it is assumed that a

and b are real numbers.

We now show that complex numbers satisfy many natural properties,

just like the real numbers do. Those who have taken Algebra 1 may notice

that the set C becomes a commutative ring.

Theorem 1.2.6 (Ring properties). Any z, w, v ∈ C satisfy

z + w = w + z, zw = wz (commutativity)

z + (w + v) = (z + w) + v, z(wv) = (zw)v (associativity)

z(w + v) = zw + zv (distributivity)

z + (−z) = 0 (additive inverse)

z + 0 = z, z · 1 = z (identity element).

Proof. We only prove distributivity, and leave the other parts as exer-

cises. Let z = (a, b), w = (c, d) and v = (x, y). Then

z(w + v) = (a, b) · (c+ x, d+ y)

= (a(c+ x)− b(d+ y), a(d+ y) + b(c+ x))

= (ac− bd, ad+ bd) + (ax− by, ay + bx)

= (a, b) · (c, d) + (a, b) · (x, y)
= zw + zv. □
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1.2.2. Imaginary unit. Now, how does the imaginary unit i fit in the

above scheme? Recall that i is supposed to be a complex number such that

i2 = −1 = (−1, 0). It is easy to find such a number:

Definition 1.2.7. The imaginary unit is the complex number

i = (0, 1).

The real part Re(z) and imaginary part Im(z) of z = (a, b) are

Re(z) = a,

Im(z) = b.

We now make the connection between complex numbers (a, b) ∈ R2 and

the numbers a+ bi as in Section 1.11.1.

Theorem 1.2.8 (Basic facts).

(i) i2 = −1.
(ii) One has (a, b) = a+ bi and Re(a+ bi) = a, Im(a+ bi) = b.

(iii) Any complex number z can be represented uniquely as z = a + bi for

some a, b ∈ R.

Proof. (i) One has

i2 = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −1.

(ii) Given any (a, b) ∈ C, we have

(a, b) = (a, 0) + (0, b) = a+ b · (0, 1) = a+ bi.

Consequently Re(a+ bi) = a and Im(a+ bi) = b.

(iii) By (ii), any z = (a, b) ∈ C can be represented as z = a + bi. For

uniqueness, if z = a + bi = c + di for some a, b, c, d ∈ R, then (ii) applied

to (a, b) and (c, d) gives (a, b) = (c, d), so a = c and b = d. This shows that

there is only one possible representation of z ∈ C as z = a+ bi. The result

follows. □

From now on, justified by Theorem 1.2.81.2.8, we will most often write com-

plex numbers as a+ bi instead of (a, b), because this will be easier for com-

putations. In particular, it is not necessary to remember the definition of

product in Definition 1.2.11.2.1, but just the following rule:

One computes with complex numbers a+ bi just like with real

numbers, just collecting all terms with i and keeping in mind

that i2 = −1.
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Example 1.2.9. Powers of i can be computed as

i2 = −1,

i3 = i2 · i = (−1) · i = −i,

i4 = i3 · i = (−i) · i = 1,

i5 = i4 · i = (1) · i = i,

...

One also computes

(3 + 2i) + (4− 3i) = (3 + 4) + (2− 3)i = 7− i

and

(3 + 2i)(4− 3i) = 3 · 4− 3 · 3i+ 2i · 4− 2i · 3i = 12− 9i+ 8i+ 6 = 18− i.

1.2.3. Division. Let us now consider how to divide by a complex num-

ber. If z = a + bi is nonzero (meaning that a ̸= 0 or b ̸= 0), we formally

compute

(1.2.1)
1

z
=

1

a+ bi
=

a− bi

(a+ bi)(a− bi)
=

a− bi

a2 + b2
.

We take this result as a definition (again, in practice it is enough to remem-

ber the previous computation and not the definition):

Definition 1.2.10. If z = a+ bi ̸= 0, its inverse is

z−1 =
a

a2 + b2
− b

a2 + b2
i.

If w ∈ C we define w
z = w · z−1.

Combined with Theorem 1.2.61.2.6, the following result shows that C is a

field in the language of Algebra 1:

Theorem 1.2.11. For any z ∈ C with z ̸= 0, one has z · z−1 = 1.

Proof. Exercise. □

Example 1.2.12. One has

1

3 + 4i
=

3− 4i

(3 + 4i)(3− 4i)
=

3− 4i

32 + 42
=

3

25
− 4

25
i

and

2− 5i

3 + 4i
= (2− 5i)

1

3 + 4i
= (2− 5i)(

3

25
− 4

25
i) = −14

25
− 23

25
i.
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1.3. Complex numbers: geometric properties

Above we established the most basic algebraic properties of complex

numbers. At this point it is useful to look at complex numbers from a

geometric point of view. By definition the set C is just R2, and a complex

number z = a+bi with a, b ∈ R can be identified with the vector (a, b) ∈ R2.

The set C is often called the complex plane, and we can draw complex

numbers as vectors in the plane.

1.3.1. Modulus and complex conjugate. Next we introduce two

useful quantities associated to every complex number z ∈ C: its modulus

and its complex conjugate. We begin with modulus. The reader has likely

seen earlier the Euclidean norm ∥(a, b)∥ =
√
a2 + b2 of vectors in R2. For his-

torical reasons, this quantity is often called “modulus” in complex analysis

– but it is exactly the same thing.

Definition 1.3.1 (Modulus). Let z = a+ bi ∈ C. Then the modulus of

z is the number

|z| := ∥(a, b)∥ =
√
a2 + b2.

Proposition 1.3.2. If z, w ∈ C, then |z + w| ≤ |z|+ |w|.

Proof. This is just the triangle inequality for Euclidean norm ∥ · ∥! □

We then move on to the complex conjugate (see Figure 11):

Definition 1.3.3 (Complex conjugate). Let z = a + bi ∈ C. Then the

complex conjugate of z is the number z̄ = a− bi ∈ C.

Example 1.3.4. If z = 3 + 4i, then |z| =
√
32 + 42 =

√
25 = 5 and

z̄ = 3− 4i.
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There is a beautiful link between the modulus, conjugate, and complex

inverse:

Proposition 1.3.5. Let z ∈ C. Then zz̄ = |z|2. In particular z−1 =

z̄/|z|2, if z ̸= 0.

Proof. Write z = a+ bi, so z̄ = a− bi. Now,

zz̄ = (a+ bi)(a− bi) = a2 − abi+ bai− i2b2 = a2 + b2 = |z|2.

This is what we claimed. The formula z−1 = z̄/|z|2 follows by multiplying

both sides of the equation by z−1/|z|2. (We have seen this formula for z−1

before in (1.2.11.2.1).) □

Complex conjugation and multiplication play nicely together:

Proposition 1.3.6. Let z, w ∈ C. Then zw = z̄w̄.

Proof. This is just a computation. Let z = a + ib and w = c + id.

Then,

zw = (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (ac− (−b)(−d)) + i(a(−d) + (−b)c)
= (a− ib)(c− id) = z̄w̄.

This is what we claimed. □

For x, y ∈ R, everyone knows that |xy| = |x||y|. It is rather striking that

the same remains true for z, w ∈ C:

Corollary 1.3.7. Let z, w ∈ C. Then |zw| = |z||w|.

Proof. We use Propositions 1.3.51.3.5-1.3.61.3.6, and the commutativity of the

complex product:

|zw|2 = (zw)(zw) = zwz̄w̄ = (zz̄)(ww̄) = |z|2|w|2.

The proof is completed by taking square roots. □

Here are a few further useful properties of the modulus and conjugate:

Proposition 1.3.8. Let z, w ∈ C. Then,

¯̄z = z, z + w = z̄ + w̄, |z| = |z̄|, and

max{|Re(z)|, |Im(z)|} ≤ |z|.

If z ̸= 0, then z−1 = z̄−1. Finally, the real and imaginary parts of z can be

expressed in terms of the conjugate, as follows:

(1.3.1) Re(z) =
z + z̄

2
and Im(z) =

z − z̄

2i
.
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Proof. Exercise. □

Example 1.3.9. We would like to describe geometrically the set

S = {z ∈ C : |z − 1| = 2|z + 1|}.

Let z = x+ iy. We have a chain of equivalences:

z ∈ S ⇐⇒ |z − 1| = 2|z + 1|

⇐⇒ |z − 1|2 = 4|z + 1|2

⇐⇒ (z − 1)(z − 1) = 4(z + 1)(z + 1)

⇐⇒ |z|2 − (z + z̄) + 1 = 4|z|2 + 4(z + z̄) + 4

⇐⇒ |z|2 − 2Re(z) + 1 = 4|z|2 + 8Re(z) + 4

⇐⇒ 3|z|2 + 10Re(z) + 3 = 0

⇐⇒ |z|2 + 2 · 5
3
· Re(z) + 1 = 0

⇐⇒ x2 + y2 + 2 · 5
3
· x+

(
5

3

)2

=

(
5

3

)2

− 1 =
16

9

⇐⇒ |(x, y) + (5/3, 0)|2 = (4/3)2.

Thus S is a circle in C = R2 with radius 4/3 and centre −5/3 = (−5/3, 0).
We can also write S = {z ∈ C : |z + 5/3|2 = (4/3)2.

 

z

|z|

z̄

i

|z|−1

1

Arg(z) R

z−1 = z̄/|z|2

iIm(z)

Re(z)

Figure 1. The points z, z̄ and z−1 = z̄/|z|2.

The concepts introduced in the previous section have illustrative geo-

metric interpretations, shown in Figure 11. Here are the key points to pay

attention to in the figure:
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• The modulus |z| is just the length of the vector z ∈ C.
• If z = x+ iy, the complex conjugate z̄ = x− iy is obtained by “mirror-

ing” the point z over the real axis R.
• The complex inverse z−1 = z̄/|z|2 is obtained by stretching the conju-

gate z̄ by a factor of |z|−2. In the figure |z| < 1, so the stretch factor is

greater than one. Note that |z−1| = 1
|z| .

1.3.2. Argument. Figure 11 illustrates a new concept “Arg(z)”. This

is the angle (called argument in complex analysis), in radians, between the

vector z and the positive x-axis. However, this angle is not uniquely defined,

since changing the angle by an integer multiple of 2π gives the same vector

z! Thus we need to take some care in the definition.

Given z ∈ C \ {0}, we can interpret z
|z| as a unit vector in R2. Now we

recall the following fact from plane geometry.

Lemma 1.3.10. Any unit vector v ∈ R2 is of the form

v = (cos θ, sin θ)

for some θ ∈ R. Moreover, one has v = (cosα, sinα) if and only if α =

θ + 2πk for some k ∈ Z.

Definition 1.3.11 (Argument). If z ̸= 0 is a complex number, then its

(multi-valued) argument is the set

arg(z) = {θ ∈ R :
z

|z|
= (cos θ, sin θ)}.

The principal argument Arg(z) is the unique number θ ∈ arg(z) satisfying

θ ∈ (−π, π], z ∈ C \ {0}.

In other words, Arg(z) is the signed angle formed by the vector z and

the positive real axis, with the convention that{
Arg(z) ∈ [0, π] if Im(z) ≥ 0,

Arg(z) ∈ (−π, 0) if Im(z) < 0.

By Lemma 1.3.101.3.10, the set arg(z) can be expressed as

(1.3.2) arg(z) = {Arg(z) + 2πk : k ∈ Z}.

The principal argument Arg is just one way of selecting a unique represen-

tative from the many possible angles representing z.

Example 1.3.12. Arg(i) = π/2, Arg(−1) = π, Arg(−i) = −π/2.

Remark 1.3.13. The function Arg is not continuous on the set C \ {0}.
It has a “jump” over the negative real axis (−∞, 0), where the value of

Arg(z) changes abruptly from π to −π (when arriving to the axis from

above).
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Remark 1.3.14. By definition, one has

(1.3.3)
z

|z|
= cos (Arg(z)) + i sin (Arg(z)) .

Therefore one can (for example) write explicitly

(1.3.4) Arg(z) = arccos
(
Re(z)
|z|

)
, z ∈ C \ {0}.

This implies that Arg is a continuous function in C \ (−∞, 0]. However,

when writing Arg(z) in this way, one has to be careful in choosing correctly

the domain and range of arccos. We leave the verification of these facts to

the reader.

Remark 1.3.15. The function Arg(z) is often called the principal branch

of the multi-valued (i.e. set-valued) argument arg(z). Let us explain this

terminology a little bit.

If we have a set-valued function F (z), e.g. F (z) = arg(z), in some open

set X ⊂ C, then a branch of the set-valued function F (z) is a continuous

function f : X → C such that f(z) ∈ F (z) for all z ∈ X. This means that a

branch is just a way of selecting a unique representative from the set F (z)

in a continuous way.

For example, Arg is a branch of arg in C\(−∞, 0], since Arg is continuous

in this set and Arg(z) ∈ arg(z) for any z ∈ C \ (−∞, 0]. Branches are in

general not unique. For instance, the function Arg1 : C \ (−∞, 0]→ R such

that Arg1(z) is the unique point in arg(z)∩ (π, 3π] would be another branch

of arg in C \ (−∞, 0].

Often in complex analysis textbooks one talks about the principal branch

of the argument, the principal branch of the nth root function, and the

principal branch of the complex logarithm. This just means that we single

out a certain unique representative from many possible solutions. Since the

nth root and logarithm are defined in terms of the argument, this boils

down to using the principal argument Arg that we have defined. This will

be enough for us for the moment (we will return to this in Section 3.1.33.1.3).

1.3.3. The geometry of complex products. Let us next investigate

how the complex product interacts with the argument. We first consider

complex numbers in terms of polar coordinates.

Terminology 1.3.16 (Polar coordinates). Let z ∈ C \ {0} and θ ∈
arg(z). Then, according to Definition 1.3.111.3.11, we have

(1.3.5) z = |z|(cos θ + i sin θ).

The formula (1.3.51.3.5) is called a polar coordinate representation of z.
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Note that z has many polar coordinate representations, for each choice

of θ ∈ arg(z).

Proposition 1.3.17 (Uniqueness of polar representations). Let r, ρ ≥ 0

and θ, α ∈ R. One has

r(cos θ + i sin θ) = ρ(cosα+ i sinα)

if and only if

ρ = r,

α = θ + 2πk

for some k ∈ Z.

Proof. If r(cos θ+ i sin θ) = ρ(cosα+ i sinα), then in terms of vectors

r(cos θ, sin θ) = ρ(cosα, sinα).

Taking the Euclidean norm yields r = ρ, and then using Lemma 1.3.101.3.10 gives

α = θ + 2πk for some k ∈ Z. Conversely, if r = ρ and α = θ + 2πk, then

r(cos θ + i sin θ) = ρ(cosα+ i sinα) since cos and sin are 2π-periodic. □

Next we recall:

Lemma 1.3.18 (Sum formulas for cos and sin). Let α, β ∈ R. Then,

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + cosα sinβ.

Proposition 1.3.19 (Product in polar coordinates). Consider two com-

plex numbers

z1 =|z1|(cos θ1 + i sin θ1),

z2 =|z2|(cos θ2 + i sin θ2).

Then

z1z2 = |z1| |z2|(cos(θ1 + θ2) + i sin(θ1 + θ2)).

Proof. By Lemma 1.3.181.3.18 we have

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= cos θ1 cos θ2 − sin θ1 sin θ2 + i(cos θ1 sin θ2 + sin θ1 cos θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2).

Then also

z1z2 = |z1| |z2|(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= |z1| |z2|(cos(θ1 + θ2) + i sin(θ1 + θ2)). □
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Proposition 1.3.191.3.19 allows us to describe the multiplication of two com-

plex numbers in geometric terms. Here is an informal but easy to remember

description:

To multiply two complex numbers, multiply the moduli and add the

angles.

Remark 1.3.20. The only catch in this informal description is that the

angle is only defined up to multiples of 2π. Thus even if θ1, θ2 ∈ (−π, π] it
may happen that θ1+ θ2 is outside of (−π, π]. In this case, to find the value

of Arg(z1z2), we have to add or subtract 2π to θ1+θ2 (the choice is unique!)

to bring it back inside (−π, π].

Example 1.3.21. Let’s see how this works in a simple case like z =

−i = w. Of course then we can directly calculate that zw = (−i)(−i) = −1,
but let’s deduce the same result with the geometric method of the previous

remark.

First, obviously |z| = 1 = |w|, so also |zw| = 1. So, zw must be a point

on the unit circle S1. Second, Arg(−i) = −π/2, so Arg(z) + Arg(w) =

−π/2 − π/2 = −π. The result is no longer in (−π, π], and we need to add

2π to bring it back inside (−π, π]. Consequently,

Arg(zw) = −π + 2π = π.

Thus, zw is the point on S1 whose angle with the positive R-axis is π. This
point is −1.
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Example 1.3.22. The previous was perhaps a little uninteresting, since

(−i)(−i) is anyway easy to calculate directly. To increase the challenge,

consider computing (1 − i)8. What a nightmare would it be to calculate

this, based on the definition! Luckily there is a much quicker way. Note

that |1 − i| =
√
2, so |(1 − i)8| = 24 = 16. On the other hand, clearly

Arg(1− i) = −π/4, so arg((1− i)8) contains the point 8 ·Arg(1− i) = −2π.
It follows that

(1− i)8 = |(1− i)|8(cos(−2π) + i sin(−2π)) = 16.

1.4. Complex roots

1.4.1. De Moivre’s formula. We have already seen in the proof of

Proposition 1.3.191.3.19 that

(1.4.1) (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2).

In particular, the special case θ1 = θ2 = θ reads

(cos θ + i sin θ)2 = cos(2θ) + i sin(2θ), θ ∈ R.

Using formula (1.4.11.4.1), we can continue this inductively:

(cos θ + i sin θ)3 =
(
cos(2θ) + i sin(2θ)

)
(cos θ + i sin θ)

= cos(3θ) + i sin(3θ)

. . .

(cos θ + i sin θ)n+1 =
(
cos(nθ) + i sin(nθ)

)
(cos θ + i sin θ)

= cos
(
(n+ 1)θ

)
+ i sin

(
(n+ 1)θ

)
This argument proves the cases n ∈ N of the following important theorem:

Theorem 1.4.1 (De Moivre’s formula). Let n ∈ Z and θ ∈ R. Then,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof. We already proved the cases n ≥ 1. For n = 0, the formula is

also true under the convention z0 = 1:

(cos θ + i sin θ)0 = 1 = cos(0 · θ) + i sin(0 · θ).

Regarding n < 0, let’s first consider the case n = −1. Recall that z−1 =

z̄/|z|2 for z ∈ C \ {0}. For z = cos θ + i sin θ we have |z|2 = (cos θ)2 +

(sin θ)2 = 1. Therefore,

(cos θ + i sin θ)−1 = cos θ + i sin θ = cos θ − i sin θ = cos(−θ) + i sin(−θ),
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using that cos is even and sin is odd. This proves the case n = −1. For

general n ∈ Z with n < 0, we finally have

(cos θ + i sin θ)n =
(
(cos θ + i sin θ)−1

)−n

= (cos(−θ) + i sin(−θ))−n

= cos(nθ) + i sin(nθ),

applying the first part of the proof to −n ∈ N. □

Remark 1.4.2. Later, when we define the exponential function ez, we

will establish Euler’s formula

eix = cosx+ i sinx, x ∈ R.

For now, one could use the notation eix as a convenient shorthand for cosx+

i sinx. Using this shorthand, De Moivre’s formula takes the form (eiθ)n =

einθ which is easier to remember.

1.4.2. Complex roots. We have already seen that one can multiply

and divide complex numbers (as long as we do not divide by zero) and take

powers zn. Now we will show that one can also take nth roots of complex

numbers.

Definition 1.4.3 (nth root). Let z ∈ C and let n ≥ 2 be an integer. A

number w ∈ C is said to be an nth root of z if wn = z.

Let us first consider taking the nth roots of 0. If wn = 0, then taking the

modulus gives |w|n = 0, so |w| = 0 and w = 0. Thus the only nth root of 0

is 0. However, it is a fact of life that nth roots of z ̸= 0 are not unique, in

the same way that the equation x2 = a for a > 0 has two distinct solutions√
a and −

√
a.

Theorem 1.4.4 (Complex roots). Let z ∈ C, z ̸= 0, and let n ≥ 1 be an

integer. Then the equation

wn = z

has precisely n distinct solutions w ∈ C. The solutions are given by

(1.4.2) w = wk = n
√
|z|

(
cos

(
Arg(z) + 2πk

n

)
+ i sin

(
Arg(z) + 2πk

n

))
where k = 0, 1, . . . , n− 1.

Proof. We start by writing z in polar coordinates as in (1.3.31.3.3),

(1.4.3) z = |z|(cos(Arg(z)) + i sin(Arg(z))).

We look for a solution w of wn = z also in polar coordinate form, i.e.

w = r(cos θ + i sin θ).
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By De Moivre’s formula, we have

(1.4.4) wn = rn(cos θ + i sin θ)n = rn(cos(nθ) + i sin(nθ)).

Comparing (1.4.31.4.3) and (1.4.41.4.4), we have wn = z if and only if

rn(cos(nθ) + i sin(nθ)) = |z|(cos(Arg(z)) + i sin(Arg(z))).

By uniqueness of polar coordinate representations (Proposition 1.3.171.3.17), r

and θ must satisfy

rn = |z|,
nθ = Arg(z) + 2πk

for some k ∈ Z. The only positive number satisfying rn = |z| is

r = n
√
z.

It follows that all the solutions of wn = z are of the form (1.4.21.4.2) for some

k ∈ Z.
It might seem that there are infinitely many such numbers w, one for

each k ∈ Z. However, since cos and sin are 2π-periodic, we see that changing

k to k +mn for some m ∈ Z gives the same complex number w. Hence it

is enough to look at the cases k = 0, 1, . . . , n − 1. It is an easy exercise to

check that the numbers wk for k = 0, 1, . . . , n− 1 are all distinct, using the

fact that Arg(z) ∈ (−π, π]. □

Remark 1.4.5. Using eix as a shorthand for cosx+ i sinx as in Remark

1.4.21.4.2, it is easy to remember how to solve wn = z. Writing z = |z|eiArg(z),

one can formally take the nth root in the equation wn = z = |z|eiArg(z) to

obtain one solution

w0 =
n
√
|z|ei

Arg(z)
n .

Theorem 1.4.41.4.4 shows that all solutions are given by

wk = n
√
|z|ei(

Arg(z)
n

+ 2πk
n

), k = 0, 1, . . . , n− 1.

Next, how do the solutions of wn = z look like in the complex plane?

Clearly they all lie on the circle of radius r = n
√
|z| centred at the origin.

Moreover, they form an evenly spaced set of cardinality “n” on that circle.

Example 1.4.6. Let’s illustrate this with a picture in a simple case like

z = −1, so
|z| = 1 and Arg(z) = π.

Now, with n = 4 (for example), the solutions to the equation w4 = −1 are

given by

wk = cos(π/4 + 2πk/4) + i sin(π/4 + 2πk/4), k ∈ {0, . . . , 3}.
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These four points are drawn in Figure 22. Notice that none of them lies

on the real axis: of course there is no r ∈ R satisfying r4 = −1! Since

cos(π/4) = 1/
√
2 etc, the solutions also have the explicit formulas

1√
2
+ i

1√
2
, − 1√

2
+ i

1√
2
, − 1√

2
− i

1√
2
,

1√
2
− i

1√
2
.

 

1

w1

w2

R

w3

z = −1
w0

Figure 2. All solutions to the equation w4 = −1.

Recall that in Definition 1.3.111.3.11 we chose a unique representative, the

principal argument Arg(z), of the multi-valued argument arg(z). Similarly,

we single out a unique choice of nth root by choosing k = 0 in Theorem

1.4.41.4.4:

Definition 1.4.7 (Principal nth root). Let n ≥ 2. We define the C-
valued function n

√
· : C→ C by setting

n
√
z :=

{
0, z = 0,
n
√
|z|(cos(Arg(z)/n) + i sin(Arg(z)/n)), z ̸= 0.

The function n
√
· is called the principal nth root. For n = 2, we abbreviate

2
√
z =:

√
z.

Example 1.4.8. Following Example 1.4.61.4.6, the principal 4th root of −1
is

4
√
−1 = cos(π/4) + i sin(π/4) =

1√
2
+ i

1√
2
.

Remark 1.4.9. If r ∈ R with r ≥ 0, then Arg(r) = 0. Therefore the

principal nth root n
√
r agrees with the familiar definition of n

√
r from the real

line.

Warning 1.4.10. You may be familiar with the rule
√
rs =

√
r
√
s valid

for r, s ∈ [0,∞). The principal square root also satisfies this for r, s ∈ [0,∞)
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(since it agrees with the familiar square root on [0,∞)), but it does not

satisfy a similar equation for all complex numbers:
√
−1
√
−1 = eiArg(−1)/2eiArg(−1)/2 = eiπ/2eiπ/2 = eiπ = −1 ̸=

√
1.

Remark 1.4.11. Recall that Arg (the principal argument) has a jump

discontinuity along the negative real axis (−∞, 0). Essentially for this rea-

son, the principal nth root n
√
· : C → C is also discontinuous in the set

(−∞, 0), for every n ≥ 2. The functions n
√
· are, however, continuous on the

set C \ (−∞, 0).

1.5. The complex exponential

Up to now we have seen expressions like

zn,
1

z
, n

√
z.

Next we wish to define expressions like

ez, sin z, cos z, log z, zw

for (many) complex numbers z and w.

1.5.1. Complex exponential. We know the exponential function ex

for x ∈ R, with Taylor series

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ . . . .

We formally replace x by iy with y ∈ R. Using that i2 = −1, so that

i2k = (−1)k for k ≥ 1, and recalling the Taylor series of cos and sin, this

would give

eiy = 1 + iy − y2

2!
− iy

3!
+

y4

4!
+ . . .

=

(
1− y2

2!
+

y4

4!
− y6

6!
+ . . .

)
+ i

(
y − y3

3!
+

y5

5!
− y7

7!
+ . . .

)
= cos y + i sin y.

This gives further evidence that Euler’s formula eiy = cos y + i sin y is a

reasonable definition of eiy for y ∈ R. If we expect that the rule ex+iy = exeiy

also works for complex numbers, we arrive at the following definition.

Definition 1.5.1 (Exponential). Let z = x + iy ∈ C where x, y ∈ R.
We define

ez = ex(cos y + i sin y).

Example 1.5.2. e4+iπ/2 = e4(cos(π/2) + i sin(π/2)) = e4i.
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The following proposition collects basic properties of the complex expo-

nential.

Proposition 1.5.3 (Properties of ez).

(a) If z = x ∈ R, then ez coincides with the usual exponential ex.

(b) For any z, w ∈ C one has

ez+w = ezew,

(ez)−1 = e−z.

(c) If z = x+ iy, then |ez| = ex. In particular,

|eiy| = 1, y ∈ R,

and ez ̸= 0 for any z ∈ C.

Proof. (a) If z = x+ iy with y = 0, then ez = ex(cos 0 + i sin 0) = ex.

(b) Let z = x+ iy and w = a+ ib. Then by (1.4.11.4.1)

ez+w = ex+a+i(y+b) = ex+a(cos(y + b) + i sin(y + b))

= exea(cos y + i sin y)(cos b+ i sin b) = ezew.

Then eze−z = ez+(−z) = e0 = 1, which gives (ez)−1 = e−z.

(c) We have |ez| = |ex(cos y + i sin y)| = ex
√

cos2 y + sin2 y = ex. This

gives |eiy| = 1 and ez ̸= 0 for any z. □

Remark 1.5.4. Later we will show that ez is an analytic function of z,

and the following fact further justifies Definition 1.5.11.5.1: the map z 7→ ez is

the unique analytic function on C which agrees with x 7→ ex on R. In fact, a

result in Complex analysis 2 will show that if two analytic functions C→ C
agree on R, then they agree everywhere.

Now that we have properly defined eiθ = cos θ + i sin θ, we can use the

eiθ notation and rewrite some facts that we have seen earlier:

• (Polar coordinates) Any z ∈ C \ {0} may be written as

z = |z|eiθ

for any θ ∈ arg(z). In particular, we may write

z = |z|eiArg(z).

• (Products) If z1 = |z1|eiθ1 and z2 = |z2|eiθ2 , then

z1z2 = |z1| |z2|ei(θ1+θ2).
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• (Roots) If z ∈ C \ {0} and n ≥ 2, then z = |z|eiArg(z) has principal

nth root
n
√
z = n

√
|z|ei

Arg(z)
n .

All the nth roots of z are given by

n
√
|z|ei

Arg(z)
n , n

√
|z|ei(

Arg(z)
n

+ 2π
n
), . . . n

√
|z|ei(

Arg(z)
n

+
(n−1)2π

n
)

Remark 1.5.5. If you have trouble remembering the sum formulas for

sin and cos, a good way to recall them is the relation ei(α+β) = eiαeiβ:

cos(α+ β) + i sin(α+ β) = ei(α+β) = eiαeiβ

= (cosα+ i sinα)(cosβ + i sinβ)

= cosα cosβ − sinα sinβ + i(sinα cosβ + cosα sinβ).

We will next investigate the “mapping properties” of z 7→ ez. Here are

two illustrative properties (see Figure 33):

Proposition 1.5.6. Let a, b ∈ R. The complex exponential maps the

horizontal line {z : Im(z) = a} to the ray {reia : r > 0} and the vertical line

{z : Re(z) = b} to the circle with radius eb.

Proof. The first statement is is clear from ex+ia = exeia, and noting

that ex takes all values on (0,∞) when x ranges in R.
The second statement follows from |eb+iy| ≡ eb, and noting that eiy =

cos y + i sin y takes all values on the unit circle when y ranges in R. □

Proposition 1.5.7. The complex exponential is (2πi)-periodic:

ez+2πi = ez, z ∈ C.

Moreover,

ez = ew ⇐⇒ w = z + 2πik for some k ∈ Z.

Proof. The (2πi)-periodicity is simple:

ez+2πi = eze2πi = ez,

since e2πi = cos(2π)+ i sin(2π) = 1. Assume then that ez = ew. Multiplying

by e−z and using Proposition 1.5.31.5.3 gives

ew−z = 1.

If we write w − z = x + iy, we have 1 = |ex+iy| = ex, and therefore x = 0.

Consequently,

cos y + i sin y = eiy = ew−z = 1,

which forces y ∈ 2πZ. Therefore w − z = iy ∈ 2πiZ, as claimed. □
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By the (2πi)-periodicity just established, the complex exponential ez

attains all of its values in any strip of the form

(1.5.1) Sh := {z ∈ C : Im(z) ∈ (h− π, h+ π]}, h ∈ R,

see Figure 33. In other words,

{ez : z ∈ C} = {ez : z ∈ Sh} for all h ∈ R.

 

Sh

i(h− π)

i(h + π)
C \ {0}

{ℑz = a} z 7→ ez

{Rez = b}

Figure 3. The mapping properties of z 7→ ez. The grey

strip Sh maps to C \ {0}. The red horizontal line {Im(z) = a}
maps to a ray {reia : r > 0} emanating from 0. The beige

vertical line {Re(z) = b} maps to the circle with radius eb.

Proposition 1.5.8. Let h ∈ R. The complex exponential z 7→ ez is a

bijection Sh → C \ {0}.

Proof. Let us first prove the injectivity. Let z1, z2 ∈ Sh. If ez1 = ez2 ,

then ez1−z2 = ez1/ez2 = 1, which implies by Proposition 1.5.71.5.7 that z1− z2 ∈
2πiZ. However, the strip Sh has been chosen to be exactly so “narrow” that

this forces z1 = z2.

We then prove the surjectivity: {ez : z ∈ Sh} = C \ {0}. We already

saw that ez ̸= 0 for all z ∈ C. Now if w ∈ C \ {0}, then w has a polar

coordinate representation

w = |w|eiθ, θ ∈ arg(w).

In (1.3.21.3.2) we showed that arg(w) = Arg(w)+2πZ. In particular, there exists

θ ∈ arg(w) satisfying h < θ ≤ h+ 2π. Now

z := log |w|+ iθ ∈ Sh,

and ez = elog |w|eiθ = |w|eiθ = w. (Here “log” refers to the logarithm in base

e on the positive real line.) □
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1.5.2. Sine and cosine functions in C. Back in (1.3.11.3.1) we recorded

that

Re(z) =
z + z̄

2
and Im(z) =

z − z̄

2i
, z ∈ C.

In particular,

cos θ = Re(eiθ) =
eiθ + e−iθ

2
and sin θ = Im(eiθ) =

eiθ − e−iθ

2i

for all θ ∈ R. Now that we have defined ez for all z ∈ C, the formulas above

suggest a neat way to extend the sine and cosine functions to the whole

complex plane:

Definition 1.5.9 (Sine, cosine, tangent). For z ∈ C, we define

(1.5.2) cos z :=
eiz + e−iz

2
and sin z :=

eiz − e−iz

2i
.

We also define the complex tangent function tan z := (sin z)/(cos z) when-

ever cos z ̸= 0.

Many of the familiar properties of the cosine and sine functions on the

real line have counterparts in C:

Proposition 1.5.10. Let z ∈ C. Then,

(cos z)2 + (sin z)2 = 1, cos(2z) = (cos z)2 − (sin z)2, cos
(
π
2 − z

)
= sin z.

Also the following addition rules hold for all z, w ∈ C:

sin(z + w) = sin z cosw + cos z sinw,

cos(z + w) = cos z cosw − sin z sinw.

Proof. Exercise. □

But not everything is so familiar. On the real axis, the functions sin and

cos are bounded by 1 in absolute value. This is completely different in C:

Example 1.5.11. Both cos and sin are surjective C → C (but not in-

jective). In particular, their moduli are unbounded. The first claim takes a

little effort to prove, and we omit it here, but the second one can be observed

easily by considering the values of cos or sin on the imaginary axis:

lim
t→∞

cos(it) = lim
t→∞

eiit + e−iit

2
= lim

t→∞

e−t + et

2
=∞.

Similarly sin(it)→ −∞ as t→∞.

As a side remark, the map t 7→ cos(it) is real-valued (as we just saw),

and is known as the hyperbolic cosine. Similarly, t 7→ −i sin(ix) is also

real-valued, and is known as the hyperbolic sine.



1.6. THE COMPLEX LOGARITHM 27

Example 1.5.12. Starting from the definitions, one can quite easily find

that all the solutions to sin z = 0 lie on the real line, and we all know that

sinx = 0 for x ∈ πZ. Similarly, all the solutions of cos z = 0 also lie on the

real line, more precisely in the set πZ+ π
2 .

1.6. The complex logarithm

For x > 0, the logarithm log x is defined as the number t ∈ R satisfying

et = x. (In this course, log always means the natural logarithm in base e.)

Similarly, we might like to define log z as a complex number w with ew = z.

However, like in the case of the argument, such a logarithm is not unique

since z 7→ ez is not injective on C.
If z ∈ C \ {0}, we use the polar coordinate representation

z = |z|eiArg(z) = elog |z|eiArg(z) = elog |z|+iArg(z)

where log |z| is the logarithm of the real number |z| > 0. Thus w0 =

log |z| + iArg(z) ∈ C satisfies ew0 = z. However, since ew is 2πi-periodic,

the numbers wk = log |z| + i(Arg(z) + 2πk) for k ∈ Z also satisfy ewk = z

and there are no other such numbers (this follows from Proposition 1.5.71.5.7).

Definition 1.6.1 (Logarithm). If z ∈ C \ {0}, then its (multi-valued)

logarithm is the set

log z = {w ∈ C : ew = z}.
The principal logarithm of z is the number

Log z = log |z|+ iArg(z).

Thus, like the principal argument Arg or the principal nth root n
√
· ,

the principal logarithm Log z selects a unique representative from the many

possible logarithms of z. Of course there are other possible choices (e.g.

Log1 z = Log z + 2πi). To be explicit, we note that one has

eLog z = z for z ∈ C \ {0}

and

Log x = log x for x > 0.

The previous discussion proves that for z ̸= 0,

log z = {Log z + 2πik : k ∈ Z}.

Note that the logarithm of 0 is not defined (just like in the real case), since

there is no w ∈ C with ew = 0.

The mapping properties of the principal logarithm are contained in Fig-

ure 44 and verified in the next proposition.
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Proposition 1.6.2. Let Log z = log |z|+ iArg(z) be the principal loga-

rithm, defined in C \ (−∞, 0]. Then Log maps C \ (−∞, 0] bijectively onto

the open strip

S = {z : Im(z) ∈ (−π, π)}.

 

S

ih

−ih

C \ (−∞, 0]

z 7→ Log z

Figure 4. The principal logarithm Log maps C \ (−∞, 0]

bijectively onto the open strip S.

Proof. The easiest way to see this is straight from the formula: when

z ∈ C \ (−∞, 0] varies, log |z| takes all possible values in R, and Arg(z) takes

all values in (−π, π). Therefore the image of Log of the set C \ (−∞, 0] is the

product R× (−π, π) = S. The fact that Log : C \ (−∞, 0]→ S is bijective

is also easy to see from the formula. □

Remark 1.6.3. By Proposition 1.6.21.6.2, the map Log : C \ (−∞, 0] → S
is the inverse function of f : S → C \ (−∞, 0], f(z) = ez.

Warning 1.6.4. If s, t > 0, the real logarithm satisfies log(st) = log(s)+

log(t). We have seen earlier that sometimes Arg(zw) ̸= Arg(z) + Arg(w)

and
√
zw ̸=

√
z
√
w, so it should not be a surprise that also sometimes

Log(zw) ̸= Log z + Logw (for the principal logarithms). We leave finding

concrete examples of z, w as an exercise.

The complex logarithm for z, w ∈ C \ {0} does satisfy the following

equality in the sense of sets (exercise):

log(zw) = log(z) + log(w).

Here we write A + B = {a + b : a ∈ A, b ∈ B}. We warn the readers that

in general one needs to be careful with such set equalities (for instance, one

has Z− Z = Z which may seem counterintuitive).

1.6.1. Complex powers. Recall that if t > 0 and a ∈ R, one defines

ta := ea log t.

We can make a similar definition for complex numbers, but again we have to

take care with the possibly multi-valued logarithm. We will use the principal

logarithm Log.
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Definition 1.6.5 (Principal branch of complex powers). If z ∈ C \ {0}
and w ∈ C, we define

zw := ewLog z.

Example 1.6.6.

i2π = e2πLog i = e2πLog(e
iπ/2) = e2π(iπ/2) = eiπ

2
= cos(π2) + i sin(π2),

i2πi = e2πiLog i = e2πi(iπ/2) = e−π2
.

We can check that the above definition coincides with definitions that

we already know (below zw is as in Definition 1.6.51.6.5):

• If n ≥ 1 is an integer and z ̸= 0, then by Proposition 1.5.31.5.3

zn = enLog z = eLog z · . . . · eLog z = z · . . . · z︸ ︷︷ ︸
n times

• If n ≥ 2 is an integer and z ̸= 0, then by the definition of Log z and

Proposition 1.5.31.5.3 we see that z
1
n is the principal nth root:

z
1
n = e

1
n
Log z = e

1
n
(log |z|+iArg(z)) = e

1
n
log |z|e

1
n
iArg(z) = |z|

1
n ei

Arg(z)
n = n

√
z

For any z ̸= 0 and w, v ∈ C, we also have the familiar rule

zw+v = e(w+v)Log z = ewLog z+vLog z = ewLog zevLog z

= zwzv.

However, in general one has

(zw)v ̸= zvwv, (zw)v ̸= zwv.

Warning 1.6.7. In general, be extremely careful when computing with

the maps z 7→ Log z or z 7→ n
√
z or z 7→ zw when z ∈ C or w ∈ C, or

both. Some rules from the real line remain valid, others do not. In contrast,

the map z 7→ ez has many of the good properties of x 7→ ex. This is,

heuristically, because the definition of ez does not involve making choices

of the multi-valued argument.

Summary of Chapter 11. Here is a list of some key topics.

• The definition of the complex product zw and inverse z−1.

• Modulus, complex conjugate, argument, and how these concepts inter-

act with the complex product and complex inverse.

• De Moivre’s formula.

• The representation of z ∈ C \ {0} in polar coordinates.

• Solving the equation zn = w, and the definition of n
√
w.

• The complex exponential and its basic properties.

• The complex (principal) logarithm.





CHAPTER 2

Topology of the complex plane

The main topic of this course will be the notion of an analytic function

f : U → C, where U is an open subset of C. In order to study such functions

we need to talk about open sets, continuity and differentiability. We will

collect some required facts in this chapter.

Many concepts will likely be familiar to the reader from previous courses

such as Vector analysis 1. In particular, all the metric and topological con-

cepts in C (open and closed sets, distance between points, limits, continuity)

are exactly the same as in R2. So, if you are confident with metric and

topological concepts in R2, you can just skim through this chapter.

2.1. Open and closed sets

Definition 2.1.1 (Distance). Let z, w ∈ C. The distance between z

and w is |z − w|, namely the modulus of z − w. In coordinates,

|(a+ ib)− (x+ iy)| =
√
(x− a)2 + (y − b)2.

This is the same number as the Euclidean distance between the vectors

(a, b), (x, y) ∈ R2.

Remark 2.1.2. The following inequalities are useful: if z, w ∈ C, then

||z| − |w|| ≤ |z + w| ≤ |z|+ |w|.

The second inequality is the triangle inequality |z + w| ≤ |z| + |w| from
Proposition 1.3.21.3.2. The first one is the reverse triangle inequality proved as

follows:

|z| = |z − w + w| ≤ |z − w|+ |w| =⇒ |z| − |w| ≤ |z − w|,

and similarly

|w| = |w − z + z| ≤ |z − w|+ |z| =⇒ |w| − |z| ≤ |z − w|,

so ||z| − |w|| ≤ |z − w|.

Definition 2.1.3 (Open and closed discs, circles). Let z ∈ C and r > 0.

We write

D(z, r) := {w ∈ C : |z − w| < r}.
31
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This is the open disc with centre z and radius r. We also write D̄(z, r) :=

{w ∈ C : |z−w| ≤ r} for the closed disc with centre z and radius r. Finally,

we write

S(z, r) := {w ∈ C : |z − w| = r}
for the circle with centre z and radius r. One has S(z, r) = D̄(z, r) \D(z, r).

Definition 2.1.4 (Interior, exterior, boundary and closure). Let A ⊂ C.
We say that z ∈ C is

• an interior point of A if there is r > 0 such that D(z, r) ⊂ A;

• an exterior point of A if z is an interior point of C \A;

• a boundary point of A if it is not an interior or exterior point of A.

The sets of interior, exterior and boundary points are denoted by int(A),

ext(A), and ∂A (the interior, exterior, and boundary of A), respectively.

The closure of A is

A = A ∪ ∂A.

Remark 2.1.5. It follows from the definition that z ∈ ∂A if and only if

for any r > 0 one has

A ∩D(z, r) ̸= ∅ and A ∩ (C \D(z, r)) ̸= ∅.

For any A ⊂ C the sets int(A), ∂A and ext(A) are disjoint. One always has

C = int(A) ∪ ∂A ∪ ext(A).

Definition 2.1.6 (Open and closed sets). A set U ⊂ C is open if any

z ∈ U is an interior point of U , i.e. U = int(U). A set F ⊂ C is closed if

C \ F is open.

Example 2.1.7. The open disc D(z, r) is open, and the closed disc

D̄(z, r) is closed. To see that D(z, r) is open, you need to show that if

w ∈ D(z, r), then there exists a radius s > 0 such that D(w, s) ⊂ D(z, r).

Why is this true? To show that D̄(z, r) is closed, you need to show that

C \ D̄(z, r) is open. Why is this true? One has (exercise)

int(D(z, r)) = D(z, r),

∂D(z, r) = S(z, r),

D(z, r) = D̄(z, r).

Example 2.1.8. For any A ⊂ C the sets int(A) and ext(A) are open,

and the sets ∂A and A are closed (exercise).

Example 2.1.9. The sets ∅ and C are both open and closed. These are

the only subsets of C which are both open and closed. (This is related to

the notion of connectedness discussed later.)
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Warning 2.1.10. Many sets are neither open nor closed. For example,

D(0, 1)∪{2} (the union of an open disc and a singleton) is neither open nor

closed.

We next consider the unions and intersections of open and closed sets.

Proposition 2.1.11. Let Uj ⊂ C, j ∈ J , be an arbitrary collection of

open sets. The index set J need not be finite, or even countable! Then the

union
⋃

j∈J Uj is also open.

Let V1, . . . , Vn ⊂ C be a finite family of open sets. Then V1 ∩ . . .∩Vn is

open.

Proof. Let us first prove the openness of the union U =
⋃

j∈J Uj . Fix

z ∈ U . Then in particular z ∈ Uj for some j ∈ J . Therefore, since Uj

is open, there exists a radius r > 0 such that D(z, r) ⊂ Uj . But now also

D(z, r) ⊂ U . We have proven that U is open.

Let us then prove that the intersection V := V1 ∩ . . . ∩ Vn is open. Fix

z ∈ V . Then z ∈ Vj for all 1 ≤ j ≤ n, so for each of these indices there exists

a radius rj > 0 such that D(z, rj) ⊂ Vj . Therefore, if we set r := min rj , we

have r > 0, and

D(z, r) ⊂ D(z, r1) ∩ . . . ∩D(z, rn) ⊂ V1 ∩ . . . Vn = V.

This shows that V is open. The finiteness of the family V1, . . . , Vn was

needed to ensure that the minimum r = min rj stays (strictly) positive. □

Closed sets have exactly opposite behaviour:

Corollary 2.1.12. Let Fj ⊂ C, j ∈ J , be an arbitrary collection of

closed sets. The index set J need not be finite, or even countable! Then the

intersection
⋂

j∈J Fj is also closed.

Let C1, . . . , Cn ⊂ C be a finite family of closed sets. Then C1 ∪ . . .∪Cn

is closed.

Proof. Exercise. □

2.2. Sequences and limits

Definition 2.2.1 (Limit of a sequence). Let (zn)
∞
n=1 be a sequence of

complex numbers. We say that z ∈ C is the limit of the sequence (zn),

denoted limn→∞ zn = z, if for every ϵ > 0 there exists an index n0 ∈ N,
depending on ϵ, such that

|zn − z| < ϵ for all n ≥ n0.

This is equivalent to saying that zn ∈ D(z, ϵ) for all n ≥ n0. In such a

case we say that (zn) converges to z, and write zn → z as n→∞. If A ⊂ C,
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we also (slightly imprecisely) write (zn) ⊂ A to denote a sequence such that

zn ∈ A for all n ≥ 1.

Remark 2.2.2. A sequence can have at most one limit: if zn → z and

zn → w for some z ̸= w, then taking ϵ = |z − w|/2 > 0 would imply

that zn ∈ D(z, ϵ) and zn ∈ D(w, ϵ) for all sufficiently large n, which is

impossible. There are many sequences that do not have any limit, e.g.

zn = n or zn = (−1)n.

Proposition 2.2.3. Let (zn)
∞
n=1 be a sequence of complex numbers, and

z ∈ C. Then zn → z if and only if

Re(zn)→ Re(z) and Im(zn)→ Im(z).

Proof. Write zn = xn + iyn and z = x + iy, where xn = Re(zn),

yn = Im(zn), and so on. Then, note that by the triangle inequality

max{|xn − x|, |yn − y|} ≤ |zn − z| ≤ |xn − x|+ |yn − y|.

These show that the conditions |zn− z| → 0 and |xn− x|+ |yn− y| → 0 are

equivalent. □

We will next show that a set of closed precisely when it contains the

limits of all of its convergent sequences.

Proposition 2.2.4. A set A ⊂ C is closed if and only if for any sequence

(zn) ⊂ A that converges to some z ∈ C, one has z ∈ A.

Proof. “=⇒” Let A ⊂ C be closed, and let (zn) ⊂ A be a sequence

that converges to some z ∈ C. We argue by contradiction and assume that

z ∈ C \A. Since A is closed, C \A is open, and consequently there is some

ball B(z, r) ⊂ C \ A. But since zn → z, one would have zn ∈ B(z, r) for

sufficiently large n, which contradicts the assumption that (zn) ⊂ A.

“⇐=” Suppose that the limit of any convergent sequence (zn) ⊂ A is also

in A. We need to show that A is closed, which is the same thing as showing

that C \A is open. We argue again by contradiction and assume that there

is some z ∈ C \ A so that for all n ≥ 1 there is a point zn ∈ D(z, 1/n) ∩ A.

We thus obtain a sequence (zn) converging to z. By assumption we would

have z ∈ A, which is a contradiction. □

The next results are related to the very important notion of compactness.

We will not give a full development here, but we will rather give the minimal

facts required later for the proofs of Cauchy’s theorem and its applications.

Definition 2.2.5 (Boundedness and compactness). We say that a se-

quence (zn) ⊂ C is bounded if there is M > 0 so that

|zn| ≤M for all n.
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A set A ⊂ C is bounded if there is M > 0 such that |z| ≤ M for all z ∈ A.

A set A ⊂ C is compact if it is closed and bounded.

There are many equivalent definitions of a compact set, but the one

above works in C. Next we recall the important Bolzano-Weierstrass theo-

rem from Vector analysis 1, stating that any bounded sequence in C = R2

has a convergent subsequence.

Theorem 2.2.6 (Bolzano-Weierstrass). If (zn)
∞
n=1 ⊂ C is a bounded

sequence, there is a subsequence (znk
)∞k=1 such that znk

→ z for some z ∈ C.

The Bolzano-Weierstrass theorem yields another equivalent definition of

a compact set.

Proposition 2.2.7 (Sequential compactness). A set A ⊂ C is compact

if and only if any sequence (zn) ⊂ A has a subsequence converging to some

point of A.

Proof. “=⇒” Let A be compact and (zn) ⊂ A. Since A is bounded,

by Bolzano-Weierstrass some subsequence (znk
) converges to some z ∈ C.

Since A is also closed, Proposition 2.2.42.2.4 shows that z ∈ A.

“⇐=” Suppose A ⊂ C is such that any sequence in A has a subsequence

converging to some point of A. If (zn) ⊂ A converges to some z ∈ C, some

subsequence (znk
) converges to some w ∈ A, but since (znk

) also converges

to z one must have z = w ∈ A by Remark 2.2.22.2.2. Proposition 2.2.42.2.4 then

shows that A is closed.

To show that A is bounded, we argue by contradiction and suppose

that for any n there is zn ∈ A with |zn| > n. By our assumption there

is a subsequence with znk
→ z for some z ∈ A. This in particular implies

that (znk
) is bounded, which contradicts the fact that |znk

| > nk where

nk →∞. □

The proof of Cauchy’s theorem will be based on the following conse-

quence of Bolzano-Weierstrass.

Theorem 2.2.8 (Cantor’s intersection theorem). Let K1,K2,K3, . . . be

closed nonempty subsets of C such that K1 is compact and

K1 ⊃ K2 ⊃ K3 ⊃ . . . .

Then
∞⋂
n=1

Kn ̸= ∅.

Proof. Since the sets Kn are nonempty, we can choose some point zn ∈
Kn for any n. The sets Kj are nested, which implies that (zn) ⊂ K1. The
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set K1 was compact, so Proposition 2.2.72.2.7 ensures that there is a subsequence

(znk
)∞k=1 converging to some z ∈ K1.

Now for any m ≥ 1, the sequence (znk
)k≥m is contained in Km and it

also converges to z. Since Km was closed, Proposition 2.2.42.2.4 ensures that

the limit z is also in Km. This is true for any m ≥ 1, so one must have

z ∈ ∩∞m=1Km. □

2.3. Continuity

Next we discuss the notion of continuity for functions f : X → C when

X ⊂ C.

Definition 2.3.1 (Continuity). Let X ⊂ C be a set, and let f : X → C
be a map. We say that f is continuous at z ∈ X if for every ϵ > 0 there

exists δ = δ(ε, z) > 0 such that

|f(w)− f(z)| < ϵ for all w ∈ X with |w − z| < δ.

This is equivalent to saying that f(D(z, δ) ∩X) ⊂ D(f(z), ϵ).

If A ⊂ X, and f is continuous at every point z ∈ A, we say that f is

continuous in A.

 

D(z, δ) D(f(z), ϵ)

ϵ

f

f(z)

Figure 1. The continuity of f at z ∈ X.

Warning 2.3.2. The continuity of f : X → C at z ∈ X (or in A ⊂ X) de-

pends heavily on the domain of definition “X”. For example, Arg : (−∞, 0)→
R (the restriction of the principal argument to the negative reals) is the

constant function, and therefore continuous in (−∞, 0). However, Arg : C \
{0} → R is not continuous at any point of (−∞, 0).

In other words, it is possible that f : A → C is continuous in A, but

f : X → C is discontinuous at every point of A. The pair f = Arg and

A = (−∞, 0) is an example.

The continuity of f at z ∈ X is illustrated in Figure 11. The following

fundamental theorem connects the notions of limits and continuity.
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Theorem 2.3.3 (Continuity via sequences). Let X ⊂ C be a set, and let

f : X → C be a map. Then f is continuous at z ∈ X if and only if for any

sequence (zn) ⊂ X with zn → z, one has f(zn)→ f(z).

Proof of Theorem 2.3.32.3.3. “=⇒” Let us first assume that f is con-

tinuous at z ∈ X. Fix a sequence (zn) ⊂ X satisfying zn → z. We need

to prove that f(zn)→ f(z). By Definition 2.2.12.2.1, this means demonstrating

that for every ϵ > 0, there exists n0 ∈ N such that

(2.3.1) f(zn) ∈ D(f(z), ϵ) for all n ≥ n0.

For this purpose, fix ϵ > 0. Now, by the continuity assumption, there exists

δ > 0 such that

(2.3.2) f(D(z, δ) ∩X) ⊂ D(f(z), ϵ).

On the other hand, since (zn) ⊂ X and zn → z, there exists an index n0 ∈ N,
depending only on δ, such that zn ∈ D(z, δ) ∩X for all n ≥ n0. Therefore,

for n ≥ n0 we have

f(zn) ∈ f(D(z, δ) ∩X)
(2.3.22.3.2)
⊂ D(f(z), ϵ).

This means that (2.3.12.3.1) is satisfied for all n ≥ n0. This is what we wanted.

“⇐=” Let us then assume that whenever (zn) ⊂ X with zn → z, one has

f(zn) → f(z). We claim that f is continuous at z. To prove this, we need

to fix ϵ > 0 and show that if δ > 0 is small enough, depending only on ϵ and

z, then the inclusion (2.3.22.3.2) holds. We argue by contradiction and suppose

that no choice of δ = 1/n works for this purpose, for n ∈ N. In other words

f(D(z, 1
n) ∩X) ̸⊂ D(f(z), ϵ), n ∈ N.

In still other words, for every n ∈ N we may find a point zn ∈ D(z, 1
n) ∩X

such that |f(zn) − f(z)| ≥ ϵ. Now (zn) is clearly a sequence of points in

X with zn → z. However, it is not possible that f(z) = limn→∞ f(zn),

since |f(zn)− f(z)| ≥ ϵ for all n ∈ N. This contradicts our assumption and

completes the proof. □

The following proposition is analogous to Proposition 2.2.32.2.3:

Proposition 2.3.4. Let X ⊂ C be a set, and let f : X → C be a func-

tion. Then f is continuous at z ∈ X if and only if the real-valued functions

Re(f) : X → R and Im(f) : X → R

are continuous at z. These functions are defined by (Re(f))(w) := Re(f(w))

and (Im(f))(w) := Im(f(w)) for all w ∈ X.

Proof. This can be deduced from Proposition 2.2.32.2.3 by using Theorem

2.3.32.3.3. We leave the details as an exercise. □
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If you have already found a few continuous functions, you can create

more continuous functions with (at least) the following operations:

Proposition 2.3.5. Assume that f, g : X → C are continuous at z ∈
X, and h : g(X) → C is continuous at g(z) ∈ g(X). Then, the following

functions are continuous at z ∈ X:

f + g : X → C, fg : X → C, and h ◦ g : X → C.

Here (fg)(w) = f(w)g(w) is the complex product of f and g, and (h◦g)(w) =
h(g(w)) is the composition of h and g.

If, in addition to the previous hypotheses, g(z) ̸= 0, then f/g is contin-

uous at z ∈ X, where (f/g)(w) := f(w)(g(w))−1.

Proof. This proof is virtually the same as the proof for a similar result

for real-valued functions on R, so we leave the details as a voluntary exercise.

It is worth remarking that (f/g)(w) is only well-defined for those w ∈ X

with g(w) ̸= 0. However, by the continuity of g at z, and since g(z) ̸= 0,

it holds that g(w) ̸= 0 for D(z, ϵ) ∩X for some ϵ > 0. Therefore f/g is, at

least, defined on D(z, ϵ) ∩X, and continuous at z. □

Corollary 2.3.6. Let a0, a1, . . . , an ∈ C. Then the polynomial

z 7→ p(z) = anz
n + an−1z

n−1 + . . .+ a0

is continuous on C.

Proof. The function p can be written as sum of (complex) products

of continuous functions. Therefore the conclusion follows from Proposition

2.3.52.3.5. □

Proposition 2.3.7. Here are a few more important continuous func-

tions:

(1) The functions z 7→ z̄ and z 7→ |z| are continuous in C.
(2) The function z 7→ z−1 is continuous in C \ {0}.
(3) The function z 7→ Arg(z) is continuous in C \ (−∞, 0].

(4) If n ≥ 2, the function z 7→ n
√
z is continuous in C \ (−∞, 0).

(5) The functions ez, sin z, cos z are continuous in C.
(6) The function Log z is continuous in C \ (−∞, 0].

Proof. Exercise. □

Next we discuss a basic mapping property of continuous functions. If

f : A → C is continuous and A is closed, or bounded, then f(A) is not

necessarily closed, or bounded. Examples are given by

• f1 : C → C, f1(z) = ez, where C is closed but f1(C) = C \ {0} is not

closed; or
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• f2 : D(0, 1) \ {0} → C, f2(z) = z−1, where D(0, 1) \ {0} is bounded but

f2(D(0, 1) \ {0}) = C \ D̄(0, 1) is not bounded.

However, if A is compact then also f(A) is compact.

Proposition 2.3.8. If A ⊂ C is compact and f : A→ C is continuous,

then f(A) is compact.

Proof. We will use Proposition 2.2.72.2.7. Let (wn) be a sequence in f(A).

Then, for each n, wn = f(zn) for some zn ∈ A. Since A is compact, Propo-

sition 2.2.72.2.7 ensures that there is a subsequence (znk
) converging to some

z ∈ A. By Proposition 2.3.32.3.3, the sequence f(znk
) converges to f(z) ∈ f(A).

This proves that any sequence (wn) ⊂ f(A) has a subsequence converging

to a point of f(A), so f(A) is compact by Proposition 2.2.72.2.7. □

Since compact sets are bounded, we have the following corollary that

will be used later in the proof of the fundamental theorem of algebra (via

Liouville’s theorem):

Corollary 2.3.9. If A ⊂ C is compact and f : A → C is continuous,

then there is M > 0 such that |f(z)| ≤M for all z ∈ A.

Another, slightly stronger corollary will be used when proving the max-

imum modulus principle.

Corollary 2.3.10. If A ⊂ C is compact and f : A→ C is continuous,

then there is z0 ∈ A such that

max
z∈A
|f(z)| = |f(z0)|.

Proof. Let g(z) = |f(z)|. Then g is continuous, and by Proposition

2.3.82.3.8 the set g(A) is a compact subset of R. Thus g(A) is closed and bounded,

and therefore m := sup g(A) is a finite real number. By the definition of

supremum there is a sequence (tn) ⊂ g(A) with tn → m, and since g(A)

is closed one must have m ∈ g(A) using Proposition 2.2.42.2.4. It follows that

there is z0 ∈ A with |f(z0)| = m. This proves the result. □

2.4. Connected sets and regions

During this course, we will discuss two important results for analytic

functions that require the notion of a connected set :

• If f : U → C is an analytic function with f ′(z) = 0 for all z ∈ U , and

if U ⊂ C is open and connected, then f is constant in U .

• (Maximum modulus principle) If f : U → C is an analytic function

where U ⊂ C is open and connected, and if |f(z0)| = maxz∈U |f(z)| for
some z0 ∈ U , then f is constant in U .
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The following is a general way of defining connectedness: a set X ⊂ C
is called connected if it cannot be decomposed into two pieces as

(2.4.1) X = (X ∩ U) ∪ (X ∩ V ),

where U, V ⊂ C are open, disjoint, and X ∩ U ̸= ∅ ≠ X ∩ V . If X itself

is open, this general notion turns out to be equivalent with another (more

intuitive?) notion called path connectedness. In these lectures we only need

to deal with open connected sets, so we prefer to take path connectedness

as our main definition.

For a, b ∈ R with a < b, we say that a continuous map γ : [a, b]→ C is a

path.

Definition 2.4.1 (Connected set). Assume that U ⊂ C is open. Then

we say that U is connected if for every z, w ∈ U there exists a path γ : [0, 1]→
U such that

γ(0) = z and γ(1) = w.

In other words, every pair of points z, w ∈ U can be connected by a path in

U .

Intuitively, a set is connected if it cannot be decomposed in two separate

disjoint pieces. This is illustrated by the following examples.

Example 2.4.2. The sets C, D(z, r), and C \ {0} are connected (why)?

The sets D(−2, 1)∪D(2, 1) or R\{0} are not connected (to see this, consider

a path γ(t) = x(t) + iy(t) that would connect two points lying in different

“components”, and derive a contradiction by using the intermediate value

theorem for x(t)).

Remark 2.4.3. An open and connected set is often called a region. So,

Definition 2.4.12.4.1 is actually the definition of a region.

This exercise explains the connection between different definitions of

connectedness:

Exercise 2.1. Let U ⊂ C be open and connected in the general sense

explained around (2.4.12.4.1). Show that U is path connected, i.e. connected in

the sense of Definition 2.4.12.4.1.

Search for “topologist’s sine curve” for a closed set which is connected

but not path connected.

We record a useful proposition for future reference.

Proposition 2.4.4. Let U ⊂ C be open and connected. Let f : U → C
be a continuous function which is locally constant: for every z ∈ U there

exists r > 0 such that f is constant in D(z, r). Then f is constant in U .
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Proof. Fix z ∈ U . We claim that f(w) = f(z) for all w ∈ U . Fix

w ∈ U . Since U is connected, there is a path γ : [0, 1] → U with γ(0) = z

and γ(1) = w. Then f ◦ γ : [0, 1] → U is locally constant. In particular, if

u = Re(f), the function u(γ(t)) is continuous [0, 1]→ R and locally constant.

It follows that u(γ(t)) is constant on [0, 1] (exercise). Similarly, if v = Im(f),

then v(γ(t)) is constant. Thus f(w) = (f ◦ γ)(1) = (f ◦ γ)(0) = f(z), as

claimed. □

Summary of Chapter 22. Here is a list of key topics from this chapter:

• Distance, open and closed discs.

• Open and closed sets, their unions and intersections.

• Limits of sequences.

• Compact sets, Bolzano-Weierstrass and Cantor’s intersection theorem.

• Continuity of functions, characterisation of continuity via sequences

(Theorem 2.3.32.3.3).

• Producing new continuous functions from existing ones (via addition,

multiplication, inverses, and composition).

• A continuous function on a compact set is bounded.

• Connected open sets (also known as regions).





CHAPTER 3

Analytic functions

The course so far has been preparation to discuss the theory of analytic

functions on (open subsets of) C. In English literature, these functions are

often called holomorphic, but in Finland one typically talks about analytic

functions. We follow this tradition.

We have already seen some analytic functions, e.g.

zn, n
√
z, ez, sin z, Log z, . . .

However, there are many more. Analytic functions f can be characterized

in many ways, e.g. the by following equivalent conditions:

• f has a complex derivative.

• f = u+ iv satisfies the Cauchy-Riemann equations ux = vy, uy = −vx.
• f solves the equation ∂f = 0.

• f can be written as a convergent power series
∑∞

n=0 anz
n.

• f is conformal, i.e. it preserves (infinitesimally) angles and orientations.

The first three conditions will be discussed more precisely in this chapter.

The last two conditions will appear in Complex analysis 2.

3.1. Complex derivative

Definition 3.1.1 (Complex derivative). Let U ⊂ C be open, and z ∈ U .

A function f : U → C is complex differentiable at z if the limit

(3.1.1) lim
w→z

w∈U \ {z}

f(w)− f(z)

w − z

exists. In this case, we denote

f ′(z) := lim
w→z

w∈U \ {z}

f(w)− f(z)

w − z
.

This complex number is called the complex derivative of f at z.

Remark 3.1.2. The limit

lim
w→z

w∈U \ {z}

f(w)− f(z)

w − z
= f ′(z)

43
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means that for any sequence (wn) ⊂ U \ {z}, the quotient f(wn)−f(z)
wn−z con-

verges to the same complex number f ′(z) which is independent of the se-

quence (wn). It is rather cumbersome to write this all the time, so we will

abbreviate

lim
w→z

f(w)− f(z)

w − z
:= lim

w→z
w∈U \ {z}

f(w)− f(z)

w − z

in the sequel.

Remark 3.1.3. On this course, we mostly talk about complex dif-

ferentiable functions and their complex derivatives. That is why we will

abbreviate our terminology in the sequel, and will simply talk about differ-

entiable functions and their derivatives. But there is a real risk of confusion.

You might be familiar with vector-valued functions f = (u, v) : R2 → R2 and

their (total) derivative Df(z) which is the matrix

Df(z) =

[
∂1u(z) ∂2u(z)

∂1v(z) ∂2v(z)

]
.

On first sight, this notion has nothing to do with the complex derivative

f ′(z)! In fact, it has a lot to do with f ′(z), and this connection will be fully

explained in Section 3.23.2.

Definition 3.1.4 (Analytic function). Let U ⊂ C be open, and let

f : U → C be a function which is complex differentiable at every point in U .

Then f is called analytic in U .

3.1.1. First properties and some counterexamples. As a general

heuristic principle, everything you know about the differentiability of real-

valued functions on R will also work for complex differentiable functions

on C, but the converse is far from true! Complex differentiability is an

incredibly strong assumption. This is due to the fact that the limit in (3.1.23.1.2)

must exist for any sequence in U \{z} (since C is two-dimensional there are

many different such sequences) and the limit must be independent of the

choice of sequence. Note also that the limit involves complex multiplication

(i.e. division by w − z).

For example, it will turn out that complex analytic functions are au-

tomatically infinitely differentiable, which is of course not the case for

differentiable functions on R.

Proposition 3.1.5 (Analytic functions are continuous). Assume that

U ⊂ C is open, and f : U → C is differentiable at z ∈ U . Then f is

continuous at z.



3.1. COMPLEX DERIVATIVE 45

Proof. The proof is the same as for differentiable functions on R. Note
that if w ̸= z, then

|f(w)− f(z)| = |w − z| |f(w)− f(z)|
|w − z|

.

As w → z, the factor |f(w) − f(z)|/|w − z| tends to |f ′(z)| ∈ R, and of

course |w− z| → 0. Therefore |f(w)− f(z)| → 0 as w → z, and this implies

the continuity of f at z. □

Here is a useful (and probably familiar) characterisation of differentia-

bility:

Proposition 3.1.6. Assume that U ⊂ C is open, f : U → C, and z ∈ U .

• Assume that f is differentiable at z. Then there exists a function

ϵ : U → C such that ϵ(w)→ 0 as w → z, and

(3.1.2) f(w)− f(z) = f ′(z)(w − z) + ϵ(w)(w − z), w ∈ U.

• Assume that there exists a number α ∈ C, and a function ϵ : U → C
such that ϵ(w)→ 0 as w → z, and

(3.1.3) f(w)− f(z) = α(w − z) + ϵ(w)(w − z), w ∈ U \ {z}.

Then f is differentiable at z, and f ′(z) = α.

Proof. Assume first that f is differentiable at z, and set α := f ′(z).

Then, define

ϵ(w) :=

{
f(w)−f(z)

w−z − α, w ∈ U \ {z},
0, w = z.

Now it is easy to check that ϵ(w)→ 0 as w → z, and clearly (3.1.23.1.2) holds.

Conversely, if (3.1.33.1.3) holds, then∣∣∣∣f(w)− f(z)

w − z
− α

∣∣∣∣ = |ϵ(w)|, w ∈ U \ {z}.

Since ϵ(w) → 0 as w → z, this shows that f is differentiable at z, and

f ′(z) = α. □

Proposition 3.1.7 (Differentiation rules). Let U ⊂ C be open, and let

f, g : U → C be differentiable at z ∈ U . Let also λ ∈ C. Then the functions

λf , f + g, and fg are all differentiable at z. If g(z) ̸= 0, also the ratio f/g

is differentiable at z.

Moreover, the derivatives have the following explicit expressions:

(λf)′(z) = λf ′(z), (f+g)′(z) = f ′(z)+g′(z), (fg)′(z) = f ′(z)g(z)+f(z)g′(z),

and (
f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

(g(z))2
(assuming g(z) ̸= 0).
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Proof. The proofs are exactly the same as in the case of differentiable

functions on R. □

Corollary 3.1.8. Let n ∈ {1, 2, . . .}. Then the function pn(z) = zn is

analytic in C, and the derivative is p′n(z) = nzn−1.

Proof. First consider the case n = 1. Then,

p′1(z) = lim
w→z

w − z

w − z
= 1 = 1 · z0, z ∈ C,

as desired. The cases n ≥ 2 can be established by induction and using

Proposition 3.1.73.1.7:

p′n(z) = (pn−1p)
′(z) = p′n−1(z)p1(z) + pn−1(z)p

′
1(z)

= (n− 1)zn−2z + zn−1 · 1 = nzn−1.

This completes the proof. □

Remark 3.1.9. As a consequence of the previous corollary, every poly-

nomial function p(z) = anz
n+. . .+a1z+a0 is analytic in C and its derivative

is p′(z) = nanz
n−1 + . . .+ 2a2z + a1.

Functions like n
√
z, ez, Log z are also analytic in the right domain of

definition. This will be proved a bit later, after we have developed some

theory that will make the proofs easier.

Here comes the first indication that complex differentiability is some-

thing very special:

Example 3.1.10. The function f(z) = z̄ is not complex differentiable

at any point z ∈ C. This will be an exercise. This example is remarkable,

because when expressed in coordinates, the map z 7→ z̄ is just (x, y) 7→
(x,−y). The coordinate functions are u(x, y) = x and v(x, y) = −y, so in

particular the map is infinitely differentiable as a map R2 → R2.

Another dramatic example is the function z 7→ |z|2 = x2 + y2. If this

function was complex differentiable at a point z ̸= 0, then the same would

also be true for z 7→ z̄ = |z|2/z. But we know that z 7→ z̄ is not differentiable

anywhere, so z 7→ |z|2 also cannot be differentiable outside z = 0.

Remark 3.1.11. We have now seen that all polynomials of the variable

“z” are analytic on C, but even the simplest polynomial of the variable “z̄”

fails to be analytic even at a single point. This is an indication of a general

principle: every analytic function can be (locally) expressed as a convergent

power series of the form f(z) =
∑

n≥0 anz
n. This fact will be established on

Complex Analysis 2.
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3.1.2. Derivatives of composed and inverse functions. We con-

tinue with more results which (hopefully) look familiar from the theory of

real-valued functions on R.

Theorem 3.1.12 (Chain rule). Let U, V ⊂ C be open sets, and let z ∈ U .

Assume that f : U → C is a function with the properties that f is differen-

tiable at z, and f(U) ⊂ V . Assume further g : V → C is differentiable at

f(z).

Then the composed map g ◦ f : U → C is differentiable at z, and

(g ◦ f)′(z) = g′(f(z))f ′(z).

Proof. The following argument is easy to remember, but not entirely

accurate:

lim
w→z

(g ◦ f)(w)− (g ◦ f)(z)
w − z

= lim
w→z

g(f(w))− g(f(z))

f(w)− f(z)

f(w)− f(z)

w − z
= g′(f(z))f ′(z).

The problem here is that it may happen that f(w) = f(z) (even if w ̸= z),

and then we are multiplying and dividing by 0. The rigorous argument uses

Proposition 3.1.63.1.6, which allows us to express both f(w) and g(f(w)) in the

form {
f(w)− f(z) = (f ′(z) + ϵf (w))(w − z),

g(f(w))− g(f(z)) = [g′(f(z)) + ϵg(f(w))](f(w)− f(z))

where ϵf (w)→ 0 as v → z and ϵg(v)→ 0 as v → f(z). Then, for w ̸= z, we

have

g(f(w))− g(f(z))

w − z
=

[g′(f(z)) + ϵg(f(w))](f(w)− f(z))

w − z

= [g′(f(z)) + ϵg(f(w))][f
′(z) + ϵf (w)].(3.1.4)

Here ϵf (w) → 0 as w → 0 by definition, but also ϵg(f(w)) → 0 as w → z,

since f(w)→ f(z) by the continuity of f at z (Proposition 3.1.53.1.5). Therefore

the expression on line (3.1.43.1.4) tends to g′(f(z))f ′(z) as w → z, as desired. □

We next discuss inverse functions.

Proposition 3.1.13 (Derivative of inverse function). Let U ⊂ C be

open, and let f : U → C be a map (not necessarily injective). Further,

assume that V ⊂ C is open, and g : V → U is a map which is continuous at

a point w ∈ V and satisfies

(3.1.5) f(g(v)) = v for all v ∈ V.

Then f |g(V ) : g(V )→ V is bijective. Moreover, if f is differentiable at g(w),

and f ′(g(w)) ̸= 0, then g is differentiable at w, and

g′(w) =
1

f ′(g(w))
.
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Remark 3.1.14. It is not assumed in Proposition 3.1.133.1.13 that f is injec-

tive, and the result will indeed be applied to situations where f is not injec-

tive on U – one example will be f(z) = z2 defined on C, see Section 3.1.33.1.3.

We also note that the result is true without the assumption f ′(g(w)) ̸= 0,

see [Pa90Pa90, Theorem VIII.1.8]. However, proving this requires results which

go beyond this course.

Proof of Proposition 3.1.133.1.13. We first show that f |g(V ) : g(V )→ V

is a bijection. Indeed, (3.1.53.1.5) says that f ◦ g = IdV , so it suffices to show

that g ◦ f |g(V ) = Idg(V ). To see this, fix g(w) ∈ g(V ) (with w ∈ V ), and

note that

g(f(g(w)))
(3.1.53.1.5)
= g(w).

Thus g ◦ f |g(V ) = Idg(V ), as claimed.

Next assume that f is differentiable at g(w), and f ′(g(w)) ̸= 0. We need

to show that

(3.1.6) lim
v→w

v∈V \ {w}

g(v)− g(w)

v − w
=

1

f ′(g(w))
.

To prove this, fix v ∈ V \ {w}, and note that automatically g(w) ̸= g(v),

because otherwise w = f(g(w)) = f(g(v)) = v by (3.1.53.1.5). This observation

allows us to modify the left hand side of (3.1.63.1.6):

(3.1.7)
g(v)− g(w)

v − w
=

g(v)− g(w)

f(g(v))− f(g(w))
=

(
f(g(v))− f(g(w))

g(v)− g(w)

)−1

.

Now, as v → w, we have g(v)→ g(w) by the assumed continuity of g at w.

Therefore

lim
v→w

f(g(v))− f(g(w))

g(v)− g(w)
= f ′(g(w)) ̸= 0,

which can be plugged back into (3.1.73.1.7) to obtain (3.1.63.1.6). □

3.1.3. Analytic branches of inverse functions. Proposition 3.1.133.1.13

gives a method for checking that the inverse of an analytic function is also

analytic. However, many analytic functions are not injective in their “natu-

ral” domain of definition, so they do not have global inverses. A fundamen-

tal example is z 7→ zn. Recall from Section 1.41.4 that the equation zn = w

always has n distinct solutions of the form z = n
√
|w|ei(Arg(w)+2πk)/n for

k = 0, 1, . . . , n− 1.

This issue is simple to fix: we just need to restrict z 7→ zn to some smaller

(open) set U ⊂ C where it is injective. Then, writing V := {zn : z ∈ U}, we
can define an inverse g : V → U . The only problem is that now g depends

on the choice of U , and different choices of U give rise to different inverses.

The various choices are called branches of the inverse. See also our previous
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discussion in Remark 1.3.151.3.15. We formalise this in the following (slightly

non-obvious!) way:

Definition 3.1.15 (Branch of f−1). Let U ⊂ C be a set, and let f : U →
C be a map (not necessarily injective). Assume that V ⊂ f(U) is another

set, and g : V → U is a map which is continuous in V and satisfies

(3.1.8) f(g(v)) = v, v ∈ V.

Then g is called a branch of f−1 in V .

Let us clarify the definition with an example.

Example 3.1.16. Fix n ≥ 2, and recall the principal nth square root

function gn = n
√
· : C→ C defined by

gn(w) :=
n
√
w :=

{
0, w = 0,
n
√
|w|eiArg(w)/n, w ̸= 0.

Let fn(z) := zn. Now

fn(gn(v)) = ( n
√
v)n = v, v ∈ C,

so the formula (3.1.83.1.8) holds for all v ∈ C. However, gn is not a branch of

f−1
n in C, because gn is not continuous in C. However, gn is continuous in

C \ (−∞, 0], and therefore a branch of f−1
n in V := C \ (−∞, 0].

 

w 7→
√
w

z 7→ z2
i

Re(z) > 0
C \ (−∞, 0]

Figure 1. The mapping properties of z 7→ z2 and w 7→
√
w.

What does gn(V ) look like? Figure 11 shows the image of the principal

square root
√
· restricted to V = C \ (−∞, 0]: the image is the half-plane

{Re(z) > 0}. More generally, the image of n
√
· of the domain V is the sector

Sn = {reiθ : r > 0 and − π
n < θ < π

n}.

The following result is a restatement of Proposition 3.1.133.1.13. Again, the

result is true without the assumption f ′(g(w)) ̸= 0 for w ∈ V , but this goes

beyond this course:

Theorem 3.1.17 (Analyticity of branches of the inverse). Let U ⊂ C be

open and f : U → C analytic, let V ⊂ f(U), and let g : V → U be a branch
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of f−1 in V . If additionally f ′(g(w)) ̸= 0 for all w ∈ V , then g is analytic

in V and

(3.1.9) g′(w) =
1

f ′(g(w))
, w ∈ V.

The following corollary is immediate:

Corollary 3.1.18 (Analyticity of principal roots). The principal nth

root
n
√
· : C \ (−∞, 0]→ C

is analytic in C \ (−∞, 0], and the image of C \ (−∞, 0] is the sector

Sn = {reiθ : r > 0 and − π
n < θ < π

n}. The derivative is given by

(3.1.10) ( n
√
· )′(w) = 1

n( n
√
w)n−1

, w ∈ C \ (0,∞].

Proof. We observed in Example 3.1.163.1.16 that gn(w) := n
√
w is a branch

of fn(z) = zn in C \ (−∞, 0]. Since n
√
w ̸= 0 for w ̸= 0, we also verify that

f ′
n(gn(w)) = ngn(w)

n−1 ̸= 0, w ∈ C \ (−∞, 0].

Therefore gn is analytic in C \ (−∞, 0] by Theorem 3.1.173.1.17. Recalling that the

derivative of z 7→ zn is nzn−1, the formula (3.1.103.1.10) follows from (3.1.93.1.9). □

Remark 3.1.19. It is a common question in complex analysis to ask:

“Does the square root have a branch in an open set V ⊂ C?” or “Does

the logarithm have a branch in an open set V ⊂ C?” When you see these

questions, think of Definition 3.1.153.1.15 – this is precisely what the questions

mean!

For example, the “square root has a branch in U” if there exists a con-

tinuous map g : V → C such that g(w)2 = w for all w ∈ V . The analyticity

of g follows from Theorem 3.1.173.1.17 if one can verify that f ′(g(w)) ̸= 0 for

w ∈ V .

3.2. Cauchy-Riemann equations

We investigate the following questions:

• What is the difference between complex differentiability and the “usual”

or “real” differentiability of maps f : R2 → R2?

• Given a “real” differentiable function f : R2 → R2, is there a “test” to

see whether it is also complex differentiable, i.e. analytic?

• How to compute f ′(z) (if it exists) starting from the real derivative

Df(z)?

Before proceeding, let us recap from Vector analysis 1 the definition of real

differentiability for maps Rm → Rn.
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Definition 3.2.1 (Real differentiability). Let U ⊂ Rm be open, and let

f : U → Rn be a map. Then f is called real differentiable at a point p ∈ U

if there exists a linear map L : Rm → Rn (called the derivative of f at p and

often denoted L = Df(p)) such that

(3.2.1) f(q)− f(p) = L(q − p) + ϵ(q)|q − p|,

Here ϵ = ϵp : U → Rn is a map which satisfies ϵ(q)→ 0 as q → p.

We will only need the above definition when m = 2 and n ∈ {1, 2}. If

U ⊂ C = R2 and u : U → R is differentiable, it is customary to denote the

partial derivatives of u(x, y) by

ux(x, y) =
∂u

∂x
(x, y), uy(x, y) =

∂u

∂y
(x, y).

We also recall the following proposition, which explains how the linear

map L can be expressed as a matrix of partial derivatives:

Proposition 3.2.2. Let U ⊂ R2 be open, and let f = (u, v) : U → R2 be

a map. Assume that f is differentiable at z ∈ U . Then both u and v are also

differentiable at z, their partial derivatives exist at z, and the linear map L

can be represented in terms of the partial derivatives as follows:

L(x, y) =

[
ux(z) uy(z)

vx(z) vy(z)

] [
x

y

]
, (x, y) ∈ R2.

We then return to complex differentiability. The formula (3.2.13.2.1) looks

very similar to the characterisation of complex differentiability we have seen

in Proposition 3.1.63.1.6: as a reminder, that formula looked like

(3.2.2) f(w)− f(z) = f ′(z)(w − z) + ϵ(w)(w − z),

where ϵ : U → C and ϵ(w) → 0 as w → z. If desired, this can be brought

precisely to the form (3.2.13.2.1) by defining ϵ̃(w) = (w − v)ϵ(w)/|w − z|: then

ϵ̃ : U → C, it still holds that ϵ̃(w)→ 0 as w → z, and (3.2.23.2.2) can be rewritten

as

(3.2.3) f(w)− f(z) = f ′(z)(w − z) + ϵ̃(w)|w − z|.

The bigger difference between (3.2.13.2.1) and (3.2.23.2.2) (or (3.2.33.2.3)) is that in

(3.2.23.2.2) the linear map L has a special form, namely L(ζ) = f ′(z)ζ. To

understand this further, let us show that ζ 7→ f ′(z)ζ can be written as a

matrix multiplication.

Example 3.2.3. Let z ∈ C. Then the map w 7→ zw is linear as a map

R2 → R2. Indeed, if we write z = a+ ib and w = x+ iy, then

(3.2.4) zw = Mz(x, y) where Mz := Ma+ib :=

[
a −b
b a

]
.
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Thus, complex multiplication by z defines a (real) linear map Mz : R2 → R2.

The following corollary is worth stating separately:

Corollary 3.2.4. Let U ⊂ C be open, and let f = (u, v) : U → C be

complex differentiable at z ∈ U . Then f is also real differentiable at z, as a

map U → R2.

Proof. This follows immediately from the formula (3.2.23.2.2), and the fact

that L(ζ) := f ′(z)ζ defines a (real) linear map R2 → R2. □

Now we can put some pieces together. If f = (u, v) = u+ iv is complex

differentiable at z ∈ U , then f is also real differentiable, and its derivative

is the linear map given by L(ζ) = f ′(z)ζ. Here f ′(z) = a + ib for some

a, b ∈ R. On the other hand, Proposition 3.2.23.2.2 says that the linear map L

can be also written in terms of the partial derivatives of u and v. Thus, we

get the following equation between matrices:

(3.2.5)

[
ux(z) uy(z)

vx(z) vy(z)

]
= L = Mf ′(z) =

[
a −b
b a

]
.

Two matrices only agree if their components agree, so we can read off the

following Cauchy-Riemann equations:

(3.2.6)

{
ux(z) = vy(z),

uy(z) = −vx(z).

We have arrived at the following theorem:

Theorem 3.2.5 (Cauchy-Riemann equations: necessity). Let U ⊂ C be

open, and assume that f = u+iv : U → C is complex differentiable at z ∈ U .

Then the real and imaginary parts u, v : U → R are real differentiable at z,

and their partial derivatives satisfy the Cauchy-Riemann equations (3.2.63.2.6).

Theorem 3.2.53.2.5 says that the equations (3.2.63.2.6) are necessarily satisfied

for a complex differentiable function f = u + iv. In fact, the equations are

also sufficient, so they give a useful “test” for complex differentiability:

Theorem 3.2.6 (Cauchy-Riemann equations: sufficiency). Let U ⊂ R2

be open, and let f = (u, v) : U → R2 be real differentiable at a point z ∈
U . Assume that the component functions u, v satisfy the Cauchy-Riemann

equations (3.2.63.2.6). Then f is complex differentiable at z.

Proof. Since f is real differentiable at z, Proposition 3.2.23.2.2 tells us that

the derivative L = Df(z) is represented by the matrix

L =

[
ux(z) uy(z)

vx(z) vy(z)

]
.
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Further, applying the Cauchy-Riemann equations we find that

L =

[
ux(z) uy(z)

vx(z) vy(z)

]
=:

[
a −b
b a

]
= Ma+ib,

where a = ux(z) and b = vx(z), and we use the Ma+ib-notation familiar from

(3.2.43.2.4). Now, by the definition of real differentiability (Definition 3.2.13.2.1) and

(3.2.43.2.4) we deduce that

f(w)− f(z)
def.
= Ma+ib(w − z) + ϵ(w)|w − z|

(3.2.43.2.4)
= (a+ ib)(w − z) + ϵ̃(w)(w − z),

where ϵ(w) → 0 as w → z, and ϵ̃(w) := |w − z|ϵ(w)/(w − z) has the same

properties. But the final equation is exactly the same as our characterisation

of complex differentiability, recall either (3.2.23.2.2) or Proposition 3.1.63.1.6. Thus

f is complex differentiable at z, and

(3.2.7) f ′(z) = a+ ib = ux(z) + ivx(z).

This completes the proof. □

The formula (3.2.73.2.7) gives an explicit way of relating f ′(z) to the partial

derivatives of u and v. This is worth recording separately:

Corollary 3.2.7. Let U ⊂ C be open, and assume that f = u + iv is

complex differentiable at z ∈ U . Then,

f ′(z) = ux(z) + ivx(z) = vy(z)− iuy(z).

Proof. The first equation is (3.2.73.2.7), and the second equation is a re-

statement of the Cauchy-Riemann equations (3.2.63.2.6). □

The next result shows how one can use the Cauchy-Riemann equations

to verify analyticity and compute complex derivatives: everything reduces

to computing real derivatives.

Theorem 3.2.8 (ez and Log z are analytic). The functions f : C → C,
f(z) = ez and g : C \ (−∞, 0] → C, g(z) = Log z are analytic. Their

derivatives are given by

(ez)′ = ez, z ∈ C,
(Log z)′ = 1

z , z ∈ C \ (−∞, 0].

Proof. If z = x + iy, the definition ez = ex(cos y + i sin y) gives that

the real and imaginary parts of f(z) are

u(x, y) = ex cos y, v(x, y) = ex sin y.
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We can check that the Cauchy-Riemann equations hold by taking real deriva-

tives:

ux = ex cos y = vy,

uy = −ex sin y = −vx.

Thus f is analytic by Proposition 3.2.63.2.6. Corollary 3.2.73.2.7 shows that

f ′(z) = ux + ivx = ex(cos y + i sin y) = ez.

Let S := { −π < Im(z) < π}. By Remark 1.6.31.6.3 the map

(3.2.8) g : C \ (−∞, 0]→ S, g(w) = Logw

is the inverse of f : S → C \ (−∞, 0], f(z) = ez. The map g is also

continuous, and one has

f ′(g(w)) = eg(w) ̸= 0, w ∈ C \ (−∞, 0].

Since ez is analytic, it follows from Theorem 3.1.173.1.17 that Log is analytic on

C \ (−∞, 0] and that

(Log z)′ =
1

z
, z ∈ C \ (−∞, 0]. □

We next show that one can rewrite the Cauchy-Riemann equations more

compactly, in terms of the Wirtinger derivatives

∂f(z) :=
1

2
(fx + ify),

∂f(z) :=
1

2
(fx − ify).

Here, if f = u+ iv, we write fx = ux + ivx.

Proposition 3.2.9. Let U ⊂ R2 be open, and let f = (u, v) : U → R2

be real differentiable at a point z ∈ U . Then f is complex differentiable at

z if and only if

∂f(z) = 0.

Moreover, if this holds, then f ′(z) = ∂f(z).

Proof. We observe that

2∂f(z) = fx + ify = ux + ivx + i(uy + ivy) = ux − vy + i(uy + vx).

Thus ∂f(z) = 0 if and only if the Cauchy-Riemann equations (3.2.63.2.6) hold.

The first part of the result then follows from Theorem 3.2.63.2.6. Moreover, if

this holds, then

∂f(z) =
1

2
(fx−ify) =

1

2
(ux+ivx−i(uy+ivy)) =

1

2
(ux+vy+i(vx−uy)) = ux+ivx.

Corollary 3.2.73.2.7 gives f ′(z) = ∂f(z). □
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Warning 3.2.10. In Theorem 3.2.63.2.6 we assumed that the map f : U →
R2 is real differentiable at z ∈ U . This hypothesis cannot be weakened

to both partial derivatives of u, v exist at z ∈ U and satisfy the Cauchy-

Riemann equations (3.2.63.2.6). Indeed, this weaker hypothesis does not even

guarantee that f is continuous z! For example, consider f : C → C which

satisfies

f(r, 0) = (0, 0) = f(0, s), r, s ∈ R,

or in other words f vanishes on the real and imaginary axes R and iR. Then

∂1u(0) = ∂2u(0) = ∂1v(0) = ∂2v(0) = 0,

no matter how we define f outside the “cross” R ∪ iR. Now, we can for

example define f ≡ (1010, 1010) outside R∪ iR. Then f is not continuous at

0, even though it satisfies the Cauchy-Riemann equations at 0.

The previous warning demonstrates that the existence of partial deriva-

tives at a single point implies basically nothing (see Example 3.2.123.2.12 for an

even scarier situation). However, the following result from Vector Analysis

1 says that assuming a bit more saves the day.

Theorem 3.2.11. Let U ⊂ R2 be open, let f = (u, v) : U → R2 be a

map, and let z ∈ U . Assume that the partial derivatives ux, uy, vx, vy exist

everywhere on U and are continuous at z. Then f is (real) differentiable at

z. If, additionally, the Cauchy-Riemann equations (3.2.63.2.6) are satisfied, then

f is also complex differentiable at z.

These results still leave open the question: what if the partial derivatives

exist everywhere on U and satisfy the Cauchy-Riemann equations, but are

not assumed to be continuous? The following example shows that even in

this case f need not be continuous, let alone differentiable:

Example 3.2.12. Consider the map

f(z) =

{
exp(−z−4), z ̸= 0,

0, z = 0.

The complex exponential ez was defined in Definition 1.5.11.5.1. Then f has the

following properties:

• f is analytic in C \ {0}.
• The real and imaginary parts of f have partial derivatives everywhere,

and they satisfy the Cauchy-Riemann equations everywhere – even at

the origin!

• f is not continuous at 0.
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The analyticity of f in C \ {0} follows from the analyticity of z 7→ ez and

z 7→ −z−4 in C \ {0}. To study continuity at 0, note that for r ∈ R, we
have

f(r) = e−r−4 → 0 and f(ir) = e−(ir)−4
= e−r−4 → 0

as r → 0. So, f decays to zero along both R and iR. In fact, the decay is

so fast that the partial derivatives of f exist and equal “0” at the origin (in

particular the Cauchy-Riemann equations are valid at “0”). On the other

hand, f has very different behaviour along the line span(e−iπ/4):

f(re−iπ/4) = exp(−(re−iπ/4)−4) = exp(−r−4eiπ) = exp(r−4)
r→0−→∞.

Thus f “blows up” when approaching the origin along the line span(e−iπ/4),

and is certainly not continuous at the origin.

3.3. A few applications

We record a few easy consequences of the Cauchy-Riemann equations.

Recall the definition of connected open sets from Definition 2.4.12.4.1.

Theorem 3.3.1. Assume that U ⊂ R2 is open and connected, and

f : U → C is an analytic function such that f ′(z) = 0 for all z ∈ U . Then f

is constant on U .

Proof. Let f = u + iv. From Corollary 3.2.73.2.7 we see that the par-

tial derivatives of u and v vanish identically U . Therefore the gradients

∇u = (ux, uy) and ∇v = (vx, vy) vanish identically on U . This is all the

information we will need, and after this point, the proof has nothing to do

with complex analysis.

To show that f is constant, it suffices to show that both u and v are

constant. Let us concentrate on u, for example. If we manage to show

that u is locally constant, then it follows from Proposition 2.4.42.4.4 and the

connectedness of U that u is constant on U . So, let us show that u is locally

constant.

Fix z ∈ U . Since U is open, there exists a radius r > 0 such that

D := D(z, r) ⊂ U . We will show that u|D ≡ u(z). If w ∈ D, the line

segment between z and w is contained in D ⊂ U . This segment can be

parametrised by the path γw(t) = tw + (1 − t)z, for t ∈ [0, 1]. Now, the

composition u ◦ γw : [0, 1]→ R is (real) differentiable, and by the chain rule

in several variables (see Vector analysis 1 )

(u ◦ γw)′(t) = ∇u(γw(t)) · γ′w(t) = 0, t ∈ [0, 1].

Therefore u◦γw is constant, and u(z) = u(γw(0)) = u(γw(1)) = u(w). Since

w ∈ D was arbitrary, we see that u|D ≡ u(z), as desired. □
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We close the section with a closely related result that will be needed in

the proof of the maximum modulus principle.

Theorem 3.3.2. Let U ⊂ C be open and connected, and assume that

f : U → C is analytic. Assume that one of the following three functions is

constant on U :

u = Re(f), v = Im(f), or |f |.
Then f is constant on U . The same conclusion is also true if f : U →
C \ {0}, and Arg(f) is constant on U .

Proof. Exercise. □

Summary of Chapter 33. Here is a list of key topics from this chapter:

• Complex derivatives and analytic functions.

• ez, Log z and polynomials of z are analytic, but z 7→ z̄ is not.

• Product rule, chain rule, derivatives of inverses.

• Branches of f−1.

• Cauchy-Riemann equations ux = vy, uy = −vx. Comparison between

complex differentiability and real differentiability for maps R2 → R2.

• Analytic functions with f ′(z) = 0 are constant on connected sets.





CHAPTER 4

Complex integration

4.1. Paths

We defined paths in Section 2.42.4, but let us recap and extend the termi-

nology:

Definition 4.1.1 (Path). A path is a continuous map γ : [a, b] → C,
where a, b ∈ R with a < b. The trace of γ is the set

γ∗ := γ([a, b]) = {γ(t) : t ∈ [a, b]}.

We say that γ is a path in a set X ⊂ C if γ∗ ⊂ X. Finally, γ is a closed

path (also called periodic path) if γ(a) = γ(b).

Definition 4.1.2 (C1-path). A map γ : [a, b] → C is a C1-path if γ is

differentiable on [a, b] (with one-sided derivatives at the endpoints) and the

derivative γ′ : [a, b]→ C is continuous.

We say that γ : [a, b] → C is a piecewise C1-path if there exist numbers

a = t0 < t1 < . . . < tn = b such that γ|[tj−1,tj ] : [tj−1, tj ] → C is a C1-path

for all 1 ≤ j ≤ n.

Remark 4.1.3. The differentiability of γ on [a, b] means, by definition,

that if γ = α + iβ with α = Re γ and β = Im γ, then the components

α, β : [a, b]→ R are differentiable on [a, b] (with one-sided derivatives at the

endpoints) and both derivatives α′ and β′ are continuous on [a, b]. Note that

γ′(t) = α′(t) + iβ′(t) ∈ C.

A second remark is that if γ is (only) piecewise C1, then there may be

a finite set X ⊂ [a, b] such that γ′(t) does not exist for t ∈ X.

The following further notation will be useful:

Notation (Segment). Let z, w ∈ C with z ̸= w. Then [z, w] : [0, 1]→ C
the path parametrised by

[z, w](t) := tw + (1− t)z, t ∈ [0, 1].

Note that [z, w] is a C1-path, and its image [z, w]∗ is the line segment {tw+

(1− t)z : t ∈ [0, 1]} connecting z to w.

59
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Example 4.1.4 (Circle path). Let n ∈ Z, z ∈ C, and r > 0. Consider

the path γ : [0, 2π]→ C defined by

γ(t) := z + reint, t ∈ [0, 2π].

Then γ is a closed C1-path, and its image γ∗ = S(z, r) is the circle centred

at z with radius r. Note that γ “goes around” S(z, r) exactly |n| times. If

n > 0, then γ “travels” counterclockwise, and if n < 0, then γ “travels”

clockwise. If n = 0, then γ ≡ z + r is a constant path.

The notion of “going around |n| times” will be formalised later when we

talk about winding numbers.

From existing paths, one can construct new ones using the following

notions:

Definition 4.1.5 (Reverse and composite paths). Let γ : [a, b] → C be

a path. We write ←−γ : [a, b]→ C for the reverse path

←−γ (t) := γ(a+ b− t), t ∈ [a, b].

Note that ←−γ (a) = γ(b) and ←−γ (b) = γ(a), and (←−γ )∗ = γ∗.

Let γ : [a, b] → C and η : [c, d] → C be paths satisfying γ(b) = η(c). We

define the composite path γ ⋆ η : [a, b+ d− c]→ C with the formula

(γ ⋆ η)(t) :=

{
γ(t), t ∈ [a, b],

η(t− b+ c), t ∈ [b, b+ d− c].

Exercise 4.1. Show that if γ, η : [0, 1]→ C are piecewise C1-paths, then

γ ⋆ η : [0, 2]→ C is also a piecewise C1-path, and (γ ⋆ η)∗ = γ∗ ∪ η∗.

In the next section, we will be studying complex path integrals, denoted∫
γ f(z) dz. It will turn out that the value of this integral depends not only

on the trace γ∗, but also on the exact parametrisation of γ∗. For example,

the paths γ and ←−γ have the same trace, but the associated path integrals

have opposite signs (Proposition 4.2.154.2.15). For this reason, it is interesting

to ask: if two paths γ, η have the same trace, when can we guarantee that∫
γ f(z) dz =

∫
η f(z) dz? The next definition will give a sufficient condition

(see Proposition 4.2.154.2.15).

Definition 4.1.6 (Reparametrisation). Let γ : [a, b]→ C and η : [c, d]→
C be paths. We say that η is reparametrisation of γ if there exists a contin-

uous bijection ρ : [c, d]→ [a, b] such that ρ(c) = a, ρ(d) = b, and η = γ ◦ ρ.
If ρ is piecewise C1, then we say that η is a piecewise C1-reparametrisation

of γ.
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Remark 4.1.7. If γ : [a, b]→ C and η : [c, d]→ C are piecewise C1-paths

and η = γ ◦ ρ is a piecewise C1-reparametrisation of γ, then the chain rule

implies that

(4.1.1) η′(t) = γ′(ρ(t))ρ′(t)

for all t ∈ [c, d] outside a finite set.

Example 4.1.8. Let γ : [a, b] → C be a non-closed path. Then the

reverse path←−γ : [a, b]→ C is never a reparametrisation of γ. Indeed, if η =

γ ◦ ρ : [a, b]→ C is any reparametrisation of γ, then η(a) = γ(ρ(a)) = γ(a).

However, ←−γ (a) = γ(b) ̸= γ(a).

This discussion leaves open the question of closed paths, for example

γ(t) = e2πit, but see the next exercise for a negative answer.

Exercise 4.2. Let γ : [0, 1] → C be a path. Assume there are two

distinct points z1, z2 ∈ γ∗ such that

(4.1.2) card γ−1{zj} = 1, j ∈ {1, 2}.

Show that ←−γ is not a reparametrisation of γ. Show by example that one

point is not enough to guarantee the same conclusion.

If γ(t) = e2πit, then every point z ∈ γ∗ \ {1} = S(0, 1) \ {1} satisfies

(4.1.24.1.2). So, we can easily find two distinct points z1, z2 ∈ γ∗ satisfying

(4.1.24.1.2), and therefore ←−γ is not a reparametrisation of γ.

4.2. Complex path integral

We first define integrals of C-valued functions:

Definition 4.2.1. Let a < b, and let f : [a, b] → C be a function such

that both u = Re f and v = Im f are Riemann-integrable. Then, we define∫ b

a
f(t) dt :=

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt.

The following is one of the most central definitions on the course.

Definition 4.2.2 (Complex path integral). Let γ : [a, b]→ C be a piece-

wise C1-path, and let f : γ∗ → C be continuous. Then the complex path

integral of f over γ is∫
γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt

=

∫ b

a
Re

(
f(γ(t))γ′(t)

)
dt+ i

∫ b

a
Im

(
f(γ(t))γ′(t)

)
dt.

Let us clarify and contemplate the definition with a few remarks.
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Remark 4.2.3. The functions Re
(
f(γ(t))γ′(t)

)
and Im

(
f(γ(t))γ′(t)

)
are

piecewise continuous and hence Riemann-integrable. The derivative γ′(t) is

only defined for t ∈ [a, b] \ X, where X ⊂ [a, b] is a finite set. However, we

may define γ′(t) arbitrarily for t ∈ X, and then check that the values of the

Riemann integrals above are independent of the choice. These values are

the precise meaning of the integrals above.

Remark 4.2.4. Let us spell out completely explicitly the integrals ap-

pearing in the definition of
∫
γ f(z) dz. If f = f1 + if2 and γ = γ1 + iγ2,

then

f(γ(t))γ′(t) =
(
f1(γ(t))γ

′
1(t)−f2(γ(t))γ′2(t)

)
+i

(
f1(γ(t))γ

′
2(t)+f2(γ(t))γ

′
1(t)

)
,

so
∫
γ f(z) dz is explicitly given by∫

γ
f(z) dz =

∫ b

a

[
f1(γ(t))γ

′
1(t)− f2(γ(t))γ

′
2(t)

]
dt(4.2.1)

+ i

∫ b

a

[
f1(γ(t))γ

′
2(t) + f2(γ(t))γ

′
1(t)

]
dt.

Remark 4.2.5. There is a standard definition for the real path integral

of a continuous map F : γ∗ → R2 over a path γ : [a, b]→ R2. It looks like∫
γ
F (s) ds :=

∫ b

a
F (γ(t)) · γ′(t) dt,

where F (γ(t)) · γ′(t) refers to the dot product between the vectors F (γ(t))

and γ′(t) = (γ′1(t), γ
′
2(t)). In this course we will never deal with real path

integrals, so the notation
∫
γ f(z) dz will always refer to the complex path

integral in Definition 4.2.24.2.2.

The following example turns out to be extremely important:

Example 4.2.6. Consider the map f : C \ {0} → C, f(z) = 1/z, and

the “circle path” γ : [0, 2π]→ C defined by γ(t) := eit. Then γ′(t) = ieit, so

(4.2.2)

∫
γ
f(z) dz =

∫ 2π

0
f(γ(t))γ′(t) dt = i

∫ 2π

0

eit dt

eit
= i

∫ 2π

0
dt = 2πi.

More generally, if n ∈ Z, z0 ∈ C, and γn(t) := z0+reint, then γ′n(t) = inreint,

and hence

(4.2.3)
1

2πi

∫
γn

dz

z − z0
= n, n ∈ Z.

The right hand side corresponds to our intuition of “how many times the

path γn winds around z0”. We will return to this!
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Warning 4.2.7. In previous analysis courses, you have perhaps calcu-

lated integrals on R with the rule

(4.2.4)

∫ b

a
f(t) dt = F (b)− F (a),

where F ′ = f on [a, b]. This is not as simple in for complex path integrals

and one needs to be careful. There is a correct version of (4.2.44.2.4) for complex

path integrals, but as discussed in Theorem 4.3.44.3.4 it can only be applied if

the primitive F is analytic in an open set containing γ∗.

We also introduce the following variant of the path integral:

Definition 4.2.8 (Arc length integral). Let γ : [a, b] → C be piecewise

C1, and let f = f1 + if2 : γ
∗ → C be continuous. The arc length integral of

f over γ is the complex number∫
γ
f(z) |dz| :=

∫ b

a
f(γ(t))|γ′(t)| dt :=

∫ b

a
f1(γ(t))|γ′(t)| dt+i

∫ b

a
f2(γ(t))|γ′(t)| dt,

where |γ′(t)| =
√
γ′1(t)

2 + γ′2(t)
2 is the modulus of γ′(t) ∈ C.

Example 4.2.9. Let us continue with f(z) = 1/z and γ(t) := eit for

t ∈ [0, 2π]. Since |γ′(t)| = 1, the arc length integral is∫
γ
f(z) |dz| =

∫ 2π

0

dt

eit
=

∫ 2π

0
e−it dt =

∫ 2π

0
cos(t) dt− i

∫ 2π

0
sin(t) dt = 0.

In particular,
∫
γ f(z) |dz| = 0 ̸= 2πi =

∫
γ f(z) dz.

The arc length integral is useful because it gives an upper bound for the

complex path integral (and the upper bound is often easier to compute):

Proposition 4.2.10. Let γ : [a, b]→ C be piecewise C1, and let f : γ∗ →
C be continuous. Then, ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ ≤ ∫
γ
|f(z)| |dz|.

The proof will be easier when we have first recorded the following basic

facts:

Proposition 4.2.11. The complex path integral is (complex) linear: if

γ : [a, b] → C is a piecewise C1-path, f, g : γ∗ → C are continuous, and

α, β ∈ C, then∫
γ
(αf + βg)(z) dz = α

∫
γ
f(z) dz + β

∫
γ
g(z) dz.
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Proof. This is “intuitively obvious” by the linearity of the Riemann

integral, but you may feel a little less secure when you recall the proper

meaning of
∫
γ f(z) dz from (4.2.14.2.1). Checking the computations is an exer-

cise. □

We are now ready to prove Proposition 4.2.104.2.10:

Proof of Proposition 4.2.104.2.10. Let w :=
∫
γ f(z) dz. If w = 0, there

is nothing to prove. Otherwise, we may write the value of the integral in

polar coordinates:

w = |w|eiθ, θ ∈ arg(w).

Now, by the linearity of the complex path integral, we may write∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ = |w| = e−iθw =

∫
γ
e−iθf(z) dz.

The left hand side is clearly a real number, so also the right hand side is

a real number. On the other hand, by the definition of the complex path

integral,∫
γ
e−iθf(z) dz =

∫ b

a
Re

(
e−iθf(γ(t))γ′(t)

)
dt+ i

∫ b

a
Im

(
e−iθf(γ(t))γ′(t)

)
dt.

Since the left hand side is a real number, also the right hand side must be.

Therefore ∫ b

a
Im

(
e−iθf(γ(t))γ′(t)

)
dt = 0,

and we have now shown that∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ = ∫ b

a
Re

(
e−iθf(γ(t))γ′(t)

)
dt.

The right hand side is the Riemann integral of t 7→ Re
(
e−iθf(γ(t))γ′(t)

)
, so

by the basics of real analysis,∫ b

a
Re

(
e−iθf(γ(t))γ′(t)

)
dt ≤

∫ b

a

∣∣Re(e−iθf(γ(t))γ′(t)
)∣∣ dt.

To conclude the proof, it remains to note that∣∣Re(e−iθf(γ(t))γ′(t)
)∣∣ ≤ ∣∣e−iθf(γ(t))γ′(t)

∣∣ ≤ |f(γ(t))||γ′(t)|,
so ∫ b

a

∣∣Re(e−iθf(γ(t))γ′(t)
)∣∣ dt ≤ ∫ b

a
|f(γ(t))||γ′(t)| dt def.

=

∫
γ
|f(z)| |dz|.

This completes the proof. □

We record the following corollary:
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Corollary 4.2.12. Let γ : [a, b]→ C be piecewise C1, and let f : γ∗ → C
be continuous. Then, ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ ≤ ∥f∥∞length(γ),

where ∥f∥∞ := sup{|f(z)| : z ∈ γ∗}, and

length(γ) :=

∫ b

a
|γ′(t)| dt.

Proof. We simply note that∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ Cor.4.2.104.2.10
≤

∫
γ
|f(z)| |dz| def.=

∫ b

a
|f(γ(t))||γ′(t)| dt ≤ ∥f∥∞

∫ b

a
|γ′(t)| dt.

This completes the proof. □

Note that length(γ) < ∞ for every C1-path γ : [a, b] → C, since t 7→
|γ′(t)| is continuous, and thus uniformly bounded on [a, b]. In fact, length(γ) <

∞ also remains true for piecewise C1-paths γ : [a, b] → C, since γ can be

written as γ = γ1 ⋆ · · · ⋆ γn, where each γj is C1, and

length(γ) = length(γ1) + · · ·+ length(γn) <∞.

Our definition of “length(γ)” agrees with other notions of length the reader

may possibly have seen, for example the 1-dimensional Hausdorff measure

H1(γ∗). This will not be needed explicitly, so we will simply give the fol-

lowing example as justification:

Example 4.2.13. Let z, w ∈ C with z ̸= w. Consider the segment

[z, w](t) = tw + (1− t)z, t ∈ [0, 1].

Then [z, w]′(t) = w − z for all t ∈ [0, 1], and consequently

length([z, w])
def.
=

∫ 1

0
|[z, w]′(t)| dt =

∫ 1

0
|w − z| dt = |w − z|.

So, our definition of “length” coincides with the expected result for (at least)

segments.

The following consequence of Corollary 4.2.124.2.12 is often useful:

Corollary 4.2.14. Let γ : [a, b]→ C be piecewise C1, and let fk, f : γ
∗ →

C be continuous functions such that fk → f uniformly on γ∗, as k → ∞.

Then,

lim
k→∞

∫
γ
fk(z) dz =

∫
γ
f(z) dz.
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Proof. By Corollary 4.2.124.2.12, we have∣∣∣∣∫
γ
fk(z) dz −

∫
γ
f(z) dz

∣∣∣∣ = ∣∣∣∣∫
γ
(fk − f)(z) dz

∣∣∣∣ ≤ ∥fk − f∥L∞(γ∗) · length(γ).

Here length(γ) <∞, and ∥fk−f∥L∞(γ∗) → 0 by assumption, as k →∞. □

Here are a few more basic properties of complex path integrals:

Proposition 4.2.15. Let γ : [a, b]→ C be piecewise C1, and let f : γ∗ →
C be continuous. Then,

(4.2.5)

∫
←−γ
f(z) dz = −

∫
γ
f(z) dz.

Let η : [c, d]→ C be a piecewise C1-reparametrisation of γ. Then,∫
η
f(z) dz =

∫
γ
f(z) dz.

Assume that α : [a, b] → C and β : [c, d] → C are piecewise C1-paths, and

α(b) = β(c), so the composite path α ⋆ β : [a, b]→ C is defined. Assume that

f : (α ⋆ β)∗ → C is continuous. Then,

(4.2.6)

∫
α⋆β

f(z) dz =

∫
α
f(z) dz +

∫
β
f(z) dz.

Regarding (4.2.54.2.5), it is noteworthy that the paths γ and ←−γ have the

same trace γ∗. So, the value of the complex path integral over γ is not

determined by γ∗ alone!

Proof of Proposition 4.2.154.2.15. We prove the claim about reparametri-

sations, and leave the other statements as exercises. We assumed that η is a

piecewise C1-reparametrisation of γ. This means that there exists a piece-

wise C1 bijection ρ : [c, d] → [a, b] with the properties ρ(c) = (a), ρ(d) = b,

and η = γ ◦ ρ. With this information in mind, we use the definition of the

complex path integral:

(4.2.7)

∫
η
f(z) dz

def.
=

∫ d

c
f(η(t))η′(t) dt =

∫ d

c
f(γ(ρ(t)))γ′(ρ(t))ρ′(t) dt.

Here we plugged in the formula η′(t) = γ′(ρ(t))ρ′(t) recorded in (4.1.14.1.1).

Next, we use the following change-of-variables formula familiar from the

theory of Riemann integrals:∫ d

c
g(ρ(t))ρ′(t) dt =

∫ b

a
g(s) ds,

where g : [a, b] → R is Riemann integrable. We apply this formula to the

(piecewise) continuous function g(s) := f(γ(s))γ′(s), or to be more precise
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its real and imaginary parts separately. The conclusion is that

(4.2.74.2.7) =

∫ b

a
f(γ(s))γ′(s) ds

def.
=

∫
γ
f(z) dz.

this is what we claimed. □

4.3. Primitives

Recall the fundamental theorem of calculus: if g : [a, b]→ R is Riemann

integrable, and G : [a, b] → R is a differentiable function satisfying G′(t) =

g(t) for all t ∈ [a, b], then

(4.3.1) G(b)−G(a) =

∫ b

a
g(t) dt =

∫ b

a
G′(t) dt.

We now aim for a path integral version of that theorem.

Definition 4.3.1. Let U ⊂ C be open, and let f : U → C be a map.

We say that F : U → C is a primitive of f in U if F is analytic in U , and

F ′(z) = f(z) for all z ∈ U .

If F is a primitive of f : U → C, and c ∈ C, then F + c is also clearly a

primitive of f . The converse is true if U is connected:

Proposition 4.3.2. Let U ⊂ C be open and connected, and let f : U →
C be a map. Assume that F1, F2 : U → C are both primitives of f . Then

there exists a constant c ∈ C such that F1 = F2 + c.

Proof. Note that G := F1 − F2 : U → C is an analytic function with

G′(z) = 0 for all z ∈ U . Therefore G is a constant on U by Corollary

3.3.13.3.1. □

Example 4.3.3. All the primitives of z 7→ ez in C are of the form

F (z) = ez + c, c ∈ C. All the primitives of w 7→ 1/w in the set C \ (−∞, 0]

are of the form G(w) = Logw + c, c ∈ C. These facts follow from recalling

that z 7→ ez and w 7→ Logw are examples of primitives (by Theorem 3.2.83.2.8),

and on the other hand the open sets C and C \ (−∞, 0] are connected.

We then prove the path integral version of (4.3.14.3.1), which could be called

the “fundamental theorem of calculus for complex path integrals” :

Theorem 4.3.4 (Path integrals via primitives). Let U ⊂ C be open,

and assume that f : U → C is continuous. Let γ : [a, b] → U be a piecewise

C1-path. If F is a primitive of f in U , then∫
γ
f(z) dz = F (γ(b))− F (γ(a)).
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In particular, if γ is a closed path, then γ(a) = γ(b), so∫
γ
f(z) dz = 0.

Remark 4.3.5. Recall that the principal logarithm Log is a primitive

of z 7→ 1/z in C \ (−∞, 0]. Therefore, if γ : [a, b]→ C \ (−∞, 0] is a closed

piecewise C1-path, we may deduce from Theorem 4.3.44.3.4 that∫
γ

1

z
dz = Log γ(b)− Log γ(a) = 0.

On the other hand, this does not apply to the path γ(t) = eit, for t ∈ [0, 2π],

because γ∗ is not contained in C \ (−∞, 0]. In fact for this path γ(t) we

computed ∫
γ

1

z
dz = 2πi ̸= 0 = Log γ(2π)− Log γ(0).

On the other hand, there is nothing special about (−∞, 0]. By the same

argument, we have
∫
γ dz/z = 0 for every closed piecewise C1-path γ with

γ∗ ⊂ C \ ℓv (for arbitrary v ∈ C \ {0}), where ℓv = {tv : t ≥ 0}. Reason:

there exists a branch of the logarithm in C \ ℓv (exercise).

The following lemma is needed in the proof of Theorem 4.3.44.3.4:

Lemma 4.3.6. Let F : U → C be analytic, and let γ : [a, b] → C be a

C1-path. Then,

(F ◦ γ)′(t) = F ′(γ(t))γ′(t), t ∈ [a, b],

where the left hand side refers to the real derivative of the composed map

F ◦ γ : [a, b]→ R2.

Proof. To calculate (F ◦ γ)′(t), we apply the real-variable chain rule:

(F ◦ γ)′(t) = DF (γ(t))γ′(t),

using here that complex differentiability implies real differentiability (so

DF (z) makes sense for z ∈ U). On the other hand, since F is complex

differentiable, the matrix DF (γ(t)) equals the matrix MF ′(γ(t)) correspond-

ing to complex multiplication by F ′(γ(t)), as recorded in (3.2.53.2.5). Therefore

(F ◦ γ)′(t) = MF ′(γ(t))γ
′(t) = F ′(γ(t))γ′(t), as claimed. □

We are then ready to prove Theorem 4.3.44.3.4.

Proof of Theorem 4.3.44.3.4. Assume first that γ : [a, b] → C is a C1-

path, and not just piecewise C1. The primitive F : U → C is analytic, so

the previous lemma implies that

(F ◦ γ)′(t) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t), t ∈ [a, b].
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Consequently,∫
γ
f(z) dz

def.
=

∫ b

a
f(γ(t))γ′(t) dt =

∫ b

a
(F ◦ γ)′(t) dt = F (γ(b))− F (γ(a)),

where the last equation applied the fundamental theorem of calculus (4.3.14.3.1)

to the Riemann integrable (even continuous) function g := (F ◦ γ)′ : [a, b]→
C and its real primitive G := F ◦ γ (or to be precise the real and imaginary

parts of these functions separately).

Finally, let us deduce the case of piecewise C1-paths. If γ : [a, b]→ C is

piecewise C1, we may write γ = γ1 ⋆ · · · ⋆ γn where each γj : [tj−1, tj ] → C
is a C1-path, a = t0 < . . . < tn = b, and γj(tj−1) = γj−1(tj) for 1 ≤ j ≤ n.

Consequently,∫
γ
f(z) dz

(4.2.64.2.6)
=

n∑
j=1

∫
γj

f(z) dz =
n∑

j=1

[F (γj(tj))− F (γj(tj−1))],

by the first part of the proof applied separately to the paths γj . The sum

on the right hand side “telescopes” and its value is

F (γn(tn))− F (γ1(t0)) = F (γ(b))− F (γ(a)).

This completes the proof. □

We record the following corollary:

Corollary 4.3.7. Let U ⊂ C be open and f : U → C be analytic with

f ′ continuous. Then, if z, w ∈ U , and also the segment connecting z, w is

contained in U , we have

f(w)− f(z) =

∫
[z,w]

f ′(ζ) dζ.

Here [z, w](t) := tw + (1− t)z for t ∈ [0, 1].

Proof. The function f is a primitive of f ′, so Theorem 4.3.44.3.4 yields∫
[z,w]

f ′(ζ) dζ = f([z, w](1))− f([z, w](0)) = f(w)− f(z).

This is what we claimed. □

Theorem 4.3.44.3.4 can be used to show that certain maps do not have

primitives:

Example 4.3.8. The map f : C \ {0} → C defined by f(z) = 1/z does

not have a primitive F : C \ {0} → C. To see this, let γ(t) := eit, t ∈ [0, 2π].

If the primitive F existed, then our calculation (4.2.24.2.2) and Theorem 4.3.44.3.4

would contradict each other:

2πi =

∫
γ
f(z) dz = F (γ(0))− F (γ(2π)) = 0.
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Let us emphasise, however, that the existence of primitives is highly de-

pendent on the choice of the domain: for example, z 7→ 1/z does have

a primitive in every slit domain of the form C \ ℓv (recall Remark 4.3.54.3.5).

Indeed, the primitive is given by a(ny) branch of the logarithm in C \ ℓv.

Exercise 4.3. The function z 7→ z̄ has no primitive in any open set

U ⊂ C.

The following corollary of Theorem 4.3.44.3.4 will be needed in the next

section:

Corollary 4.3.9. Let γ : [a, b]→ C be a closed piecewise C1-path, and

let p(z) = anz
n + . . .+ a1z + a0 be a polynomial. Then,∫

γ
p(z) dz = 0.

Proof. Define the function

P (z) := an
n+1z

n+1 + an−1

n zn + . . .+ a1
2 z

2 + a0z

By Corollary 3.1.83.1.8 one has

P ′(z) = p(z).

Thus the polynomial p has the primitive P in the whole plane C, so the

conclusion follows immediately from Theorem 4.3.44.3.4. □

Finally, we record the following corollary of Theorem 4.3.44.3.4:

Proposition 4.3.10 (Integration by parts). Let U ⊂ C be open, and let

γ : [a, b]→ U be a piecewise C1-path. Assume that f, g : U → C are analytic.

Assume additionally that f ′, g′ are continuous. Then,∫
γ
f(z)g′(z) dz = [f(γ(b))g(γ(b))− f(γ(a))g(γ(a))]−

∫
γ
g(z)f ′(z) dz.

Proof. Exercise. □

Summary of Section 44. Here is a list of key topics from this section:

• Piecewise C1-paths.

• The reverse path ←−γ and the composite path γ ⋆ η.

• Reparametrisation of paths.

• The definitions of the complex path integral and arc length integral.

• Example 4.2.64.2.6: the path integral over the circle path of the function

1/z.

• Path integrals over ←−γ , γ ⋆ η, and reparametrisations of γ.

• Bounding the path integral from above by the arc length integral.

• Primitives and the “fundamental theorem of calculus for complex path

integrals” (Theorem 4.3.44.3.4).
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Cauchy’s theorem and applications

The rest of the course will reveal a sequence of increasingly breathtaking

results concerning analytic functions. They are all based on a fairly innocent-

looking statement, known as Cauchy’s theorem (in fact we will see several

different versions of Cauchy’s theorem). It will state (see Theorem 5.1.45.1.4)

that if U ⊂ C is a convex open set, and f : U → C is analytic, then

(5.0.1)

∫
γ
f(z) dz = 0

for every closed piecewise C1-path in U . With modest effort, this funda-

mental fact will imply – among other things – that every analytic function

defined on an arbitrary open set is infinitely differentiable! In fact, here is

a schematic picture of the rest of the course:

Cauchy’s theorem =⇒ Cauchy’s integral formula

=⇒


Derivatives of analytic functions are analytic

Cauchy’s integral formula for derivatives (CIFD)

Mean value and maximum modulus principles =⇒ Schwarz lemma

(CIFD) =⇒


Morera’s theorem =⇒ Analytic continuation to a point

Cauchy’s estimates =⇒ Liouville’s theorem =⇒

{
Fundamental theorem

of algebra.

When revising for the course, it is advisable to return to this schematic

picture and see if you can summarise these results – and implications – to

yourself! There will be no further “summary sections”, since the schematic

above contains them all.

5.1. Cauchy’s theorem for convex sets

Before proving Cauchy’s theorem (5.0.15.0.1) in general, we will first a version

of it where γ = ∂△ is a triangle, namely a path of the following form:

(5.1.1) ∂△ := [a, b] ⋆ [b, c] ⋆ [c, a].

71
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Here [z, w](t) := tw+(1− t)z was the “segment path” connecting z, w. Note

that ∫
∂△

f(z) dz
(4.2.64.2.6)
=

∫
[a,b]

f(z) dz +

∫
[b,c]

f(z) dz +

∫
[c,a]

f(z) dz.

We will also use the notation △ := △(a, b, c) ⊂ C for the ”solid triangle”

(not just the boundary) spanned by {a, b, c}. Thus, the trace (∂△)∗ equals

the boundary of △, and ∂△ “parametrises” this boundary.

Theorem 5.1.1 (Cauchy’s theorem for triangles). Let a, b, c ∈ C, and
let ∂△ := ∂△ (a, b, c) be the path introduced in (5.1.15.1.1). Assume that U ⊂ C
is an open set with △ ⊂ U , and let w0 ∈ U . Assume that f is continuous

in U and analytic in U \ {w0}. Then,∫
∂△

f(z) dz = 0.

Remark 5.1.2. The “special point” w0 ∈ U may seem like an unnec-

essary technicality, but it will be indispensable when proving the Cauchy

integral formula (Theorem 5.2.135.2.13).

Proof of Theorem 5.1.15.1.1. We will assume that the triangle△ is non-

degenerate, that is, the points {a, b, c} are not contained on a common line.

The statement also remains true in this case, and is much easier to prove;

think this through yourself!

We will start with the special case where w0 /∈ △. Let a′, b′, c′ be the

midpoints of the segments [a, b], [b, c], and [c, a], see Figure 11. These give

rise to 4 new triangles △1,△2,△3,△4 ⊂ △. Moreover,

(5.1.2)

∫
∂△

f(z) dz =

4∑
j=1

∫
∂△j

f(z) dz.

This is because if [z, w] is an edge on one of the smaller triangles which

meets the interior of △ (a red path in Figure 11), then also
←−−−
[z, w] is an edge

on another small triangle, and the integrals over these two edges cancel each

other out. So, only the edges on the boundary of △ are not cancelled out

by other edges, and their sum gives back the integral over ∂△.

It now follows from (5.1.25.1.2) that∣∣∣∣∫
∂△

f(z) dz

∣∣∣∣ ≤ 4 max
1≤j≤4

∣∣∣∣∣
∫
∂△j

f(z) dz

∣∣∣∣∣ .
Let △1 ∈ {△1, . . . ,△4} be the triangle which attains the maximum. We

focus attention on △1, and repeat the “subdivision” trick inside △1: we
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c′

c

b′

b

a

a′

△1
△2

△3

△4

Figure 1. Dividing the triangle △ into 4 smaller tri-

angles △1, . . . ,△4, and how the ”interior” segments of

∂△1, . . . , ∂△4 cancel each other out.

divide △1 it into 4 smaller triangles △1
1, . . . ,△1

4. Repeating the reasoning

above, we can find one of them satisfying

∣∣∣∣∫
∂△

f(z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂△1

f(z) dz

∣∣∣∣ ≤ 16

∣∣∣∣∣
∫
∂△1

j

f(z) dz

∣∣∣∣∣ .
Now, continuing inductively, we can find a sequence of triangles △ =: △0 ⊃
△1 ⊃ . . . satisfying

(5.1.3)

∣∣∣∣∫
∂△

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂△n

f(z) dz

∣∣∣∣ , n ≥ 0.

As n→∞, the triangles △n get smaller and smaller: in fact

(5.1.4) length(∂△n) = 2−nlength(∂△), n ≥ 0.

Moreover, the triangles △n “converge” to a unique point z0 ∈ △. More

precisely, by Cantor’s intersection theorem (Theorem 2.2.82.2.8)⋂
n≥0

△n = {z0} ⊂ △.

The map f is differentiable at z0, so given ϵ > 0, there exists a radius r > 0

such that

(5.1.5) |f(z)− f(z0)− f ′(z0)(z − z0)| ≤ ϵ|z − z0|, z ∈ D(z0, r).
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In particular, the estimate (5.1.55.1.5) holds for all z ∈ △n when n ≥ nϵ is

sufficiently large. For n ≥ nϵ, we therefore have∣∣∣∣∫
∂△n

f(z) dz

∣∣∣∣ Cor.4.3.94.3.9
=

∣∣∣∣∫
∂△n

[f(z)− f(z0)− f ′(z0)(z − z0)] dz

∣∣∣∣
Prop.4.2.104.2.10
≤

∫
∂△n

ϵ|z − z0| |dz| ≤ ϵ(length(∂△n))2

(5.1.45.1.4)
= ϵ4−n(length(∂△))2.

The first step used the fact that the path integral over ∂△n of the polynomial

z 7→ f(z0)+f ′(z0)(z−z0) vanishes, whereas the second step used the estimate

of the path integral from above by the arc length integral. The third step

used

|z − z0| ≤ diam(△n) ≤ length(∂△n), z ∈ △n.

When the estimate above is combined with (5.1.35.1.3), we obtain∣∣∣∣∫
∂△

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂△n

f(z) dz

∣∣∣∣ ≤ ϵ · (length(∂△))2.

Letting ϵ→ 0 completes the proof in the special case w0 /∈ △.

Let us finally consider the case w0 ∈ △. There are two distinct cases to

consider, both shown in Figure 22: either w0 is a corner of △, or then it is

not. If w0 is a corner, we “isolate” it to a small triangle △1 ⊂ △. Then, we

 

b

c

w0

b

c = w0

a

△1

△2

△3

a

c

Figure 2. The special cases where (i) w0 is a corner of △,

and (ii) where w0 ∈ △ but w0 is not a corner.

also form two further triangles △2,△3 ⊂ △ in such a way that

(5.1.6)

∫
∂△

f(z) dz =

∫
∂△1

f(z) dz +

∫
∂△2

f(z) dz +

∫
∂△3

f(z) dz.

Note that the triangles △2,△3 have no “special points”: f is analytic on

a neighbourhood of △2 ∪ △3. Therefore the two latter terms in (5.1.65.1.6) are
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zero by the first part of the proof. For the first term, we estimate the path

integral from above by the arc length integral:∣∣∣∣∫
∂△1

f(z) dz

∣∣∣∣ ≤ ∥f∥L∞(△)length(∂△1).

Since f is continuous on △, we have ∥f∥L∞(△) < ∞. On the other hand

the length of ∂△1 can be made as small as we like. This implies that∫
∂△ f(z) dz = 0.

Finally, consider the case where w0 ∈ △ is not a corner. We form new

triangles △1,△2,△3 ⊂ △ with the properties that w0 is a common corner of

△1,△2,△3, and (5.1.65.1.6) holds (see Figure 22, and think what would happen if

w0 lies on an edge of △). Now, by the “corner case” we just handled above,

all the three terms on the right hand side of (5.1.65.1.6) are zero. Therefore∫
∂△ f(z) dz = 0 also in this case, and the proof is complete. □

We may immediately generalise the previous theorem to all closed piece-

wise C1-paths γ, but only under the assumption that f is analytic in a

convex open set containing γ∗.

Definition 5.1.3. A set A ⊂ C is convex if for any z, w ∈ A, the line

segment [z, w]∗ = { (1− t)z + tw : t ∈ [0, 1]} is contained in A.

Theorem 5.1.4 (Cauchy’s theorem in a convex set). Assume that U ⊂
C is a convex open set, w0 ∈ U , f is continuous in U , and analytic in

U \ {w0}. Then f has a primitive in U .

As a consequence (and by Theorem 4.3.44.3.4), if γ : [a, b] → U is a closed

piecewise C1-path, then ∫
γ
f(z) dz = 0.

Proof. We will define the primitive F : U → C with the following ex-

plicit formula. Fix a ∈ U arbitrary, and set

F (z) :=

∫
[a,z]

f(ζ) dζ, z ∈ U.

The integral is well-defined, because [a, z]∗ ⊂ U by the convexity of U . We

also note that

(5.1.7) F (z) = −
∫
←−−
[a,z]

f(ζ) dζ = −
∫
[z,a]

f(ζ) dζ, z ∈ U.

We then claim that F is complex differentiable for all z ∈ U and that

F ′(z) = f(z). Fix distinct points z, w ∈ U , and consider the triangle

∂△ := [a,w] ⋆ [w, z] ⋆ [z, a],
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whose trace is contained in U by convexity. In fact the entire solid triangle

△ is also contained in U – as required to apply Theorem 5.1.15.1.1. Then,

F (w)−F (z)
(5.1.75.1.7)
=

∫
[a,w]

f(ζ) dζ+

∫
[z,a]

f(ζ) dζ =

∫
∂△

f(ζ) dζ−
∫
[w,z]

f(ζ) dζ.

The first term on the right vanishes by Theorem 5.1.15.1.1, so we may deduce

that

F (w)− F (z)

w − z
= − 1

w − z

∫
[w,z]

f(ζ) dζ =
1

z − w

∫
[w,z]

f(ζ) dζ.

On the other hand, it is a simple computation to check that

1

z − w

∫
[w,z]

c dζ = c, c ∈ C,

so in particular with c := f(z) we have

F (w)− F (z)

w − z
− f(z) =

1

z − w

∫
[w,z]

[f(ζ)− f(z)] dζ.

Since f is continuous at z, for every ϵ > 0 there exists δ > 0 such that

|f(ζ) − f(z)| < ϵ as soon as |ζ − z| < δ. In particular, this holds for all

ζ ∈ [w, z]∗ if |w− z| < δ. Consequently, for |w− z| < δ we have the estimate∣∣∣∣F (w)− F (z)

w − z
− f(z)

∣∣∣∣ ≤ 1

|z − w|

∫
[w,z]
|f(ζ)−f(z)| |dζ| ≤ ∥f−f(z)∥L∞([w,z]) ≤ ϵ.

Since ϵ > 0 was arbitrary, this shows that

lim
w→z

F (w)− F (z)

w − z
= f(z).

This completes the proof. □

Remark 5.1.5. Is convexity necessary in Theorem 5.1.45.1.4? The answer

is “yes and no”. The answer is “no” in the sense that there is a more

general theorem, the global Cauchy theorem which replaces the convexity

assumption with strictly weaker hypotheses. This theorem will be covered

in Complex Analysis 2.

The answer is “yes” in the sense that the convexity assumption cannot be

simply removed. For example, consider the non-convex domain U = C \ {0},
and let ∂△ ⊂ C \ {0} be a triangular path which surrounds the origin: thus

the “solid triangle” △ is not contained in C \ {0}. Then, it turns out that∫
∂△

dz

z
= 2πi,

even though z 7→ 1/z is analytic in C \ {0}. It is an important exercise to

think, why this fact does not contradict Theorem 5.1.15.1.1, and why the proof

of Theorem 5.1.15.1.1 does not work in this situation.



5.2. CAUCHY’S INTEGRAL FORMULA 77

We close this section by recording the following corollary of the proof of

Theorem 5.1.45.1.4:

Corollary 5.1.6. Let U ⊂ C be open, and assume that f : U → C is a

continuous function satisfying

(5.1.8)

∫
∂△

f(z) dz = 0, △ ⊂ U.

Then, f has a primitive in every open disc D ⊂ U (or more generally in

every convex open set V ⊂ U).

Proof. Let D ⊂ U be a disc. Then D is a convex open set, and (5.1.85.1.8)

holds for all triangles △ ⊂ D. These were all the properties we needed in

the proof of Theorem 5.1.45.1.4 to conclude that f has a primitive in D. □

Remark 5.1.7. Let f : U → C be continuous, where U ⊂ C is convex

and open. Consider the following three properties:

(1) f is analytic in U .

(2)
∫
∂△ f(z) dz = 0 for all triangles △ ⊂ U .

(3) f has a primitive in U .

What are the implications between (1), (2), and (3)? Theorem 5.1.15.1.1 shows

that (1) =⇒ (2), and Corollary 5.1.65.1.6 shows that (2) =⇒ (3). It turns out

that also (3) =⇒ (1), see Theorem 5.3.15.3.1 (applied to the primitive). So,

(1)− (3) are equivalent for convex open sets.

The convexity of U was used in both implications (1) =⇒ (2) and (2) =⇒
(3), but the converse implications are true for all open U ⊂ C: namely,

(3) =⇒ (2) by Theorem 4.3.44.3.4, and the implication (2) =⇒ (1) is known as

Morera’s theorem, which will also be proved soon.

5.2. Cauchy’s integral formula

Our first application of Cauchy’s theorem (Theorem 5.1.45.1.4) will be the

following “representation formula” for analytic functions defined on a convex

open set U ⊂ C:

f(z) =
1

2πi

∫
∂D(z,r)

f(ζ)

ζ − z
dζ, z ∈ U,

where r > 0 is so small that D(z, r) ⊂ U , and ∂D(z, r) refers to the path

γ(t) = z + reit, t ∈ [0, 2π]. This formula, and a more general version of it

recorded in Theorem 5.2.135.2.13, is known as Cauchy’s integral formula. It will

open the door (in Section 5.35.3) to establishing even stronger properties of

analytic functions.

To prove Cauchy’s integral formula in suitable generality, we begin with

the definition of winding numbers.
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Definition 5.2.1 (Winding number). Let γ : [a, b] → C be a closed

piecewise C1-path, and let z ∈ C \ γ∗. The winding number of γ around z

is defined by

nγ(z) :=
1

2πi

∫
γ

dζ

ζ − z
.

Example 5.2.2. Let γk : [0, 2π]→ C be the circle path γk(t) := z0+reikt,

where k ∈ Z. In Example 4.2.64.2.6 we computed that

(5.2.1) nγk(z0) =
1

2πi

∫
γk

dz

z − z0
= k.

Thus, the winding number nγk(z0) captures the intuition that γk “winds

|k| times around z0”. The sign of the winding number tells us whether the

“winding” happens clockwise (case k < 0) of counterclockwise (case k > 0).

The following property of winding numbers is elementary but useful:

Proposition 5.2.3. Let γ : [a, b]→ C and η : [c, d]→ C be closed piece-

wise C1-paths such that γ(b) = η(c). Then,

nγ⋆η(z) = nγ(z) + nη(z) and nγ(z) = −n←−γ (z)

for all z ∈ C \ [γ∗ ∪ η∗] (just z ∈ C \ γ∗ for the second claim).

Proof. Exercise. □

Amazingly, it turns out that the winding number is always an integer:

Theorem 5.2.4. Let γ : [a, b] → C be a closed piecewise C1-path. Then

the map z 7→ nγ(z), defined on C \ γ∗, is continuous and Z-valued: nγ(z) ∈ Z
for all z ∈ C \ γ∗.

We need the following lemma in the proof:

Lemma 5.2.5. Let η : [a, b] → R be a continuous function which is dif-

ferentiable at all points t ∈ [a, b] \ X, where X ⊂ [a, b] is finite. If η′(t) = 0

for all t ∈ [a, b] \ X, then η is a constant, and in particular η(b) = η(a).

Proof. Since X is finite, we may write (a, b) \ X as a finite union of

disjoint open intervals I1, . . . , In. It follows from the assumptions that η is

a constant on each interval individually, say η ≡ cj on Ij . By continuity,

if Ij , Ij+1 are adjacent intervals with t ∈ Ij ∩ Ij+1, then cj = η(t) = cj+1.

It follows that all the constants cj are actually the same, and by another

appeal to continuity they equal c1 = η(a). □
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Proof of Theorem 5.2.45.2.4. The continuity of nγ is fairly clear from

the definition: if (zk) ⊂ C \ γ∗ is a sequence of points converging to a point

z ∈ C \ γ∗, then

(5.2.2) lim
k→∞

nγ(zk) = lim
k→∞

1

2πi

∫
γ

dζ

ζ − zk
=

1

2πi

∫
γ

dζ

ζ − z
= nγ(z).

Thus nγ satisfies the criterion for continuity in terms of sequences. It takes

a little effort to show that the exchange of limits and integration in (5.2.25.2.2)

is legitimate: one has to check that the functions ζ 7→ fk(ζ) := (ζ − zk)
−1

converge uniformly on γ∗ to ζ 7→ f(ζ) := (ζ−z)−1, and then apply Corollary

4.2.144.2.14. To check the uniform convergence on γ∗, note that dist(z, γ∗) =: r >

0, so also dist(zk, γ
∗) ≥ r/2 for all k ∈ N sufficiently large.

We then show that nγ is Z-valued. Recall from Proposition 1.5.71.5.7 that

eα = 1 if and and only if α ∈ 2πiZ. Thus, to prove that nγ(z) ∈ Z, it suffices

to show that

e2πinγ(z) = 1, z ∈ C \ γ∗.

Furthermore, if we write down the definition of the path integral appearing

in nγ(z), this claim is equivalent to φ(b) = 1, where

(5.2.3) φ(t) := exp

(∫ t

a

γ′(s)

γ(s)− z
ds

)
, t ∈ [a, b].

(We are suppressing the point “z” from the notation.) To prove (5.2.35.2.3),

start by noting that

φ′(t) =
γ′(t)

γ(t)− z
exp

(∫ t

a

γ′(s)

γ(s)− z
dz

)
=

γ′(t)

γ(t)− z
φ(t),

or equivalently

(5.2.4) φ′(t)(γ(t)− z)− γ′(t)φ(t) = 0

for all t ∈ [a, b] where γ is differentiable. Since γ is piecewise C1, this is true

for all t ∈ [a, b] \ X, where X ⊂ [a, b] is a finite set. Now, formula (5.2.45.2.4)

shows that η(t) := φ(t)/(γ(t) − z) defines a continuous map [a, b] → C,
differentiable outside X, and satisfying

η′(t) =
φ′(t)(γ(t)− z)− γ′(t)φ(t)

(γ(t)− z)2
= 0, t ∈ [a, b] \ X.

By Lemma 5.2.55.2.5 (applied separately to the real and imaginary parts of η),

this shows that

φ(b)

γ(b)− z
= η(b) = η(a) =

φ(a)

γ(a)− z
=

1

γ(a)− z
,
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noting that φ(a) = e0 = 1 by the definition (5.2.35.2.3). Now, it remains to use

the assumption that γ is a closed path, so γ(b) = γ(a):

φ(b) =
γ(b)− z

γ(a)− z
=

γ(a)− z

γ(a)− z
= 1,

as claimed. The proof is complete. □

Remark 5.2.6. The proof of Theorem 5.2.45.2.4 was a little magical. The

following heuristics may make it more transparent. Assume (for the sake of

the discussion) that z = 0, and there exists a branch of the logarithm “g”

(in other words: a primitive of ζ 7→ 1/ζ) in some open set U containing γ∗.

In this case,

(5.2.5)

∫ t

a

γ′(s)

γ(s)− z
ds =

∫
γ|[a,t]

dζ

ζ

Thm.4.3.44.3.4
= g(γ(t))− g(γ(a)).

Consequently, the map “φ” appearing in the proof has the simple expression

φ(t) = eg(γ(t))−g(γ(a)) =
eg(γ(t))

eg(γ(a))
=

γ(t)

γ(a)
.

In particular, since γ is a closed path, we have φ(b) = 1, as desired.

The assumption z = 0 is innocent, but the existence of “g” is not: indeed,

the existence of “g” would actually show that
∫
γ dζ/ζ = 0 (by (5.2.55.2.5)), which

is generally false. The point of the actual proof is that even though “g” may

not exist, the map φ still behaves in the same manner as in the “cheat”

proof above.

What do continuous Z-valued functions actually look like?

Proposition 5.2.7. Let U ⊂ C be open and connected, and let g : U → R
be continuous such that g(U) ⊂ Z. Then g is constant.

Proof. Exercise. □

Corollary 5.2.8. Let γ : [a, b]→ C be a closed piecewise C1-path, and

let U ⊂ C \ γ∗ be open and connected. Then nγ is constant on U . If U is

unbounded, this constant is 0.

Proof. By Theorem 5.2.45.2.4, the map z 7→ g(z) = nγ(z) is continuous and

Z-valued in U , so the constancy on U follows immediately from the previous

proposition.

Assume then that U is unbounded, and let (zk) ⊂ U be a sequence with

|zk| → ∞ as k →∞. Let m ∈ Z be the constant value of nζ on U . Then,

m = lim
k→∞

nγ(zk) = lim
k→∞

1

2πi

∫
γ

dζ

ζ − zk
= 0,

because the functions ζ 7→ (ζ − zk)
−1 converge uniformly to 0 on γ∗, as

zk →∞. □
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Remark 5.2.9. In general, it can be tricky to find out the constant value

of z 7→ nγ(z) in a given (bounded, open, connected) set U ⊂ C \ γ∗. Tools

for this problem will be presented on the course Complex Analysis 2.

Example 5.2.10 (Winding numbers of circle paths). Recall from (5.2.15.2.1)

that

nγk(z0) =
1

2πi

∫
γk

dz

z − z0
= k,

where z0 ∈ C, and γk(t) = z0+ reikt. From this fact and Corollary 5.2.85.2.8, we

may deduce that

nγk(w) =
1

2πi

∫
γk

dz

z − w
= k, w ∈ D(z0, r),

since D(z0, r) ⊂ C \ γ∗k is connected. Thus, we have rigorously proven the

“intuitively clear” fact that the path γk winds the same number of times

around z0, and every point w ∈ D(z0, r).

For w ∈ C \ D̄(z0, r), we have nγk(w) = 0 by Corollary 5.2.85.2.8, because

C \ D̄(z0, r) is an unbounded connected set contained in C \ γ∗k . We repeat

and record these important conclusions:

(5.2.6) ηγk(w) =

{
k, w ∈ D(z0, r),

0, w ∈ C \ D̄(z0, r).

With the techniques of this course, we are not able to compute the

winding numbers of very general closed paths γ. However, the following

simple proposition is surprisingly useful:

Proposition 5.2.11. Let γ, η : [0, 1] → C be closed piecewise C1-paths

such that γ(0) = η(0). Let z ∈ C \ [γ∗ ∪ η∗], and assume that z lies in an

unbounded connected open set U ⊂ C \ η∗. Then,

nγ⋆η(z) = nγ(z).

Proof. We have nγ⋆η(z) = nγ(z) + nη(z) by Proposition 5.2.35.2.3, and

further nη(z) = 0 by Corollary 5.2.85.2.8. □

The proposition can for example be applied as follows:

Example 5.2.12. Let γ := [−1, 1]⋆σ+ be the “upper semicircle”, where

σ+(t) = eit for t ∈ [0, π]. It is intuitively clear that γ winds exactly once

around the point z = i/2, thus nγ(i/2) = 1. We can deduce this from

Proposition 5.2.115.2.11 as follows.

Let η := σ− ⋆
←−−−−
[−1, 1] be the ”lower semicircle”, where σ−(t) = eit for

t ∈ [π, 2π]. Then γ ⋆ η is the standard circle path ∂D(0, 1) (to be precise: a

reparametrisation of of ∂D(0, 1)). Thus,

nγ⋆η(i/2) = 1.
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On the other hand, i/2 clearly lies in some unbounded connected set U ⊂
C \ η∗, for example U := {Im (z) > 0}. Thus nγ(i/2) = nγ⋆η(i/2) = 1 by

Proposition 5.2.115.2.11.

We then arrive at the key result of this section:

Theorem 5.2.13 (Cauchy’s integral formula in a convex set). Let U ⊂ C
be a convex open set, let γ : [a, b]→ U be a closed piecewise C1-path, and let

f : U → C be analytic. Then,

f(z) · nγ(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ, z ∈ U \ γ∗.

Proof. Fix z ∈ U \ γ∗, and consider the function g : U → C defined by

g(ζ) :=

{
f(ζ)−f(z)

ζ−z , ζ ∈ U \ {z},
f ′(z), ζ = z.

Clearly g is analytic in U \ {z}, and also continuous in U , because f is

differentiable at z. Consequently, g satisfies the hypotheses of Cauchy’s

theorem in a convex set, Theorem 5.1.45.1.4. The conclusion is that

(5.2.7) 0 =
1

2πi

∫
γ
g(ζ) dζ =

1

2πi

∫
γ

f(ζ)− f(z)

ζ − z
dζ.

Now, it suffices to note that

(5.2.8)
1

2πi

∫
γ

f(z)

ζ − z
dζ = f(z) · nγ(z).

This completes the proof. It is worth remarking that the hypothesis z ∈
U \ γ∗ was not needed for (5.2.75.2.7), but it was used when passing to (5.2.85.2.8)

(to make sure that the integrals are individually well-defined). □

Let us explicitly combine the theorem with the computation in (5.2.65.2.6):

Corollary 5.2.14 (Cauchy’s integral formula in a disc). Let U ⊂ C be

open, and assume that D̄(z0, r) ⊂ U . Then,

(5.2.9) f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ, z ∈ D(z0, r),

where ∂D is an abbreviation for the path γ(t) = z0 + reit, t ∈ [0, 2π].

Proof. It is easy to check that there exists a convex open set V ⊂ C
satisfying D̄(z0, r) ⊂ V ⊂ U (e.g. V = D(z0, r + ϵ)). Therefore, (5.2.95.2.9) is

an immediate consequence of Theorem 5.2.135.2.13 applied to V – recalling also

from (5.2.65.2.6) that n∂D(z) = 1 for all z ∈ D(z0, r). □
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5.2.1. Computing integrals with Cauchy’s formula. Cauchy’s for-

mula yields a powerful method for calculating complicated integrals – even

ones which apparently have nothing to do with complex numbers. This

method will be treated more systematically in the calculus of residues, see

Complex Analysis 2, but we give two illustrative examples.

Example 5.2.15. Let us compute the integral

(5.2.10)

∫
∂D(0,2)

ez

z2 − 1
dz.

This integral is not directly of the form recognisable from Cauchy’s integral

formula, but it can be easily brought into such a form. We begin by observing

that z2−1 = (z−1)(z+1). Once this has been noted, it is well-known that

we always have a decomposition

(5.2.11)
1

z2 − 1
=

A

z − 1
+

B

z + 1

for suitable coefficients A,B ∈ C. The way to find these coefficients is to

write

A

z − 1
+

B

z + 1
=

(z + 1)A+ (z − 1)B

(z − 1)(z + 1)
=

(z + 1)A+ (z − 1)B

z2 − 1
.

After this, it is evident that (5.2.115.2.11) holds if and only if

(A−B) + z(A+B) = (z + 1)A+ (z − 1)B = 1 ⇐⇒

{
A−B = 1,

A+B = 0.

Thus, (5.2.115.2.11) is true for A = 1
2 and B = −1

2 . After this, we may decompose

the integral (5.2.105.2.10) as

(5.2.12)

∫
∂D(0,2)

ez

z2 − 1
dz = 1

2

∫
∂D(0,2)

ez

z − 1
dz − 1

2

∫
∂D(0,2)

ez

z + 1
dz.

Since

n∂D(0,2)(1) = n∂D(0,2)(−1),

it follows from Cauchy’s integral formula, Theorem 5.2.135.2.13, that

1

2πi

∫
∂D(0,2)

ez

z − 1
dz = e1 = e and

1

2πi

∫
∂D(0,2)

ez

z − 1
dz = e−1.

Comparing this with (5.2.125.2.12), we find the solution:∫
∂D(0,2)

ez

z2 − 1
dz = πi(e− e−1).

In the next example, we compute an indefinite integral on the real line:
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Example 5.2.16. Let us compute the integral

(5.2.13)

∫
R

dt

t2 + 1
:= lim

r→∞

∫ r

−r

dt

t2 + 1
.

The correct answer π can also be obtained with “real-variable” methods,

but now we will see how to use the Cauchy integral formula. Note that

g(z) := (z2+1)−1 defines an analytic function g : C \ {−i, i} → C. Moreover,

this function can be factorised as

g(z) =
f(z)

z − i
, f(z) =

1

z + i
,

and f : C \ {−i} → C is analytic. Let U := {Im z > −1}. Then U is a

convex open set which contains R, the point i, and with the property that

f is analytic in U . Now, if γ : [a, b] → U is a closed piecewise C1-path, we

may deduce from Cauchy’s theorem that

(5.2.14)
nγ(i)

2i
= f(i) · nγ(i) =

1

2πi

∫
γ

f(z)

z − i
dz =

1

2πi

∫
γ

dz

z2 + 1
.

This looks quite promising with (5.2.135.2.13) in mind. To wrap up, we need to

choose γ suitably.

 

U

r
γr

ηr

−r r

Figure 3. The paths γr (red arrows) and ηr (black arrows).

Since we are aiming for (5.2.135.2.13), the path γ = γr should at least parametrise

the interval [−r, r]. However, since γr needs to be a closed path, we need

to decide some way of “closing” [−r, r]. The formula (5.2.145.2.14) suggests that

we might wish to choose γr in such a way that nγr(i) = 1 (although you are

welcome to try other possibilities). A standard choice is the path

γr := [−r, r] ⋆ σr,

where σr parametrises the large semi-circle S(0, r) ∩ {Im z ≥ 0} connecting
r to −r in the upper half-plane, see Figure 33. Explicitly, σr(t) = reit for

r ∈ [0, π]. Clearly γ∗ ⊂ U , so

1

2πi

∫ r

−r

dt

t2 + 1
=

1

2πi

∫
γ

dz

z2 + 1
− 1

2πi

∫
σr

dz

z2 + 1

(5.2.145.2.14)
=

nγ(i)

2i
− 1

2πi

∫
σr

dz

z2 + 1
.
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It is intuitively clear that nγr(i) = 1 for r > 1, and this can be rigorously

justified by the trick shown in Example 5.2.125.2.12, using Proposition 5.2.115.2.11.

Now, we claim that

(5.2.15) lim
r→∞

∫
σr

dz

z2 + 1
= 0.

Once this has been established, we find that

(5.2.16)

∫
R

dt

t2 + 1
= lim

r→∞

∫ r

−r

dt

t2 + 1
= lim

r→∞
2πi · nγr(i)

2i
= π.

The equation (5.2.155.2.15) is obtained with “brute force”, using the comparison

between path integrals and arc length integrals in Proposition 4.2.104.2.10:∣∣∣∣∫
σr

dz

z2 + 1

∣∣∣∣ ≤ ∫ π

0

|σ′
r(t)|

|σr(t)2 + 1|
dt =

∫ π

0

r dt

|σr(t)2 + 1|
dt.

Now, note that σr(t) ranges in the circle S(0, r), so |σr(t)2+1| ≥ |σr(t)|2−1 ≥
r2/2 for every sufficiently large r > 1. Therefore,

lim
r→∞

∣∣∣∣∫
σr

dz

z2 + 1

∣∣∣∣ ≤ lim
r→∞

∫ π

0

2 dt

r
= lim

r→∞

2π

r
= 0.

This completes the justification of (5.2.165.2.16).

5.3. Applications

5.3.1. Derivatives of analytic functions. Our first application of

Theorem 5.2.135.2.13 shows that if f is analytic in an open set U , then f is

infinitely differentiable in U .

Theorem 5.3.1. Let U ⊂ C be open, and let f : U → C be analytic.

Then also f ′ : U → C is analytic. As a consequence, the nth complex deriv-

ative f (n) exists and is analytic for all n ≥ 0.

Proof. We first claim the following. Let z ∈ U , and let r > 0 be so

small that D̄(z, r) ⊂ U . Then,

(5.3.1) f ′(w) =
1

2πi

∫
∂D(z,r)

f(ζ)

(ζ − w)2
dζ, w ∈ D(z, r).

Here ∂D(z, r) refers to the circle path γ(t) = z + reit, t ∈ [0, 2π]. We start

by applying the Cauchy integral formula in a disc, Corollary 5.2.145.2.14, to write

f(w) =
1

2πi

∫
∂D(z,r)

f(ζ)

ζ − w
dζ, w ∈ D(z, r).

Now, morally the formula (5.3.15.3.1) follows by taking ∂w-derivatives on both

sides of the formula above:

f ′(w)
?
=

1

2πi

∫
∂D(z,r)

∂w

(
1

ζ − w

)
f(ζ) dζ =

1

2πi

∫
∂D(z,r)

f(ζ)

(ζ − w)2
dζ.
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We placed a question mark on the first equation, since one needs to make

sure that one is allowed to “differentiate under the integral sign”: one needs

to show that the function F : D(z, r)→ C defined by

F (w) :=

∫
∂D(z,r)

f(ζ)

ζ − w
dζ, w ∈ D(z, r),

is analytic, and its ∂w-derivative is given by

(5.3.2) F ′(w) =

∫
∂D(z,r)

f(ζ)

(ζ − w)2
dζ.

We prove this using the definition of complex differentiability. Abbreviate

∂D(z, r) =: ∂D, fix w ∈ D, and start by writing

F (v)− F (w)

v − w
=

1

v − w

∫
∂D

[
1

ζ − v
− 1

ζ − w

]
f(ζ) dζ =

∫
∂D

f(ζ) dζ

(ζ − v)(ζ − w)
,

for v ∈ D(z, r). Consequently,

F (v)− F (w)

v − w
−
∫
∂D

f(ζ)

(ζ − w)2
dζ =

∫
∂D

[
1

(ζ − v)(ζ − w)
− 1

(ζ − w)2

]
f(ζ) dζ

= (v − w)

∫
∂D

f(ζ) dζ

(ζ − v)(ζ − w)2
.

Finally, recall that w ∈ D(z, r), so in particular ϵ := dist(w, ∂D) > 0. Now,

v ∈ D(w, ϵ
2), we have |ζ − v| ≥ ϵ/2 for all ζ ∈ ∂D. Consequently,∣∣∣∣F (v)− F (w)

v − w
−
∫
∂D

f(ζ)

(ζ − w)2
dζ

∣∣∣∣ ≤ |v−w|∫
∂D

∥f∥L∞(D) |dζ|
|ζ − v||ζ − w|2

≤ CD,f,ϵ|v−w|.

Here CD,f,ϵ > 0 is a constant depending only on D, f, ϵ. An explicit choice

which works is CD,f,r = 2ϵ−3∥f∥L∞(D)length(∂D). Letting v → z proves

(5.3.25.3.2) at w = z.

This is not quite the end of the story: we have now proved the nice

representation formula (5.3.25.3.2) for f ′, but this does not immediately say that

f ′ is analytic. However, one can now show that

G(w) :=

∫
∂D

f(ζ)

(ζ − w)2
dζ

defines an analytic function in D(z, r), and

(5.3.3) f ′′(w) =
1

2πi
G′(w) =

1

πi

∫
∂D

f(ζ)

(ζ − w)3
dζ.

Thus, the analyticity of f ′ follows by explicitly differentiating G = 2πif ′.

Heuristically, the formula (5.3.35.3.3) for G′ follows (again) from differentiation

under the integral sign, and the careful justification requires calculations

very similar to those we have just seen above. We leave the details as a

voluntary exercise. □
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The formula (5.3.15.3.1) is “Cauchy’s integral formula for f ′ in a disc”. We

next record a more general version of this formula for closed piecewise C1-

paths, and also for higher-order derivatives. This generalisation is very

useful (see the schematic at the beginning of Section 5.15.1).

Theorem 5.3.2 (Cauchy’s integral formula for derivatives). Let U ⊂ C
be a convex open set, and let f : U → C be analytic. Let γ : [a, b] → U be a

closed piecewise C1-path. Then,

(5.3.4) f (n)(z) · nγ(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ, z ∈ U \ γ∗, n ≥ 0.

Proof. This theorem could be established by a “brute force” approach,

using the Cauchy integral formula, and differentiating n times under the

integral sign. Ignoring all technical difficulties, the proof can be compressed

to the following line:

f (n)(z) · nγ(z) =
1

2πi

∫
γ
∂(n)
w

(
1

ζ − w

) ∣∣∣
w=z

f(ζ) dζ =
n!

2πi

∫
γ

f(ζ)

(ζ − w)n+1
dζ,

because ∂
(n)
w (ζ−w)−1 = n!(ζ−w)−n−1. The main challenge of this approach

would to justify the differentiation under the integral sign. This would be a

little tedious, but fortunately there is a more elegant path.

We prove the claim by induction on n, the case n = 0 being Cauchy’s

integral formula, Theorem 5.2.135.2.13. Assume, then, that the formula (5.3.45.3.4)

has been established for all analytic functions in U , for some fixed n ≥ 0,

and all z ∈ U \ γ∗. By Theorem 5.3.15.3.1, the derivative f ′ : U → C is analytic,

so in particular our induction hypothesis applies to f ′:

f (n+1)(z) ·nγ(z) = (f ′)(n)(z) ·nγ(z) =
n!

2πi

∫
γ

f ′(ζ)

(ζ − z)n+1
dζ, z ∈ U \ γ∗.

The left hand side looks good, but the right hand side still requires process-

ing. We claim that

(5.3.5)

∫
γ

f ′(ζ)

(ζ − z)n+1
dζ = (n+ 1)

∫
γ

f(ζ)

(ζ − z)n+2
dζ, z ∈ U \ γ∗.

To prove this, fix z ∈ U \ γ∗, and consider the function g : U \ {z} → C,
defined by

g(ζ) :=
f(ζ)

(ζ − z)n+1
, ζ ∈ U \ {z}.

Then g is clearly analytic in U \ {z}, and

g′(ζ) =
f ′(ζ)

(ζ − z)n+1
− (n+ 1)f(ζ)

(ζ − z)n+2
, ζ ∈ U \ {z}.
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Now g′ is continuous in U \ {z} and has a primitive in U \ {z} (namely g),

so Theorem 4.3.44.3.4 implies that

0 =

∫
γ
g′(ζ) dζ =

∫
γ

f ′(ζ)

(ζ − z)n+1
dζ − (n+ 1)

∫
γ

f(ζ)

(ζ − z)n+2
dζ.

This is equivalent to (5.3.55.3.5), so the proof is complete. □

5.3.2. Cauchy’s estimates and Liouville’s theorem. Note that the

formula (5.3.45.3.4) allows (in principle) you to compute f (n) by integrating f .

After seeing this, it is hardly surprising that the size of f (n) can also be

estimated by the size of f :

Corollary 5.3.3 (Cauchy’s estimates). Let D = D(z, r) ⊂ C be a disc,

and let f : D → C be analytic. Then,

(5.3.6) |f (n)(w)| ≤
n! · r · ∥f∥L∞(D)

(r − |w − z|)n+1
, w ∈ D, n ≥ 0.

In particular, |f (n)(z)| ≤ n!∥f∥L∞(D)/r
n.

Proof. Let 0 < s < r, and let ∂Ds be the usual circle path parametris-

ing the boundary of Ds := D(z, s). Then f is analytic in the convex open

set D = D(z, r) containing the trace of ∂Ds, so we may infer from (5.3.45.3.4)

that

|f (n)(w)| = n!

2π

∣∣∣∣∫
∂Ds

f(ζ) dζ

(ζ − w)n+1

∣∣∣∣ ≤ n! · ∥f∥L∞(D)

2π

∫
∂Ds

|dζ|
|ζ − w|n+1

.

Now, note that |ζ − w| ≥ |ζ − z| − |w − z| = s− |w − z| for all ζ ∈ ∂Ds, so

|f (n)(w)| ≤
n! · ∥f∥L∞(D) · length(∂Ds)

2π(s− |w − z|)n+1
.

Since length(∂Ds) = 2πs, the estimate (5.3.65.3.6) now follows by letting s ↗
r. □

Sometimes a weaker theorem may appear more surprising than a stronger

one. If Cauchy’s estimates failed to impress you, perhaps the next corollary

of them does:

Corollary 5.3.4 (Liouville’s theorem). Let f : C→ C be analytic and

bounded. Then f is constant.

Proof. Fix z ∈ C, and apply Cauchy’s estimates in a disc D(z, r) ⊂ C:

|f ′(z)| ≤
∥f∥L∞(C)

r
, r > 0.

Letting r → ∞ shows that f ′(z) = 0, and therefore f ′ ≡ 0. Since C is

connected, f is constant by Corollary 3.3.13.3.1. □
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Remark 5.3.5. Liouville’s theorem is deep and surprising, but an even

stronger result is true: if f : C → C is analytic, then either f is constant,

or then f takes all the values in C, except for possibly one. This result

is known as (little) Picard’s theorem. The example f(z) = ez shows that

Picard’s theorem is is sharp, since ez ̸= 0 for all z ∈ C.

5.3.3. The fundamental theorem of algebra. We saw early on in

the course that the equation zn−w = 0 has a solution z ∈ C (indeed n solu-

tions) for all w ∈ C. The same remains true for all non-constant polynomial

equations p(z) = 0, and this result is known as the fundamental theorem of

algebra. Rather unexpectedly, its proof is based Liouville’s theorem!

Corollary 5.3.6 (Fundamental theorem of algebra). Let p(z) = anz
n+

an−1z
n−1 + . . .+ a1z+ a0 be a polynomial, where n ≥ 1 and an ̸= 0 (so that

p is non-constant). Then there exists z ∈ C such that p(z) = 0.

Proof. We argue by contradiction and suppose that p(z) ̸= 0 for all

z ∈ C. Then f(z) := p(z)−1 defines an analytic function on C by Proposition

3.1.73.1.7. We claim that f is bounded. To see this, note that

|p(z)| = |z|n
∣∣∣an +

an−1

z
+ . . .+

a0
zn

∣∣∣ ≥ |z|n(|an| − |an−1|
|z|

− . . .− |a0|
|z|

)
→∞,

as |z| → ∞, using the assumption an ̸= 0. In particular, there exists R > 0

(depending on a0, . . . , an) such that we have |p(z)| ≥ 1 for |z| ≥ R. Thus

|f(z)| ≤ 1, |z| ≤ R.

On the other hand, since f is continuous and D̄(0, R) is compact, Corollary

2.3.92.3.9 shows that there is M > 0 such that

|f(z)| ≤M, |z| ≤ R.

Putting these bounds together, we see that

|f(z)| ≤ max {M, 1} , z ∈ C.

By Liouville’s theorem (Corollary 5.3.45.3.4), we may now deduce that f is con-

stant. This constant is non-zero, since f(z) = p(z)−1 ̸= 0 for all z ∈ C. So,
f ≡ α ̸= 0. But then p ≡ α−1, which contradicts the fact that |p(z)| → ∞
as |z| → ∞. □

Remark 5.3.7. Corollary 5.3.65.3.6 only appears to give us one point z ∈ C
with p(z) = 0. This may seem disappointing, since we already knew that

zn − w has n distinct solutions if w ̸= 0. In fact, Corollary 5.3.65.3.6 yields a

similar conclusion, as we now explain.

Assume that p is a polynomial of degree n ≥ 1. Thus, there exists z1 ∈ C
such that p(z1) = 0. Now, it is a fact from abstract algebra we can factorise
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p(z) = p1(z)(z− z1), where p1 is a polynomial of degree n− 1. If n− 1 ≥ 1,

we may reapply Corollary 5.3.65.3.6 to p1. Then p(z) = (z1 − z)(z2 − z)p2(z),

where p2 is a polynomial of degree n− 2.

We may repeat the same argument precisely n times. This way we

eventually find a factorisation p(z) = c(z − z1) · · · (z − zn), where p(zj) = 0

for all 1 ≤ j ≤ n, and c ∈ C \ {0}. Thus, Corollary 5.3.65.3.6 allows us to find

not only one zero for p, but precisely n zeros.

However, it is entirely possible that zi = zj for some i ̸= j, or perhaps

even zi = zj for all 1 ≤ i, j ≤ n. In this case p(z) = c(z − z1)
n, and we say

that p has a zero of order n at z1. In general, a degree n polynomial p can

have any number k ∈ {1, . . . , n} of distinct zeroes in z1, . . . , zk ∈ C, but
the sum of their orders always equals n.

5.3.4. Morera’s theorem and analytic continuation to a point.

Before reading the next corollary, it is advisable to recap Corollary 5.1.65.1.6.

Corollary 5.3.8 (Morera’s theorem). Let U ⊂ C be open, and let

f : U → C be a continuous function satisfying

(5.3.7)

∫
∂△

f(z) dz = 0

for all triangles △ ⊂ U . Then f is analytic in U .

Proof. According to Corollary 5.1.65.1.6, the function f has a primitive in

every open disc D ⊂ U . In other words, for every D ⊂ U there exists an

analytic function F : D → C such that F ′(z) = f(z) for all z ∈ D. Now it

follows from Theorem 5.3.15.3.1 applied to F that F ′ = f is analytic in D. Since

D ⊂ U was arbitrary, it follows that f is analytic in U . □

Morera’s theorem has a further corollary worth recording:

Corollary 5.3.9 (Analytic continuation to a point). Let U ⊂ C be

open, and let w0 ∈ U . Assume that f : U → C is continuous, and analytic

in U \ {z0}. Then f is analytic in U .

Proof. It follows from Cauchy’s theorem for triangles (which allowed

for one “special point”, recall Theorem 5.1.15.1.1), that (5.3.75.3.7) holds for all

triangles △ ⊂ U . The conclusion now follows immediately from Morera’s

theorem, Corollary 5.3.85.3.8. □

Remark 5.3.10. Not impressed by Corollary 5.3.95.3.9? To get impressed,

consider how terribly a similar result fails in R. For example, the function

f(t) := |t| is continuous on R and infinitely differentiable on (−∞, 0)∪(0,∞),

but not differentiable at t = 0.
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5.3.5. Mean value and maximum modulus principles. We start

with the following corollary of Cauchy’s integral formula in a disc, which has

independent interest. It states that if f is analytic, then f(z) is the average

of the values f(z + reit) for t ∈ [0, 2π):

Corollary 5.3.11 (Mean value principle). Let U ⊂ C be open, and let

f : U → C be analytic. If D̄(z, r) ⊂ U , then

f(z) =
1

2π

∫ 2π

0
f(z + reit) dt.

Proof. This is immediate from Cauchy’s integral formula in a disc

(Corollary 5.2.145.2.14), and recalling that ∂D(z, r) refers to the circle path

γ(t) = z + reit, t ∈ [0, 2π]:

f(z) =
1

2πi

∫
∂D(z,r)

f(ζ) dζ

ζ − z
=

1

2πi

∫ 2π

0

f(γ(t))ireit

reit
dt =

1

2π

∫ 2π

0
f(z+reit) dt.

This completes the proof. □

We then move to the main result of the section. The maximum modu-

lus principle has at least two distinct and useful formulations, and we will

present them one after the other.

Theorem 5.3.12 (Maximum modulus principle I). Let U ⊂ C be open

and connected, and let f : U → C be analytic. If |f | reaches its maximum

in U , then f is constant. More precisely, if there exists z0 ∈ U such that

|f(z)| ≤ |f(z0)| for all z ∈ U , then f is constant.

Remark 5.3.13. One cannot swap “maximum” to “minimum” in The-

orem 5.3.125.3.12. E.g., z 7→ z is analytic in D(0, 1) and |z| reaches its minimum

at 0. However, if |f | has a minimum |f(z0)| > 0 in U , then f is constant.

This follows by applying Theorem 5.3.125.3.12 to 1/f .

Proof of Theorem 5.3.125.3.12. In order to show that (an analytic func-

tion) f is constant in the connected set U , it suffices to show that |f | is
constant in U – we observed this in Corollary 3.3.23.3.2. Assume that the point

z0 ∈ U exists, as in the hypothesis of the theorem, and let

M := |f(z0)| = max{|f(z)| : z ∈ U}.

It suffices to show that the set V := {z ∈ U : |f(z)| = M} is all of U .

We will first verify that V is open. Let z ∈ V , and let r0 > 0 be a

disc such that D̄(z, r0) ⊂ U . We claim that actually D(z, r0) ⊂ V . To see

this, fix r ∈ (0, r0) arbitrary, and apply the mean value principle (Theorem

5.3.115.3.11) as follows:

(5.3.8) M = |f(z)| =
∣∣∣∣ 12π

∫ 2π

0
f(z + reit) dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0
|f(z + reit)| dt.
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Here z + reit ∈ U for all t ∈ [0, 2π], so |f(z + reit)| ≤ M by assumption.

Since t 7→ |f(z + reit)| is continuous, (5.3.85.3.8) then forces |f(z + reit)| = M

for all t ∈ [0, 2π]. In other words ∂D(z, r) ⊂ V . But since r ∈ (0, r0) was

arbitrary, we have established that D(z, r0) ⊂ V , and thus V is open.

We then proceed with the proof that V = U . Let z ∈ U be arbitrary:

we claim that z ∈ U , that is, |f(z)| = M . Let γ : [0, 1]→ U be a path with

γ(0) = z0 and γ(1) = z. Note that |f(γ(0))| = M . Let

t0 := sup{t ∈ [0, 1] : |f(γ(t))| = M}.

The continuity of |f | ◦ γ implies |f(γ(t0))| = M . We claim that t0 = 1:

then |f(z)| = |f(γ(1))| = M , as desired. If this failed, and t0 < 1, then

by the openness of V and the continuity of γ, we could find an interval

I := (t0 − ϵ, t0 + ϵ) such that γ(t) ∈ V for all t ∈ I. In other words

|f(γ(t))| = M for all t ∈ I, which would evidently contradict the “sup”

definition of t0. Thus t0 = 1, and V = U . □

Corollary 5.3.14 (Maximum modulus principle II). Let U ⊂ C be a

open, connected, and bounded. If f : Ū → C is continuous and analytic in

U , then

(5.3.9) max
z∈Ū
|f(z)| = max

z∈∂U
|f(z)|.

Here ∂U refers to the boundary of U .

Proof. Since U is bounded and |f | : Ū → R is continuous, there exists

z0 ∈ Ū such that |f | attains its maximum at z0:

|f(z0)| = max
z∈Ū
|f(z)|.

This follows from Corollary 2.3.102.3.10. If z0 ∈ ∂U , we are done. Otherwise

z0 ∈ U . Then the hypotheses of Theorem 5.3.125.3.12 are satisfied, so f is constant

on U . By continuity f is also the same constant on Ū , so (5.3.95.3.9) is also valid

in this situation. □

Warning 5.3.15. The boundedness assumption on U is necessary. For

example, consider the open and connected (but unbounded) set U = {z ∈
C : Re(z) > 0}. Now, the analytic function z 7→ ez satisfies

|ez| = 1, z ∈ ∂U = {z ∈ C : Re(z) = 0},

but z 7→ |ez| is unbounded in U . There are, however, variants of Corollary

5.3.145.3.14 for unbounded domains, where a true statement is obtained by adding

hypotheses to the function f . Results of this type often go by the name

Phragmen-Lindelöf principle.

We finish by recording the following corollary of the maximum modulus

principle:
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Corollary 5.3.16 (Schwarz lemma). Assume that f : D := D(0, 1)→ C
is analytic, f(0) = 0, and |f(z)| ≤ 1 for all z ∈ D. Then,

|f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z ∈ D.

Moreover, if there exists z0 ∈ D \ {0} such that |f(z0)| = |z0|, then there

exists λ ∈ C such that |λ| = 1, and f(z) = λz for all z ∈ D.

Proof. Exercise. (Hint: Apply the maximum modulus principle to the

function g : D→ C defined by

g(z) :=

{
f(z)/z, z ̸= 0,

f ′(0), z = 0.

Start by explaining why g is analytic in D.) □
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