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Abstract. In this article we study the linearized anisotropic Calderón prob-
lem on a compact Riemannian manifold with boundary. This problem amounts
to showing that products of pairs of harmonic functions of the manifold form
a complete set. We assume that the manifold is transversally anisotropic and
that the transversal manifold is real analytic and satisfies a geometric condition
related to the geometry of pairs of intersecting geodesics. In this case, we solve
the linearized anisotropic Calderón problem. The geometric condition does not
involve the injectivity of the geodesic X-ray transform. Crucial ingredients in
the proof of our result are the construction of Gaussian beam quasimodes on
the transversal manifold, with exponentially small errors, as well as the FBI
transform characterization of the analytic wave front set.

1. Introduction and statement of results

The inverse conductivity problem posed by Calderón [4] asks to determine the
electrical conductivity of a medium from voltage and current measurements on
its boundary. This problem is the mathematical model of Electrical Impedance
(or Resistivity) Tomography, an imaging method with applications in seismic
and medical imaging. It is also one of the most fundamental models of inverse
boundary value problems for elliptic partial differential equations. For these
reasons both the theoretical and applied aspects of the Calderón problem have
been under intense study. We refer to the survey [42] for more information and
references.

In this article we are interested in the case where the electrical conductivity of
the medium is anisotropic, i.e. depends on direction. This can be modelled by a
matrix conductivity coefficient, or in geometric terms by having a resistivity co-
efficient given by a Riemannian metric g on a compact manifold M with smooth
boundary. There are many variants of this problem. One of them is the (geo-
metric) Calderón problem for a Schrödinger equation: given a known compact
Riemannian manifold (M, g) with smooth boundary and an unknown potential
q ∈ C∞(M), determine q from the knowledge of the Cauchy data on ∂M of
solutions of the Schrödinger equation

(−∆g + q)u = 0 in M.
1
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Here −∆g is the Laplace-Beltrami operator. This geometric Calderón problem is
solved in [18] when dim(M) = 2. The problem is open in general when dim(M) ≥
3 with only partial results available. In particular, the unique determination of
q was obtained in [41] in the Euclidean setting, in [22] for hyperbolic manifolds,
and in [31], [24] in the real analytic setting. Going beyond these settings, the
geometric Calderón problem was only solved in the case when (M, g) is CTA
(conformally transversally anisotropic, see Definition 1.1 below) and under the
assumption that the geodesic X-ray transform on the transversal manifold is
injective [8, 10].

The linearized version (at q = 0) of the above problem is also of interest, since
methods for the linearized problem often give insight to the original problem. In
our case, the linearized problem reduces to the following simple question asking
whether products of pairs of harmonic functions form a complete set in L1(M):

Question 1. Let (M, g) be a compact oriented Riemannian manifold with smooth
boundary. If f ∈ L∞(M) satisfies∫

M

fu1u2 dVg = 0

for all uj ∈ L2(M) with ∆guj = 0 in M , j = 1, 2, is it true that f ≡ 0?

The methods of [18, 8, 10] give a positive answer to Question 1 when dim(M) = 2,
or when dim(M) ≥ 3 and (M, g) is CTA with the transversal manifold having
injective geodesic X-ray transform. There have been recent attempts to improve
these results when dim(M) ≥ 3. In [17], it is proved that Question 1 has a
positive answer when (M, g) is a complex Kähler manifold with sufficiently many
holomorphic functions. The article [11] establishes a recovery of singularities
result: if (M, g) is transversally anisotropic and the transversal manifold satisfies
a certain geometric condition, one can recover transversal singularities of f . In a
related work [26], it is proved that on a general transversally anisotropic manifold
products of sets of four (instead of pairs) of harmonic functions form a complete
set in L1(M). See also [9], [39] for the linearized Calderón problem with partial
data in the Euclidean setting.

In this article we extend the result of [11] and show that if the transversal manifold
is additionally real-analytic, Question 1 has a positive answer (i.e. one can recover
f ∈ L∞(M) completely, not just some of its singularities).

Let us proceed to state our results. To that end, let us first recall the following
definitions, see [8], [10].

Definition 1.1. Let (M, g) be a smooth compact oriented Riemannian manifold
of dimension n ≥ 3 with smooth boundary ∂M .

(i) (M, g) is called transversally anisotropic if (M, g) ⊂⊂ (T, g) where T =
R ×M int

0 , g = e ⊕ g0, (R, e) is the Euclidean real line, and (M0, g0) is
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a smooth compact (n − 1)–dimensional manifold with smooth boundary,
called the transversal manifold.

(ii) (M, g) is called conformally transversally anisotropic (CTA) if (M, cg) is
transversally anisotropic, for some positive function c ∈ C∞(M).

Here and in what follows M int
0 = M0 \ ∂M0 stands for the interior of M0.

Let (M, g) be transversally anisotropic of dimension n ≥ 3 with a transver-
sal manifold (M0, g0). Next we need some definitions related to the transversal
manifold (M0, g0). Following [10], we say that a geodesic γ : [−T1, T2] → M0,
0 < T1, T2 < ∞, is nontangential if γ(−T1), γ(T2) ∈ ∂M0, γ(t) ∈ M int

0 for all
−T1 < t < T2, and γ̇(−T1), γ̇(T2) are nontangential vectors on ∂M0. Following
[11], we have the following definition.

Definition 1.2. We say that (x′0, ξ
′
0) ∈ S∗M int

0 is generated by an admissible pair
of geodesics, if there are two nontangential unit speed geodesics

γ1 : [−T1, T2]→M0, γ2 : [−S1, S2]→M0,

0 < T1, T2, S1, S2 <∞, such that

(i) γ1(0) = γ2(0) = x′0,
(ii) γ̇1(0) + γ̇2(0) = t0ξ

′
0, for some 0 < t0 < 2, where ξ′0 is understood as an

element of Tx0M
int
0 by the Riemannian duality,

(iii) γ1, γ2 do not have self-intersections at the point x′0, and x′0 is the only
point of their intersections, i.e.

γ1(t) = x′0 ⇔ t = 0, γ2(s) = x′0 ⇔ s = 0,

γ1(t) = γ2(s)⇒ γ1(t) = γ2(s) = x′0.

Let f ∈ L∞(M) and let us extend f ∈ L∞(M) by zero to (R×M0) \M . Writing
x = (x1, x

′) where x1 ∈ R, and x′ are local coordinates M0, we let

f̂(λ, x′) =

∫ ∞
−∞

e−iλx1f(x1, x
′) dx1, λ ∈ R,

be the Fourier transform of f with respect to x1. We have for each λ ∈ R that

f̂(λ, · ) ∈ L∞(M0) ∩ E ′(M int
0 ).

When X is a real analytic open manifold and u ∈ D′(X), we let WFa(u) ⊂
T ∗X \ {0} stand for the analytic wave front set of u, see [38, Definition 6.1], [21,
Sections 8.5, 9.3]. The set WFa(u) ⊂ T ∗X \ {0} is closed conic and we have

π(WFa(u)) = singsuppa(u),

where π : T ∗X → X, (x, ξ) 7→ x, is the natural projection and singsuppa(u) is
the analytic singular support of u, i.e. the smallest closed set such that u is real
analytic in the complement. In particular, WFa(u) = ∅ if and only if u is real
analytic on X.
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We have the following analytic microlocal result, which is an analog of Theorem
1.1 in [11], established in the C∞–case.

Theorem 1.3. Let (M, g) be a transversally anisotropic manifold of dimension
n ≥ 3 with transversal manifold (M0, g0), and assume that M int

0 and g0|M int
0

are

real analytic. Assume furthermore that f ∈ L∞(M) satisfies∫
M

fu1u2 dVg = 0, (1.1)

for all uj ∈ L2(M) with −∆guj = 0 in M int. Let (x′0, ξ
′
0) ∈ S∗M int

0 be generated
by an admissible pair of geodesics. Then for any λ ∈ R, one has

(x′0, ξ
′
0) /∈ WFa(f̂(λ, · )) ⊂ T ∗M int

0 \ {0}.

Theorem 1.3 implies the following global result, which gives a positive answer to
Question 1 under suitable geometric assumptions.

Theorem 1.4. Let (M, g) be a transversally anisotropic manifold of dimension
n ≥ 3 and assume that the transversal manifold (M0, g0) is connected, M int

0 as
well as g0 in M int

0 are real analytic. Assume that every point (x′0, ξ
′
0) ∈ S∗M int

0 is
generated by an admissible pair of geodesics. Moreover, assume that f ∈ L∞(M)
satisfies (1.1) for all uj ∈ L2(M) with −∆guj = 0 in M int. Then f = 0 in M .

Remark 1.5. Note that while (M int
0 , g0) is real analytic, Theorem 1.4 does not

follow from the existing results in the real analytic setting, as it corresponds to
deforming the zero potential by an L∞ perturbation.

Remark 1.6. In Theorems 1.3 and 1.4 while M int is real analytic, the boundary
∂M need not be real analytic.

As the following example shows, there exist transversally anisotropic manifolds
(M, g) with a transversal manifold (M0, g0) satisfying the geometric conditions of
Theorem 1.4 and with a non-invertible geodesic X-ray transform. Therefore, the
geometric Calderón problem is still open on such manifolds while our Theorem
1.4 gives a positive solution to the corresponding linearized problem.

Example 1.7. Let M0 = S1× [0, a], a > 0, be a cylinder with its usual flat metric
g0. The geodesics on M0 are straight lines, circular cross sections, and helices that
wind around the cylinder. The geodesic X-ray transform is not invertible, since
the kernel contains functions of the form f(eit, s) = h(s) where h ∈ C∞0 ((0, a))
integrates to zero over [0, a]. However, it is shown in Appendix A that every point
(x′0, ξ

′
0) ∈ S∗M int

0 is generated by an admissible pair of geodesics.

It is established in [11, Lemma 3.1] that if (M0, g0) satisfies the strict Stefanov–
Uhlmann regularity condition at (x′0, ξ

′
0) ∈ S∗M int

0 , which we now proceed to
recall, then (x′0, ξ

′
0) is generated by an admissible pair of geodesics.
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Definition 1.8. The transversal manifold (M0, g0) satisfies the strict Stefanov–
Uhlmann regularity condition at (x′0, ξ

′
0) ∈ S∗M int

0 if there exists η′ ∈ S∗x′0M
int
0 such

that g0(ξ′0, η
′) = 0 and such that the following holds: let γx′0,η′ : [−T1, T2] → M0,

0 < T1, T2 <∞, be the geodesic with γx′0,η′(0) = x′0, γ̇x′0,η′ = η′. We have

(i) γx′0,η′ is nontangential,
(ii) γx′0,η′ contains no points conjugate to x′0,

(iii) γx′0,η′ does not self-intersect for any time t ∈ [−T1, T2].

Hence, if a transversally anisotropic manifold (M, g) is such that the transversal
manifold (M0, g0) satisfies the strict Stefanov–Uhlmann regularity condition at
every point of S∗M int

0 with M int
0 and g0|M int

0
real analytic, and (M0, g0) is con-

nected, then Theorem 1.4 holds.

As the following examples demonstrate, there are transversally anisotropic man-
ifolds (M, g) with a transversal manifold (M0, g0) satisfying the geometric condi-
tion of Theorem 1.4, and with an invertible geodesic X-ray transform. Thus, for
such manifolds (M, g), Theorem 1.4 also follows from [8], [10].

Example 1.9. Let (M0, g0) be a simple manifold, i.e. a compact simply connected
manifold with strictly convex boundary so that no geodesic has conjugate points.
Then (M0, g0) satisfies the strict Stefanov–Uhlmann regularity condition at any
point of S∗M int

0 and thus also the geometric condition in Theorem 1.4. Note that
in this case (M, g) is admissible in the sense of [8], and Theorem 1.4 would also
follow from [8].

Example 1.10. Let S3 ⊂ R4 be the unit sphere and let µ be a geodesic arc
from the north pole to the south pole of the sphere. Let M0 be the closure of a
neighborhood of µ. It is established in [11] that the manifold M0 satisfies the strict
Stefanov–Uhlmann regularity condition at each point of S∗M int

0 . Notice also that
the manifold M0 contains conjugate points, so that it is not simple. However, the
geodesic X-ray transform on (M0, g0) is injective by [40], and Theorem 1.4 would
therefore also follow from [10].

Remark 1.11. We would like to remark that the strict Stefanov-Uhlmann con-
dition is not satisfied for (M0, g0) of Example 1.7 since for any (x′0, ξ

′
0) ∈ S∗M int

0

with ξ′0 pointing in the direction of the [0, a] factor, the orthogonal geodesics never
reach ∂M0.

The proof of Theorem 1.3 depends crucially on the construction of Gaussian
beam quasimodes along nontangential geodesics on M0, with exponentially small
errors, as stated in the following result. Before stating the result, let us recall
from [38, Chapter 1] the notion of a classical analytic symbol. Let V ⊂ Cn be
an open set. We say that a(x;h) =

∑∞
k=0 h

kak(x) is a (formal) classical analytic

symbol in V if ak ∈ Hol(V ), k = 0, 1, 2, . . . , and for every Ṽ ⊂⊂ V , there exists
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C = CṼ > 0 such that

|ak(x)| ≤ Ck+1kk, x ∈ Ṽ , (1.2)

k = 0, 1, 2, . . . . The classical analytic symbol a(x;h) is said to be elliptic if a0 6= 0.

We have the following essentially well known result, see [37] and [38], and see also
[1] for a sketch of the proof. Notice that here our quasimode construction is per-
formed along the entire geodesic segment contrary to the standard constructions
in a neighborhood of a point, see [7].

Theorem 1.12. Let (X, g) be a compact Riemannian manifold of dimension

n ≥ 2 with smooth boundary, contained in a real analytic open manifold (X̂, g)

of the same dimension with g real analytic in X̂. Let γ : [−T1, T2] → X, 0 <
T1, T2 < ∞, be a unit speed non-tangential geodesic in X, and let λ ∈ R. There
is a family of C∞ functions v(x;h) on X, 0 < h ≤ 1, and C > 0 such that
supp (v( · ;h)) is confined to a small neighborhood of γ([−T1, T2]) and

‖(−h2∆g − (hs)2)v‖L2(X) = O(e−
1
Ch ), ‖v‖L2(X) � 1, (1.3)

as h → 0. Here s = 1
h

+ iλ. The local structure of the family v(x;h) is as
follows: let p ∈ γ([−T1, T2]) and let t1 < · · · < tNp be the times in (−T1, T2)
when γ(tl) = p, l = 1, . . . , Np. In a sufficiently small neighborhood V of a point
p ∈ γ([−T1, T2]), we have

v|V = v(1) + · · ·+ v(Np),

where each v(l) has the form

v(l)(x;h) = h−
(n−1)

4 eisϕ
(l)(x)a(l)(x;h).

Here ϕ = ϕ(l) is real analytic in V satisfying for t near tl,

ϕ(γ(t)) = t, ∇ϕ(γ(t)) = γ̇(t), Im (∇2ϕ(γ(t))) ≥ 0, Im (∇2ϕ)|γ̇(t)⊥ > 0,
(1.4)

and a(l) is an elliptic classical analytic symbol in a complex neighborhood of p.

We have chosen to give a fairly complete proof of Theorem 1.12 since we are not
aware of a detailed treatment in the literature and since we need to have fairly
precise information concerning the quasimodes for our applications.

Let us briefly mention how the exponentially small error is achieved in Theorem
1.12. The proof of the theorem is by using the ansatz v(x;h) = eisϕ(x)a(x;h),
which, as usual, leads to solving the eikonal equation for the phase function ϕ(x)
and a transport equation for the amplitude a(x;h). We first find an exact analytic
solution for the eikonal equation near a geodesic segment of γ. Consequently,
the transport equation for the amplitude a(x;h) =

∑N
k=0 h

kak(x) has analytic
coefficients and we find a(x;h) as a classical analytic symbol. This involves
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adapting the nested neighborhood method of [38]. The error term for v being a
true eigenfunction then is

(−h2∆g − (hs)2)eisϕ
( N∑

j=0

hjaj

)
= hN+2T2(aN), (1.5)

where T2 is a second order operator with analytic coefficients. Cauchy estimates
and (1.2) then yield that the error term (1.5) is bounded by hN+2CN+1NN .
Letting the order N of the expansions of a depend on h as N = N(h) = [ 1

heC
]

gives the exponentially small error in the theorem.

The above was based on finding first an exact analytic solution to the eikonal
equation |dϕ|g = 1 near a geodesic segment of γ. To find such a solution, we view
the eikonal equation as the Hamilton-Jacobi equation,

p(x, ϕ′x(x)) = 0, (1.6)

where p(x, ξ) = |ξ|2g(x) − 1 is holomorphically continued to a complex domain.

When solving the Hamilton-Jacobi equation (1.6) we proceed by a geometric
argument of constructing a complex Lagrangian manifold,

Λ ⊂ p−1(0),

in a complex neighborhood of a segment of the graph of γ̇ ⊂ T ∗X, see [37]. The
solution ϕ is then obtained as a generating function of the Lagrangian Λ, which
parametrises Λ as

Λ = {(x, ϕ′x(x)}.
Extending the argument to a neighborhood of the geodesic segment of γ requires
some extra work involving positive Lagrangians.

Let us proceed to explain the main ideas in the proof of Theorem 1.3. Let
α0 = (x′0, ξ

′
0) ∈ S∗M int

0 be generated by an admissible pair of geodesics γ1(α0)
and γ2(α0) on M0. We first show that there exists a neighborhood of α0 in
S∗M int

0 such that every point α in the neighborhood is generated by an admissible
pair of geodesics γ1(α) and γ2(α) on M0. Next we construct two real analytic
families of Gaussian beams quasimodes v1(α) and v2(α) on M0, associated to
γ1(α) and γ2(α), respectively, with exponentially small errors. The fact that
(M, g) is transversally anisotropic provides us with the limiting Carleman weight
φ(x) = x1 for the Laplacian, and using the technique of Carleman estimates,
we convert the families of Gaussian beams v1(α) and v2(α) into two families of
harmonic functions on M with exponentially small remainder terms. Testing the
orthogonality relation (1.1) with the constructed families of harmonic functions

leads to the exponential decay of the FBI transform of f̂(λ, ·) in a neighborhood
of α0. Using the FBI characterization of the analytic wave front set, see [38], we
conclude the proof. Note that we need to work with families of Gaussian beams
to fill out the entire neighborhood of α0.
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Remark 1.13. Similarly to [11], Theorem 1.3 and Theorem 1.4 are established
for transversally anisotropic manifolds rather than CTA manifolds. The reason
for this is that the standard reduction

c
n+2
4 ◦ (−∆cg) ◦ c−

(n−2)
4 = −∆g + q, g = e⊕ g0,

leads to the potential

q = −c
n+2
4 ∆g(c

− (n−2)
4 ),

see [10], and therefore, to construct harmonic functions with exponentially small
remainder terms on a CTA manifold, one has to construct Gaussian beam quasi-
modes for the conjugated Schrödinger operator,

esx1(−h2∆g + h2q)e−sx1 ,

with exponentially small errors. If c is independent of x1 and real-analytic then
so is q, and this construction could be done as in Theorem 1.12. Notice also
that for this reason, one can also include a general real analytic potential which
is independent of x1 in the results of Theorem 1.12. However, if c depends on
x1 then the corresponding sequence of transport equations becomes of ∂̄-type, see
e.g. [12], [25], which complicates the analysis of Theorem 1.12 further and and is
therefore not developed here.

Let us mention that Gaussian beam quasimode constructions have a long tradi-
tion in microlocal analysis, see [2], [34], [35], with applications in the analysis of
eigenfunctions, see [43], and inverse problems, see [33] and the references given
there.

Finally, let us point out certain related results on a standard geometric version of
the Calderón problem, which asks to determine a metric g up to natural gauges (a
boundary-fixing diffeomorphism, and also a conformal factor when dim(M) = 2)
from the knowledge of Cauchy data on ∂M of solutions of the equation −∆gu = 0
inM . This problem was solved in [29] when dim(M) = 2, but for dim(M) ≥ 3 it is
only known under additional conditions such as the manifold being real-analytic,
see [31, 29, 28], or Einstein [16]. Alternative proofs are given in [3, 27]. Interesting
counterexamples in the case of measurements on disjoint sets or low regularity
coefficients are given in [5, 6]. If one allows degenerate coefficients, there are other
counterexamples [28, 14]. Counterexamples with degenerate coefficients form the
basis of invisibility cloaking, see e.g. [42].

The paper is organized as follows. Section 2 is devoted to the construction of ex-
ponentially accurate Gaussian beam quasimodes and the proof of Theorem 1.12.
Section 3 contains some results concerning properties of geodesics needed in the
proof of Theorem 1.3. Section 4 extends Theorem 1.12 to produce analytic fam-
ilies of exponentially accurate Gaussian beam quasimodes. The construction of
families of harmonic functions based on Gaussian beam quasimodes is presented
in Section 5. Section 6 contains some facts about analytic wave front sets and the
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proofs of Theorem 1.3 and Theorem 1.4. The admissibility property of geodesics
in Example 1.7 is verified in Appendix A.
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2. Exponentially accurate quasimodes. Proof of Theorem 1.12

Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth

boundary, contained in a larger real analytic open manifold (X̂, g) of the same

dimension with g real analytic in X̂. We extend γ as a unit speed geodesic in

X̂. Let ε > 0 be such that γ(t) ∈ X̂ \ X and γ(t) has no self-intersection for
t ∈ [−T1 − 2ε,−T1) ∪ (T2, T2 + 2ε]. This choice of ε is possible since γ is non-
tangential. First it follows from [23, Lemma 7.2] that γ|[−T1−ε,T2+ε] self-intersects
only at finitely many times tj with

−T1 < t1 < · · · < tN < T2.

We also set t0 := −T1 − ε and tN+1 := T2 + ε. An application of [10, Lemma
3.5] shows that there exists an open cover {(Uj, κj)}N+1

j=0 of γ([−T1 − ε, T2 + ε])
consisting of coordinate neighborhoods Uj and real analytic diffeomorphisms κj
having the following properties:

(i) κj(Uj) = Ij ×B, where Ij are open intervals and B = B(0, δ′) is an open
ball in Rn−1. Here δ′ > 0 can be taken arbitrarily small and the same for
each Uj,

(ii) κj(γ(t)) = (t, 0) for each t ∈ Ij,
(iii) tj only belongs to Ij and Ij ∩ Ik = ∅ unless |j − k| ≤ 1,
(iv) κj = κk on κ−1

j ((Ij ∩ Ik)×B).

The corresponding local coordinates κj(x) = (t, y) ∈ Uj are called the Fermi
coordinates. Here we note that Lemma 3.5 in [10] is established in the C∞ case,
and the real analyticity of the Fermi diffeomorphisms κj is obtained by inspection

of the proof of Lemma 3.5 in [10], in view of the analyticity of X̂. As observed in
the proof of [10, Lemma 3.5], in the case when γ does not self-intersect, there are
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Fermi coordinates on a single coordinate neighborhood of γ|[−T1−ε,T2+ε] so that
(i) and (ii) are satisfied. These coordinates are given by inverting the map

(t, y) 7→ expγ(t)

( n−1∑
k=1

ykek(t)
)
∈ X̂.

Here ek(t) are the parallel transportations of the last n−1 vectors of an orthonor-
mal frame {γ̇|t=−T1 , e1, . . . , en−1} ⊂ Tγ(−T1)M and exp is the exponential map of

(X̂, g).

Our goal is to construct exponentially accurate Gaussian beam quasimodes near
γ([−T1 − ε, T2 + ε]). We shall start by carrying out the quasimode construction
in a fixed coordinate neighborhood U = Uj which we can identify with the set
I ×B, where I ⊂ R is an open interval and B = B(0, δ′) is an open ball in Rn−1

with δ′ > 0. Without loss of generality, we assume that 0 ∈ I. The geodesic γ in
the open set U is given by Γ = {x = (t, y) ∈ I ×B : y = 0}.
Let us consider the following Gaussian beam ansatz,

v(t, y;h) = eisϕ(t,y)a(t, y;h), s =
1

h
+ iλ, λ ∈ R, (2.1)

where the phase ϕ is complex valued with Imϕ(t, y) ≥ 0 and a is an amplitude.
We shall proceed to construct the quasimode v so that the phase ϕ satisfies (1.4)
and the amplitude a is an elliptic classical analytic symbol.

2.1. Construction of the phase function ϕ. We shall proceed using the classi-
cal arguments, solving the Hamilton-Jacobi equation in the complex domain and
making crucial use of the geometry of positive complex Lagrangians, see [37].
Let us remark here that while we only need the good properties of the phase in
the real domain, specifically along the geodesic γ, since the phase function takes
complex values, the Hamilton-Jacobi equation holds naturally for the holomor-
phic extensions in the complex domain. From the geometric point of view, the
complex Lagrangian manifold naturally associated to the phase function ϕ is not
confined to the real domain but is a submanifold of the complexified phase space.

First we have

e−isϕ(−h2∆g − (hs)2)eisϕa = −h2∆ga− ih(1 + iλh)[2〈dϕ, da〉g + (∆gϕ)a]

+(1 + iλh)2[〈dϕ, dϕ〉g − 1]a.
(2.2)

In the usual Gaussian beam construction in the C∞–setting, one solves the eikonal
equation to a large, and sometimes infinite, order along the geodesic, see [33], [2],
[34], [35]. Working in the present real analytic setting, it will be natural to solve
the eikonal equation

〈dϕ, dϕ〉g − 1 = p(x, ϕ′x(x)) = 0 (2.3)
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in a full neighborhood of the geodesic. Here

p(x, ξ) = |ξ|2g − 1 = G(x)ξ · ξ − 1 (2.4)

is the semiclassical principal symbol of the operator P = −h2∆g − (hs)2, where
G(x) = (gjk(x)). Since the metric g is real analytic, p(x, ξ) extends to a holo-

morphic function in an open set of the form Ũ × Cn, where

Ũ ⊂ Cn

is a complex neighborhood of U .

Let (x(t), ξ(t)) = exp( t
2
Hp)(0, ξ0) be the integral curve of the Hamiltonian Hp in

T ∗X, which corresponds to the unit speed geodesic γ, so that

πx

(
exp

(
t

2
Hp

)
(0, ξ0)

)
= γ(t), t ∈ I ⊂ R,

where πx(x, ξ) = x, and ξ0 = γ̇(0). Here γ̇(0) is viewed as a cotangent vector
using the Riemannian duality. Since (0, ξ0) ∈ p−1(0)∩(U×Rn), we therefore have
(x(t), ξ(t)) ∈ p−1(0) ∩ (U × Rn) for all t ∈ I. We have explicitly the Hamilton’s
equations 

ẋ(t) = 1
2
∂ξp(x(t), ξ(t)),

ξ̇(t) = −1
2
∂xp(x(t), ξ(t)),

x(0) = 0,

ξ(0) = ξ0.

(2.5)

Recalling that x = (t, y) ∈ U and writing ξ = (τ, η) ∈ T ∗xX for the dual variable,
we see from (2.5) that

∂τp(x(t), ξ(t)) 6= 0 for all t ∈ I, (2.6)

since the t component of ẋ(t) is identically 1 in the (t, y) coordinates.

We look for a real analytic solution ϕ of (2.3) in U such that

Imϕ(t, y) ≥ 0, Imϕ(t, 0) = 0, Imϕ′′yy(t, 0) > 0, t ∈ I, (2.7)

and therefore,

Imϕ(t, y) ∼ |y|2 = dist((t, y),Γ)2, (t, y) ∈ U.

We will find the required real analytic solution of (2.3) as the restriction to

U ⊂ Rn of a holomorphic function ϕ in Ũ ⊂ Cn, solving the following Cauchy
problem for the Hamilton-Jacobi equation in the complex domain,

p(x, ϕ′x(x)) = 0, x = (t, y) ∈ Ũ ,
ϕ(0, y) = ψ(y),

ϕ′x(0) = ξ0.

(2.8)
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Here we take ψ to be a holomorphic function near 0 ∈ Cn−1 such that

Imψ′′yy(0) > 0, (2.9)

ψ(0) is real, and so that the compatibility condition ψ′y(0) = η0 in (2.8) holds, with

ξ0 = (τ0, η0) ∈ R×Rn−1. Note that p, ϕ and ψ are holomorphic in their variables.
For a holomorphic function f(z1, . . . , zN) in an open set V ⊂ CN we write f ′z(z) =
(∂z1f(z), . . . , ∂zNf(z)) for the complex gradient, f ′′zz(z) = (∂zjzkf(z))Nj,k=1 for the
complex Hessian, etc. If zj = xj + iyj, holomorphicity implies that ∂αz f(z) =
∂αx f(z) for any multi-index α. This shows that a holomorphic solution ϕ of (2.8)

in Ũ ⊂ Cn indeed yields a real analytic solution of (2.3) in U .

Remark. Let us note that [15, Theorem 5.5] gives the standard Hamilton-Jacobi
theory locally near a point in the smooth case, and the extension of this theory to
the holomorphic case is discussed in the remark following Theorem 1.8.2 in [19].
However here we need to construct the phase ϕ enjoying the good properties along
the entire geodesic segment, and therefore, we shall give a detailed discussion of
the construction below. The condition (2.9) will be crucial for this purpose.

Step 1. Solving near a point. In order to solve (2.8), we start by following the
proof of [15, Theorem 5.5], see also [37]. The setting of our proof is illustrated
in Figure 1 below. To this end, we observe first that in view of (2.6), by the

Figure 1. A Lagrangian submanifold Λ ⊂ T ∗XC satisfying
p(Λ) = 0 is the union of the red integral curves of Hp in T ∗XC

passing through Λ′ ⊂ T ∗XC, which is represented by the black ar-
rows. Here T ∗XC is the cotangent bundle of the complexification
of X, which is locally Cn

x × Cn
ξ .



LINEARIZED CALDERÓN PROBLEM 13

implicit function theorem applied to p(0, · , · , · ), in a complex neighborhood of
(0, 0, τ0, η0) we have p(0, y, τ, η) = 0 if and only if τ = λ(y, η) where λ is a
holomorphic function near (0, η0) ∈ C2(n−1) such that λ(0, η0) = τ0.

Let us define

Λ′ := {(0, y, τ, η) : η = ψ′y(y), τ = λ(y, η), y ∈ neigh(0,Cn−1)} ⊂ C2n.

We have that Λ′ is a complex manifold of complex dimension n− 1 such that

Λ′ ⊂ p−1(0),

which is isotropic in the sense that the restriction of σ to TΛ′ × TΛ′ vanishes:

σ|Λ′ = 0. (2.10)

Here σ =
∑n

j=1 dξj ∧ dxj is the complex symplectic form on C2n = Cn
x × Cn

ξ .

Indeed, any vector tangent to Λ′ is of the form (0, V y, V τ , V η) with V η = ψ′′yyV
y

and V y ∈ Cn−1. Applying σ to two such vectors gives V y
1 ·ψ′′yyV

y
2 −V

y
2 ·ψ′′yyV

y
1 = 0,

showing (2.10).

Note also that
Λ′ ∩ R2n = {(0, 0, τ0, η0)}. (2.11)

Indeed, (0, 0, τ0, η0) ∈ Λ′ ∩ R2n as (τ0, η0) ∈ Rn and ψ′y(0) = η0. To see the

opposite inclusion, let (0, y, λ(y, η), η = ψ′(y)) ∈ Λ′ ∩ R2n and Taylor expand
ψ′(y) at y = 0,

η = ψ′(y) = η0 + ψ′′(0)y +O(|y|2), y ∈ Rn−1.

We have Im η = Imψ′′(0)y + O(|y|2), and therefore, in view of (2.9), Im η = 0
implies that y = 0. This shows (2.11).

Let Hp be the complex Hamilton vector field of p, and let us consider the Hp

flowout of Λ′:

Λ =

{
exp

(
t

2
Hp

)
(ρ) : ρ ∈ Λ′, t ∈ neigh(I,C)

}
⊂ C2n.

Here if µ =
∑N

j=1 aj(z)∂zj is a holomorphic vector field on an open set V ⊂ CN

in the sense that aj ∈ Hol(V ), j = 1, . . . , n, we can define the flow exp(tµ)(ρ),
ρ ∈ V , locally for t ∈ neigh(0,C), by solving the system of ODE,{

żj(t) = aj(z(t)), 1 ≤ j ≤ n,

z(0) = ρ,

see [13, Section 1] and the references given there.

Then Λ′ ⊂ Λ, and since the flow of Hp preserves p, we have

Λ ⊂ p−1(0),

and Λ is a C–Lagrangian submanifold of C2n, see [15, Proposition 5.4] for a proof
in the real case. The proof in the present holomorphic setting is similar. Let us
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also recall from [15, page 60] that the holomorphic Hamilton vector field Hp is
tangent to Λ at each point of Λ. This is because Λ is a Lagrangian contained in
p−1(0).

The differential of πx|Λ is bijective at (0, 0, τ0, η0) since the differential of πx
is injective and since any Lagrangian submanifold has dimension dim(X). (The
differential of πx|Λ is injective since the differential of the exponential map TX →
X is injective.) Consequently, there is a function ϕ ∈ Hol(neigh(0,Cn)) such that

Λ = Λϕ := {(x, ϕ′x(x)) : x ∈ neigh(0,Cn)}, (2.12)

see [32, Section 5.6, Exercise 4], and also [15, Theorem 5.3] for the real version of
this result. We have ϕ′x(0) = ξ0 and modifying ϕ by a constant we get ϕ(0, y) =
ψ(y), and such a solution is unique.

Step 2. Solving near γ. Let us denote the tangent space of Λ at (0, 0, τ0, η0)
by Λ0 and write

Λ0 := T(0,0,τ0,η0)Λ = {(δx, δξ) ∈ Cn × Cn : δξ = ϕ′′xx(0)δx}, (2.13)

where in the second equality we used (2.12).

We claim that Λ0 is a positive Lagrangian plane in the sense that

1

i
σ(ρ, ρ) ≥ 0, ρ ∈ Λ0.

To this end, letting M0 = ϕ′′xx(0) and using (2.13), we write ρ = (δx,M0δx) ∈ Λ0.
Then using that M0 is symmetric, we get

1

i
σ(ρ, ρ) =

1

i
(M0δx · δx −M0δx · δx) = 2Im (M0δx · δx)

= 2Im (M0)Re δx · Re δx + 2Im (M0)Imδx · Imδx,
(2.14)

and therefore, it suffices to prove that

ImM0 ≥ 0. (2.15)

In doing so, using (2.8), we write

M0 =

(
ϕ′′tt(0, 0) ϕ′′ty(0, 0)
ϕ′′yt(0, 0) ψ′′yy(0)

)
. (2.16)

Using that Hp is tangent to Λϕ, we see that exp( t
2
Hp)(0, ξ0) = (x(t), ϕ′x(x(t))) is

real for t ∈ neigh(0,R), so that ϕ′t(t, 0), ϕ′y(t, 0) are real. Hence,

ImM0 =

(
0 0
0 Imψ′′yy(0)

)
, (2.17)

and therefore, by the condition Imψ′′yy(0) > 0 we imposed on ψ in (2.9), (2.15)
follows.

For future reference, let us remark that

Λ0 ∩ R2n = RHp(0, ξ0), (2.18)
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where RHp(0, ξ0) = {sHp(0, ξ0) : s ∈ R}. Indeed, we have Hp(0, ξ0) ∈ Λ0 ∩ R2n

since the Hp vector field is tangent to Λ. On the other hand, if (δx,M0δx) ∈
Λ0 ∩ R2n, it follows from (2.17) that

δx = (δt, 0) = δtẋ(0) = δtp
′
ξ(0, ξ0),

where δt ∈ R. Here in the second equality we used that (t, 0) corresponds to the
geodesic in Fermi coordinates. We get (δx,M0δx) = δt(p

′
ξ(0, ξ0),M0p

′
ξ(0, ξ0)) =

δtHp((0, ξ0)), which shows (2.18). Here in the last equality we used Hp(0, ξ0) ∈ Λ0.

Let

κ(t) := exp

(
t

2
Hp

)
: Λ→ Λ, t ∈ I ⊂ R,

and therefore, the differential satisfies

dκ(t)(0, ξ0) : Λ0 → Tκ(t)(0,ξ0)Λ.

As the canonical transformation κ(t) is real for each t ∈ I, dκ(t)(0, ξ0) preserves
positivity, see [32, Section 5.6, Exercise 8], and therefore,

Λt := Tκ(t)(0,ξ0)Λ ⊂ C2n

is a positive Lagrangian plane, for all t ∈ I.

We claim that Λt is transversal to the fiber F = {(0, η) : η ∈ Cn} ⊂ C2n, for all
t ∈ I, i.e. Λt + F = C2n. As dim Λt = n, we have to show that Λt ∩ F = {0}.
Indeed, let (0, η) ∈ Λt ∩ F . Then (2.13) implies that(

0
η

)
= dκ(t)(0, ξ0)

(
δx

M0δx

)
, (2.19)

for some δx ∈ Cn. We have

0 =
1

i
σ

((
0
η

)
,

(
0
η

))
=

1

i
σ

(
dκ(t)(0, ξ0)

(
δx

M0δx

)
, dκ(t)(0, ξ0)

(
δx

M0δx

))
=

1

i
σ

((
δx

M0δx

)
,

(
δx

M0δx

))
= 2Im (M0δx · δx).

As ImM0 ≥ 0, we get (ImM0)δx = 0, and therefore, (2.17) implies that δx =
αp′ξ(0, ξ0) for some α ∈ C. Thus, by (2.19) we obtain that(

0
η

)
= dκ(t)(0, ξ0)(αHp(0, ξ0)) = αHp(x(t), ξ(t)) = α

(
ẋ(t)

ξ̇(t)

)
.

Since ẋ(t) 6= 0, we get α = 0. Hence,

η = 0,

which establishes the claim.

As Λt is transversal to the fiber for all t ∈ I, by inspection of the proof of Theorem
5.5 in [15], we conclude that there exists ϕ ∈ Hol(neigh(I × B,Cn)) such that
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Λ = Λϕ and ϕ solves (2.8). The function ϕ is a continuation of the one appearing
in (2.12). Notice that it is precisely thanks to the fact that the tangent plane Λt

does not contain any non-zero vector of the form (0, η) for all t ∈ I that the proof
of Theorem 5.5 in [15] applies near each point in I × {0}, see also [21, Section
24.2].

Step 3. Properties of the solution. Next we shall check that the property
(2.7), that is

Imϕ(t, y) ≥ 0, Imϕ(t, 0) = 0, Imϕ′′yy(t, 0) > 0, t ∈ I,

holds for ϕ. First, ϕ′x(x(t)) = ξ(t) is real for t ∈ I. Writing

d

dt
ϕ(x(t)) = ϕ′x(x(t)) · ẋ(t) = ξ(t) · 1

2
p′ξ(x(t), ξ(t)),

we have

ϕ(t, 0) = ψ(0) +
1

2

∫ t

0

ξ(s) · p′ξ(x(s), ξ(s))ds = ψ(0) + t, (2.20)

as ξ · p′ξ(x, ξ) = 2(p(x, ξ) + 1). Thus, using that ψ(0) is real, we see that
Imϕ(t, 0) = 0 for t ∈ I. Furthermore, if ψ(0) = 0, we get ϕ(t, 0) = t.

Let M(t) = ϕ′′xx(x(t)). Then M(t) is an n × n complex symmetric matrix de-
pending real analytically on t, such that

ImM(t) ≥ 0, (2.21)

in view of the positivity of Λt. We claim that

ImM(t)|W > 0, (2.22)

where W ⊂ Rn is an algebraic supplement to Rẋ(t) so that Rẋ(t)⊕W = Rn. To
that end, let us observe first that

Λt ∩ R2n = dκ(t)(0, ξ0)(Λ0 ∩ R2n) = dκ(t)(0, ξ0)(RHp(0, ξ0)) = RHp(x(t), ξ(t)).

Here we have used (2.18) in the second equality. Let v ∈ W be such that

ImM(t)v · v = 0.

Hence, by (2.21), we get

ImM(t)v = 0.

Thus, (v,M(t)v) ∈ Λt∩R2n = RHp(x(t), ξ(t)), and therefore, v is proportional to
p′ξ(x(t), ξ(t)) = ẋ(t). This gives that v = 0, since v ∈ W . Hence, (2.22) follows,
and we get Imϕ′′yy(t, 0) > 0 for all t ∈ I.

Finally, we get Imϕ(t, y) ≥ 0 for all (t, y) ∈ U by Taylor’s formula and by using
that ϕ′x(x(t)) = ξ(t) is real. We have therefore constructed a real analytic solution
ϕ of (2.3) such that (2.7) holds.
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2.2. Construction of the amplitude. We shall follow [38, Theorem 9.3], where
the construction of the amplitude as a classical analytic symbol is carried out in
a neighborhood of a point, extending the construction to a full neighborhood of
a geodesic segment.

We look for the amplitude a in the form of a formal power series in h,

a(x;h) =
∞∑
k=0

hkak(x). (2.23)

From (2.2), we see that we want to solve the following equation formally in powers
of h,

e−isϕ(−h2∆g − (hs)2)eisϕa = [−hiL0 − ih∆gϕ+ h2(−∆g + λL0 + λ∆gϕ)]a = 0,
(2.24)

in a fixed complex domain Ũ , containing Γ. Here

L0 = 2〈dϕ, d · 〉g = 2G(x)ϕ′x · ∂x = p′ξ(x, ϕ
′
x(x)) · ∂x, (2.25)

where p is given in (2.4). The transport equation (2.24) can be written in the
following form,

(hL0 + hf(x) + h2Q(x,Dx))a = 0, (2.26)

where f(x) = ∆gϕ is a holomorphic function on Ũ and Q(x,Dx) = i(−∆g +
λL0 +λ∆gϕ) is a holomorphic differential operator of order 2. To solve (2.26), we
remark first that the holomorphic vector field L0 is transversal to each complex
hypersurface Ht0 = {(t, y) ∈ neigh(I,C)× neigh(0,Cn−1) : t = t0 ∈ I} at (t0, 0).
Indeed,

p′ξ(x(t), ϕ′x(x(t))) · ∂x = p′τ (x(t), ϕ′x(x(t)))∂t + p′η(x(t), ϕ′x(x(t))) · ∂y,

where p′τ (x(t), ϕ′x(x(t))) 6= 0 for all t ∈ I since ∂τp(x(t), ξ(t)) 6= 0 for all t ∈ I
as noted in (2.6). Thus, substituting (2.23) into (2.26), we get a sequence of
transport equations which can all be solved uniquely in a suitable complex domain
containing Γ, provided that a|Ht0 is prescribed, for some t0 ∈ I. However, the
difficulty here is that we would like our solution a(x;h) to be a classical analytic
symbol, and following [38, Section 9], we shall establish this fact making use
of the method of ”nested neighborhoods” introduced in [38]. Contrary to [38,
Theorem 9.3], where the family of ”nested neighborhoods” is considered near a
point, here we shall work in such neighborhoods near a piece of the geodesic.

For simplicity, let us take t0 = 0. We look for solution to (2.26) by using conve-
nient coordinates. The coordinates we will use are the usual flowout coordinates
(see e.g. [30]), which we show to exist for L0 on a neighborhood of a given interval.

Lemma 2.1. Let J ⊂⊂ I be an open interval. There exist local holomorphic
coordinates (s, z) ∈ neigh(J,C) × neigh(0,Cn−1) such that the hyperplane H0 is
given by the equation s = 0 and L0 = ∂

∂s
.
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Proof. We continue to work in the Fermi coordinates x = (t, y) and recall from
[23] that

G(t, y) = (gjk(t, y)) = 1 +O(|y|2). (2.27)

Now (2.3), (2.4), and (2.27) imply that

(ϕ′t)
2(t, 0) + (ϕ′y)

2(t, 0) = 1, (2.28)

and therefore, it follows from (2.20) and (2.28) that ϕ′y(t, 0) = 0. Hence, Taylor
expanding ϕ(t, y) at y = 0, we get

ϕ(t, y) = ψ(0) + t+O(|y|2). (2.29)

It follows from (2.25), (2.27), and (2.29) that

L0 = 2(1+O(|y|2))

(
1 +O(|y|2)
O(|y|)

)
·
(
∂t
∂y

)
= 2(1+O(|y|2))∂t+O(|y|) ·∂y. (2.30)

Consider the initial value problem for the flow exp(sL0)(0, z),{
∂s(t, y)(s, z) = L0((t, y)(s, z)),

(t, y)(0, z) = (0, z),
(2.31)

where (s, z) ∈ neigh(I,C) × neigh(0,Cn−1) . In particular, y(s, z)|z=0 = 0 and
therefore, y(s, z) = O(|z|). Differentiating the first equation in (2.31) in zj and
using (2.30), we get{

∂s(∂zj t(s, z)) = O(y(s, z)∂zjy) = O(|z|),
∂zj t(0, z) = 0.

(2.32)

Hence,

∂zj t(s, z) = O(|z|). (2.33)

Consider the holomorphic map

F : neigh(I,C)× neigh(0,Cn−1) 3 (s, z) 7→ (t, y)(s, z).

In view of (2.33), the differential DF (s, 0) is given by

DF (s, 0) =


t′s(s, 0) 0 . . . 0
y′1s(s, 0) y′1z1(s, 0) . . . y′1zn−1

(s, 0)
...

...
...

y′n−1s(s, 0) y′n−1z1
(s, 0) . . . y′n−1zn−1

(s, 0)

 , (2.34)

where t′s(s, 0) = 2(1+O(|y(s, 0)|2)) = 2. By Liouville’s formula, see [20, Theorem
1.2.5], we know that the last n−1 columns in (2.34) are linearly independent, and
therefore, det(DF (s, 0)) 6= 0 for all s ∈ neigh(I,C). Furthermore, F |I×{0} is in-
jective as F (s, 0) = (t(s, 0), 0) = (2s, 0). An application of a holomorphic version
of [23, Lemma 7.3] allows us to conclude that F is a holomorphic diffeomorphism
in neigh(J,C)× neigh(0,Cn−1) where J ⊂⊂ I is an open interval.
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Now writing x = (t, y), in view of (2.31), we see that

∂

∂s
u(x(s, y)) = u′x(x(s, y)) · ẋ(s, y) = (L0u)(x(s, y)).

Finally, it follows from (2.30) and (2.31) that{
∂st(s, z) = 2(1 +O(|z|2)),

t(0, z) = 0,

and therefore, t(s, z) = 2s+O(|z|2)s. Hence, t = 0 is equivalent to the fact that
s = 0, showing that the hyperplane H0 is given by the equation s = 0. �

Passing to the new holomorphic coordinates provided by Lemma 2.1, and renam-
ing them as x = (t, y), we are led from (2.26) to consider the following initial
value problem, {(

h ∂
∂t

+ hf(x) + h2Q(x,Dx)
)
a = 0,

a|t=0 = w(y;h),
(2.35)

where w(y;h) is a classical analytic symbol near 0 ∈ Cn−1. We would like to find
a classical analytic symbol a solving (2.35). Here f is a holomorphic function,
and Q is a holomorphic differential operator of order 2. To that end, it suffices
to solve the following problem,{(

h ∂
∂t

+ hf(x) + h2Q(x,Dx)
)
a = hv,

a|t=0 = 0,
(2.36)

where v(x;h) is a classical analytic symbol in neigh(J,C)×neigh(0,Cn−1). This is
because a solution a to (2.36) with v = −( ∂

∂t
+f(x)+hQ(x,Dx))v0 and v0|t=0 = w,

implies that a+ v0 solves (2.35). Using that

∂t + f(t, y) = e−F (t,y) ◦ ∂t ◦ eF (t,y),

where F ′t(t, y) = f(t, y), we may assume that f(x) = 0.

We shall first carry out the analysis of (2.36) under the assumption that the
interval J is symmetric about the origin and after a rescaling we may assume
that J = [−1, 1]. Let Ω ⊂ Cn be open such that [−1, 1]t × {0}y ⊂ Ω and Ω is in
the domain of definition of various symbols. Then let 0 < ε < 1, r > 0 be small
but fixed so that if we set

Ω0 =
{

(t, y) ∈ Cn :
|y|
ε

+
|Im t|
ε

+ |Re t| < 1 + r
}

then Ω0 ⊂ Ω. Consider the family of open sets,

Ωs =
{

(t, y) ∈ Cn :
|y|
ε

+
|Im t|
ε

+ |Re t| < 1 + r − s
}
,
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with 0 ≤ s < r. Note that Ωs is a family of ”nested neighborhoods” of [−1, 1]×0
in the sense of [38, Theorem 9.3], so that we have

(i) if s1 > s2 then Ωs1 ⊂ Ωs2 ,
(ii) there exists δ > 0 such that for all s1 > s2 and all x ∈ Ωs1 we have the

inclusion BCn(x, δ(s1 − s2)) ⊂ Ωs2 .

Given µ > 0, we say that a ∈ Aµ, if a(x;h) =
∑∞

k=0 ak(x)hk, a is holomorphic in
Ω, such that for all s ∈ (0, r),

sup
Ωs

|ak| ≤
f(a, k)

sk
kk, (2.37)

where f(a, k) is the best constant for which (2.37) holds, and

∞∑
k=0

f(a, k)µk := ‖a‖µ <∞. (2.38)

Now if a ∈ Aµ for some µ > 0 then f(a, k) ≤ Ck+1, k = 0, 1, 2, . . . , and therefore,
a is a classical analytic symbol on Ω0. Let

(∂−1
t a)(t, y) =

∫ t

0

a(τ, y)dτ. (2.39)

We shall need the following result, see [38, Theorem 9.3] and [36, Lemma 5.5].

Lemma 2.2. Let a ∈ Aµ be of the form

a =
∞∑
k=2

hkak,

and let b = (h∂t)
−1a. Then

‖b‖µ ≤ O
(

1

µ

)
‖a‖µ. (2.40)

Proof. We have

b =
∞∑
k=2

hk−1∂−1
t ak =

∞∑
k=1

hkbk,

where bk = ∂−1
t ak+1. Let us estimate supΩs |bk|. To that end, we write

bk(x) = t

∫ 1

0

ak+1(σt, y)dσ

We claim that for 0 ≤ σ ≤ 1, if x = (t, y) ∈ Ωs then

(σt, y) ∈ Ωs+(1−σ)|t|. (2.41)
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Indeed, using that 0 < ε < 1, we get

|y|
ε

+
σ|Im t|
ε

+ σ|Re t| < 1 + r − s− (1− σ)

ε
|Im t| − (1− σ)|Re t|

< 1 + r − (s+ (1− σ)|t|),

showing (σt, y) ∈ Ωs+(1−σ)|t| as claimed. It follows from (2.37), (2.41) that for
x ∈ Ωs, we have

|bk(x)| ≤ |t|f(a, k + 1)(k + 1)k+1

∫ 1

0

dσ

(s+ (1− σ)|t|)k+1

= f(a, k + 1)(k + 1)k+1|t|
∫ 1

0

dσ

(s+ σ|t|)k+1

= f(a, k + 1)(k + 1)k+1

∫ |t|
0

dσ

(s+ σ)k+1

≤ f(a, k + 1)(k + 1)k+1

∫ ∞
0

dσ

(s+ σ)k+1
= f(a, k + 1)(k + 1)k+1

∫ ∞
s

dσ

σk+1

= f(a, k + 1)
(k + 1)k+1

ksk
.

Here we have used that k ≥ 1. Thus, for any 0 < s < r, we get

sup
Ωs

|bk| ≤ f(a, k + 1)
(1 + 1/k)kk(1 + 1/k)k

sk
≤ 2ef(a, k + 1)

sk
kk,

and therefore by the definition of f(b, k), see (2.37), we have

f(b, k) ≤ 2ef(a, k + 1), k = 1, 2, . . . .

Using (2.38), we obtain that

‖b‖µ =
∞∑
k=1

f(b, k)µk ≤
∞∑
k=1

2ef(a, k + 1)µk =
2e

µ
‖a‖µ,

establishing (2.40). �

Now applying to (h∂t)
−1 to (2.36), we get

a+ (h∂t)
−1h2Q(x,Dx)a = ∂−1

t v. (2.42)

Here ∂−1
t v is a classical analytic symbol in Ω0. To proceed, we need the following

result.

Lemma 2.3. Let a ∈ Aµ. Then (h∂t)
−1h2Q(x,Dx)a ∈ Aµ with

‖(h∂t)−1h2Q(x,Dx)a‖µ ≤ O(µ)‖a‖µ (2.43)
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Proof. Writing a(x) =
∑∞

k=0 ak(x)hk, we get

h2Q(x,Dx)a =
∞∑
k=2

hkQ(x,Dx)ak−2.

For s1 > s2, in view of the property (ii) of the ”nested neighborhoods” Ωs, and
(2.37), we obtain for k = 2, 3, . . . that

sup
Ωs1

|Q(x,Dx)ak−2| ≤
C

(s1 − s2)2
sup
Ωs2

|ak−2| ≤
C

(s1 − s2)2

f(a, k − 2)

sk−2
2

(k − 2)k−2.

(2.44)
The Cauchy estimate was used here in the first inequality. Taking 0 < s2 =
k−2
k
s1 < s1 for k = 3, 4, . . . , we get from (2.44) that

sup
Ωs1

|Q(x,Dx)ak−2| ≤
Cf(a, k − 2)

sk1
kk,

and therefore, in view of (2.37),

f(Q(x,Dx)ak−2, k) ≤ Cf(a, k − 2).

Thus, by the definition of ‖ · ‖µ, see (2.38), we obtain that

‖h2Q(x,Dx)a‖µ ≤
∞∑
k=2

µkCf(a, k − 2) ≤ O(µ2)‖a‖µ. (2.45)

Lemma 2.2 together with (2.45) implies that

‖(h∂t)−1h2Q(x,Dx)a‖µ ≤ O(1/µ)‖h2Q(x,Dx)a‖µ ≤ O(µ)‖a‖µ,

establishing (2.43). �

It follows from Lemma 2.3 that

‖Q̃jw‖µ ≤ O(µj)‖w‖µ, Q̃ := (h∂t)
−1h2Q(x,Dx),

for w ∈ Aµ, and therefore, by Neumann series argument, we have that the equa-
tion (2.42),

a+ (h∂t)
−1h2Q(x,Dx)a = ∂−1

t v,

has a unique solution a with ‖a‖µ < ∞ for µ > 0 small enough. Thus, a is a
classical analytic symbol in Ω0.

We shall next proceed to solve (2.35) when the interval J is not necessarily
symmetric with respect to the origin, J = [a, b] where a < 0 < b. Without loss of
generality, we may assume that 0 < a+ b. Let N ≥ 0 be the largest integer such
that (N + 1)|a| < b. We first solve (2.35) with the initial condition prescribed
at t = 0 in the symmetric interval [a, |a|] and obtain a unique classical analytic
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symbol a(0) in a complex neighborhood of [a, |a|]×{0}. Next we solve the initial
value problem, {

(h∂t + h2Q(x,Dx))a
(1) = 0,

a(1)|t=|a| = a(0)|t=|a|,
(2.46)

in a complex neighborhood of [0, 2|a|]×{0}. Continuing this process and working
the symmetric intervals of the form [(j − 1)|a|, (j + 1)|a|], j = 2, . . . , N , we
construct a classical analytic symbol in a complex neighborhood of [a, (N+1)|a|]×
{0} solving (2.35). Finally solving (2.46) with the initial condition prescribed at
t = (N+1)|a| in a complex neighborhood of [2(N+1)|a|−b, b]×{0}, we obtain a
classical analytic symbol in a complex neighborhood of [a, b]×{0} solving (2.35).

Furthermore, demanding that a|t=0 should be an elliptic classical analytic symbol
near 0 in Cn−1, we conclude that the classical analytic symbol a(x;h) is elliptic
in the sense that a0 6= 0. This completes the construction of the amplitude as an
elliptic classical analytic symbol.

It follows from (2.24) that for all N ≥ 1,

e−isϕ(−h2∆g − (hs)2)eisϕ
( N∑

j=0

hjaj

)
= hN+2(−∆gaN + λ(L0 + ∆gϕ)aN)

in a complex neighborhood Ũ of Γ. Using (1.2) and Cauchy’s estimates, we obtain

after an arbitrarily small decrease of Ũ that∣∣∣∣e−isϕ(−h2∆g − (hs)2)eisϕ
( N∑

k=0

hkak

)∣∣∣∣ ≤ hN+2CN+1NN .

Choosing N = N(h) = [ 1
heC

], we obtain that∣∣∣∣e−isϕ(−h2∆g − (hs)2)eisϕ
(N(h)∑

j=0

hkak

)∣∣∣∣ ≤ O(1)e
− 1
C1h , C1 > 0,

for all 0 < h ≤ 1. Note that we also have∣∣∣∣N(h)∑
j=0

hkak

∣∣∣∣ ≤ C

N(h)∑
k=0

e−k ≤ C
e

e− 1
.

In the estimate above we used k ≤ N(h) = [1/(heC)] and |ak| ≤ Ck+1kk, which
holds since a is classical analytic symbol.

Let χ ∈ C∞0 (Rn−1) be such that 0 ≤ χ ≤ 1, χ = 1 for |y| ≤ 1/4 and χ = 0 for
|y| ≥ 1/2. In view of (2.1) we set

v(t, y;h) = h−
(n−1)

4 eisϕ(t,y)a(t, y;h), a(t, y;h) =

(N(h)∑
k=0

hkak

)
χ

(
y

δ′

)
. (2.47)
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Here δ′ > 0 is chosen sufficiently small so that χ(y/δ′) is zero outside the set where

we have constructed the functions ϕ and ak. Since Imϕ(t, y) ≥ |y|2
C

, C > 0, the
cutoff function χ does not destroy the exponential smallness of the error, and we
see that v satisfies after an arbitrarily small decrease of the real domain U ,

‖v‖L2(U) � 1, ‖(−h2∆− (hs)2)v‖L2(U) = O(e−
1
Ch ), C > 0, (2.48)

as h→ 0. Here for the first bound, we use the fact that a0 6= 0.

2.3. Gluing the local quasimodes together. Let us now return to the open
Fermi cover (Uj)

N+1
j=0 of γ([−T1− ε, T2 + ε]), replacing it if necessary by a slightly

smaller relatively compact subcover. We have constructed ϕ0 real analytic in
U0 solving the Cauchy problem (2.8) in a complex neighborhood of U0 so that
ϕ0(t, 0) = t for all t ∈ I0 and Imϕ′′0(t, 0) > 0 for all t ∈ I0. In order to con-
struct ϕ = ϕ1 real analytic in U1, we pick t0 ∈ I0 ∩ I1 and solve in a complex
neighborhood of U1, 

p(x, ϕ′x(x)) = 0,

ϕ|t=t0 = ϕ0(t0, y),

ϕ′x(t0) = ξ(t0).

We get ϕ1 such that ϕ1 = ϕ0 near (t0, 0) ∈ U0 ∩ U1, and thus, by unique contin-
uation, ϕ1 = ϕ0 in U0 ∩U1, assuming as we may that U0 ∩U1 is connected. Note
that in view of (2.20), we have ϕ1(t, 0) = t for all t ∈ I1. Continuing in this way,
we obtain ϕj real analytic in Uj, 0 ≤ j ≤ N + 1, such that ϕj = ϕj+1 in Uj ∩Uj+1

and (2.7) holds for every ϕj.

Next let a(0)(t, y;h) be an elliptic classical analytic symbol in a complex neighbor-
hood of U0 obtained by solving (2.26). To get a(1)(t, y;h), we solve the sequence
of transport equations (2.26) with ϕ = ϕ1 and with a(1)|t=t0 = a(0)|t=t0 . Thus, by
uniqueness and analytic continuation, a(1) = a(0) in U0 ∩ U1. Continuing in the
same way, we get v0, v1, . . . , vN+1 such that

vj = vj+1 in Uj ∩ Uj+1. (2.49)

Let χj = χj(t) ∈ C∞0 (Ij) be such that
∑N+1

j=0 χj = 1 near [−T1 − ε, T2 + ε], and
define our quasimode v globally by

v =
N+1∑
j=0

χjvj.

Let p1, . . . , pR ∈ X int be the distinct points where the geodesic γ self-intersects,
and let−T1 < t1 < · · · < tN < T2 be the times of self-intersections. Let V1, . . . , VR
be small neighborhoods in X around pj, j = 1, . . . , R. Then choosing δ′ in (2.47)

small enough we obtain an open cover of a neighborhood of γ[−T1, T2] in X̂,

supp (v( · ;h)) ∩X ⊂ (∪Rj=1Vj) ∪ (∪Sk=1Wk), (2.50)
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where in each Vj, the quasimode is a finite sum,

v( · ;h)|Vj =
∑

l:γ(tl)=pj

vl( · ;h), (2.51)

and in each Wk (where there are no self-intersecting points), in view of (2.49),
there is some l(k) so that the quasimode is given by

v( · ;h)|Wk
= vl(k)( · ;h). (2.52)

Finally, the bounds (1.3) follows from the bounds (2.48), and the representations
(2.51) and (2.52) of v. This completes the proof of Theorem 1.12.

3. Some preliminary results about geodesics

Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth

boundary, contained in an open real analytic manifold (X̂, g) of the same dimen-

sion with g real analytic in X̂. First we have the following analog of [11, Lemma
2.1], established in this work in the smooth case.

Lemma 3.1. Let α0 = (x0, ξ0) ∈ S∗X int and let ζ1, ζ2 ∈ S∗x0X
int be such that

ζ1 + ζ2 = t0ξ0 (3.1)

for some 0 < t0 < 2. Then there exists a neighborhood U of α0 in S∗X int and a
real analytic map

I : U → S∗X int × S∗X int, (x, ξ) 7→ (x, ω1(x, ξ))× (x, ω2(x, ξ))

such that
I(x0, ξ0) = (x0, ζ1)× (x0, ζ2), (3.2)

and
ω1(x, ξ) + ω2(x, ξ) = t0ξ, (x, ξ) ∈ U. (3.3)

Proof. We follow the proof of [11, Lemma 2.1] with minor changes in the real
analytic setting, and the argument is presented here only for the convenience of
the reader.

Let x1, . . . , xn be real analytic local coordinates on X int centered at x0 such that
G(0) = 1. Here G = G(x) = (gjk) is the co-metric tensor. It follows from (3.1)
upon taking the scalar product with ζ1, ζ2, and ξ0, that ζ1 · ξ0 = ζ2 · ξ0 and
t0 = 2ζ1 ·ξ0. Similarly, if (3.3) holds, then t0 = 2G(x)ω1(x, ξ) ·ξ, and we therefore
should have

G(x)ω1(x, ξ) · ξ = ζ1 · ξ0. (3.4)

Furthermore, if (3.3) is valid, then

ω2(x, ξ) = 2(ζ1 · ξ0)ξ − ω1(x, ξ).
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Note that this implies that |ω2(x, ξ)|G(x) = 1, provided that (3.4) holds, and
therefore, we only need to determine ω1(x, ξ) ∈ S∗X int depending analytically on
(x, ξ) such that ω1(x0, ξ0) = ζ1 and (3.4) is valid.

To that end, let us set

ζ(x) =
ζ1√

G(x)ζ1 · ζ1

.

Then ζ(x) is real analytic in x and ζ(0) = ζ1. Let

ω̃1(x, ξ) = ζ(x) + α(x, ξ)ξ,

for (x, ξ) ∈ neigh((x0, ξ0), S∗Rn), with some α = α(x, ξ) to be chosen. We have

G(x)ω̃1(x, ξ) · ω̃1(x, ξ) = 1 + α2 + 2αG(x)ζ(x) · ξ.

We set

ω1(x, ξ) =
ω̃1(x, ξ)√

G(x)ω̃1(x, ξ) · ω̃1(x, ξ)
=

ζ(x) + αξ√
1 + α2 + 2αG(x)ζ(x) · ξ

. (3.5)

We would like to find α so that α(0, ξ0) = 0 and that (3.4) holds. The former
requirement guarantees that ω1(0, ξ0) = ζ1, and the latter requirement implies
that we should have

F (x, ξ, α) = 0,

where

F (x, ξ, α) := (1−(ζ1·ξ0)2)α2+2G(x)ζ(x)·ξ(1−(ζ1·ξ0)2)α+(G(x)ζ(x)·ξ)2−(ζ1·ξ0)2.

Note that F is real analytic in (x, ξ, α) ∈ neigh((0, ξ0), S∗Rn)×R, F (0, ξ0, 0) = 0,
and F ′α(0, ξ0, 0) = 2(ζ1 · ξ0)(1 − (ζ1 · ξ0)2) 6= 0, as 0 < ζ1 · ξ0 = t0

2
< 1. Thus, by

the implicit function theorem, there is a neighborhood U of (0, ξ0) and a unique
real analytic function α(x, ξ) in U such that α(0, ξ0) = 0 and F (x, ξ, α) = 0 if
and only if α = α(x, ξ). Hence, ω1(x, ξ) given in (3.5) satisfies the conditions of
the proposition. This completes the proof. �

We shall also need the following result.

Lemma 3.2. Let α0 = (x0, ξ0) ∈ S∗X int. Assume that α0 is generated by
an admissible pair of geodesics γ1(α0) : [−T1(α0), T2(α0)] → X and γ2(α0) :
[−S1(α0), S2(α0)] → X, where 0 < T1(α0), T2(α0), S1(α0), S2(α0) < ∞. Then
there exists a neighborhood V of α0 in S∗X int such that every point α = (αx, αξ) ∈
V is generated by an admissible pair of geodesics γ1(α) : [−T1(α), T2(α)] → X
and γ2(α) : [−S1(α), S2(α)]→ X, which depend real analytically on α.

Proof. First we have

ζ1 + ζ2 = t0ξ0,
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for some 0 < t0 < 2, where ζj = γ̇j(α0) is viewed as a cotangent vector, using
the Riemannian duality. By Lemma 3.1, there exists a neighborhood U of α0 in
S∗X int and a real analytic map

I : U → S∗X int × S∗X int, α = (αx, αξ) 7→ (αx, ω1(α))× (αx, ω2(α))

such that

I(x0, ξ0) = (x0, ζ1)× (x0, ζ2),

and

ω1(α) + ω2(α) = t0αξ. (3.6)

The corresponding unit speed geodesics γ1(α) : [−T1(α), T2(α)]→ X and γ2(α) :
[−S1(α), S2(α)] → X, T1(α), T2(α), S1(α), S2(α) > 0, such that γj(α)(0) = αx,
γ̇j(α)(0) = ωj(α), are non-tangential being small perturbations of the non-
tangential geodesics γj(α0), j = 1, 2. Hence, the functions Tj(α) and Sj(α)
depend continuously on α ∈ U and in particularly, they are bounded after an
arbitrarily small decrease of U . Note also that (3.6) implies that γ1(α) and γ2(α)
are two distinct geodesics and that are not reverses of each other.

We claim that there is a neighborhood Ũ ⊂ U of α0 such that for all α ∈ Ũ , we
have

γ1(α)(t) = γ1(α)(0) ⇐⇒ t = 0. (3.7)

Indeed, otherwise there exists a sequence αk → α0 as k → ∞ and 0 6= tk ∈
[−T1(αk), T2(αk)] such that

γ1(αk)(tk) = γ1(αk)(0), (3.8)

for all k. Assuming, as we may, that tk → t0, we get from (3.8) that γ1(α0)(t0) =
γ1(α0)(0). Since the geodesic γ1(α0) does not self-intersect at x0 = γ1(α0)(0), we
conclude that t0 = 0. Since γ1(αk)(tk) → γ1(α0)(0) = x0 ∈ X int as k → ∞, for
all k sufficiently large, we see that γ1(αk)(tk) ∈ X int. As X is compact, it has
a positive injectivity radius Inj(X) > 0. Here we have extended X to a closed
manifold to speak about the injectivity radius and the boundary will not cause
any problems as γ1(αk)(tk) ∈ X int, for k sufficiently large. Now (3.8) implies that
|tk| ≥ Inj(X) for all k sufficiently large, which is a contradiction as tk → 0. Thus,
the claim (3.7) follows. The same is true for the family of geodesics γ2(α) for α
in a possibly smaller neighborhood of α0.

Finally, we claim there is a neighborhood V ⊂ Ũ of α0 such that for all α ∈ V ,
we have

γ1(α)(t) = γ2(α)(s) =⇒ t = s = 0. (3.9)

Indeed, otherwise, there exists αk → α0 as k → ∞, and tk ∈ [−T1(αk), T2(αk)],
and sk ∈ [−S1(αk), S2(αk)] such that

γ1(αk)(tk) = γ2(αk)(sk), (3.10)
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tk 6= 0, and sk 6= 0, for all k. Assuming as we may that tk → t0 and sk → s0 and
passing to the limit in (3.10), we obtain that

γ1(α0)(t0) = γ2(α0)(s0),

and therefore, as γ1(α0) and γ2(α0) are admissible, we get t0 = s0 = 0. Thus, we
get

γ1(αk)(tk) = γ2(αk)(sk)→ x0,

(αk)x = γ1(αk)(0) = γ2(αk)(0)→ x0,

as k →∞. Note that for k sufficiently large, all the points γ1(αk)(tk), γ1(αk)(0),
γ2(αk)(sk), γ2(αk)(0) are in the interior of X. Therefore, |tk| ≥ Inj(X) and
|sk| ≥ Inj(X) for k sufficiently large, as otherwise, the geodesics γ1(αk) and
γ2(αk) would intersect at a geodesic ball centered at (αk)x. This contradicts the
fact that tk → 0 and sk → 0 as k → ∞, showing the claim. Hence, the pair of
geodesics γ1(α), γ2(α) is admissible, for all α ∈ V . �

4. Analytic families of exponentially accurate Gaussian beam
quasimodes

When proving Theorem 1.3 below, we shall need the following consequence of
Theorem 1.12.

Corollary 4.1. Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2

with smooth boundary, contained in an open real analytic manifold (X̂, g) of the

same dimension with g real analytic in X̂. Let α0 = (x0, ξ0) ∈ S∗X int and let
γ0 : [−T1, T2] → X, 0 < T1, T2 < ∞, be a unit speed nontangential geodesic
such that γ0(0) = x0, and γ0 does not have self-intersections at x0. Let γ(α) :
[−T1(α), T2(α)] → X, 0 < T1(α), T2(α) < ∞, α = (αx, αξ) ∈ neigh(α0, S

∗X int),
be a real analytic family of unit speed nontangential geodesics such that γ(α0) =
γ0, and γ(α)(0) = αx. Let λ ∈ R. Then there is a real analytic family of C∞

functions v(x, α;h) on X, α ∈ neigh(α0, S
∗X int), 0 < h ≤ 1, and C > 0 such that

supp (v( · , α;h)) is confined to a small neighborhood of γ(α)([−T1(α), T2(α)]) for
each α, and

‖(−h2∆g − (hs)2)v(·, α;h)‖L2(X) = O(e−
1
Ch ), ‖v(·, α;h)‖L2(X) � 1, (4.1)

as h → 0, uniformly in α. Here s = 1
h

+ iλ. The local structure of the family
v( · , α;h) in a neighborhood of αx is as follows:

v(x, α;h) = h−
(n−1)

4 eisϕ(x,α)a(x, α;h),

where ϕ(x, α) is real analytic in (x, α) for α ∈ neigh(α0, S
∗X int) and |x− αx| <

1
c
, c > 0, and a(x, α;h) is an elliptic classical analytic symbol near (x0, α0).
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Furthermore, for t close to 0 and α ∈ neigh(α0, S
∗X int), we have

ϕ(γ(α)(t), α) = t, ∇ϕ(γ(α)(t), α) = γ̇(α)(t),

Im (∇2ϕ(γ(α)(t))) ≥ 0, Im (∇2ϕ)|γ̇(α)(t)⊥ > 0.

Proof. The functions T1(α) and T2(α) depend continuously on α in a small neigh-
borhood of α0, and shrinking the neighborhood further we may assume that

T1(α), T2(α) are bounded. Let ε > 0 be such that γ(α)(t) ∈ X̂\X and γ(α)(t) has
no self-intersection for t ∈ [−T1(α)− 2ε,−T1(α))∪ (T2(α), T2(α) + 2ε] for all α ∈
neigh(α0, S

∗X int). This choice of ε is possible since γ(α) are non-tangential and
depend smoothly on α. It follows from [23, Lemma 7.2] that γ(α)|[−T1(α)−ε,T2(α)+ε]

self-intersects only at finitely many times tj(α), 1 ≤ j ≤ N(α), with

−T1(α) < t1(α) < · · · < tN(α)(α) < T2(α).

First we claim that there is N0 such that N(α) ≤ N0 < ∞ for all α in a small
neighborhood of α0. This follows by inspection of the arguments in the proof of
[23, Lemma 7.2]. Indeed, as explained in [23, Lemma 7.2], if γ(α)(t) = γ(α)(s)
for some t 6= s then γ̇(α)(t) 6= ±γ̇(α)(s). Furthermore, if r is smaller than
the injectivity radius of some closed manifold containing a fixed neighborhood of
X∪γ(α)([−T1(α)−2ε, T2(α)+2ε] for α ∈ neigh(α0, S

∗X int), then any two distinct
geodesic segments of length ≤ r can intersect in at most one point. Partitioning

[−T1(α) − 2ε, T2(α) + 2ε] in disjoint intervals {Jk}K(α)
k=1 of length ≤ r, we get an

injective map

{(t, s) ∈ [−T1(α)− 2ε, T2(α) + 2ε]2 : s < t and γ(α)(t) = γ(α)(s)}
−→ {(k, l) ∈ {1, . . . , K(α)}2},

(t, s) 7→ (k, l) such that t ∈ Jk, s ∈ Jl.
(4.2)

Since T1(α) and T2(α) are bounded for α in a small neighborhood of α0, we
may assume that K(α) is bounded. Consequently, the cardinality of the set
{(k, l) ∈ {1, . . . , K(α)}2} is bounded uniformly in α. The claim follows.

We also set t0(α) := −T1(α)− ε and tN+1(α) := T2(α) + ε. An inspection of the
proof of [10, Lemma 3.5] allows us to conclude that there exists an open cover

{(Uj(α), κj(α))}N(α)+1
j=0 of γ(α)([−T1(α) − ε, T2(α) + ε]) consisting of coordinate

neighborhoods Uj(α) and real analytic diffeomorphisms κj(α), depending real
analytically on α, such that the following properties hold,

(i) κj(α)(Uj(α)) = Ij×B, where Ij are fixed open intervals and B = B(0, δ′)
is an open ball in Rn−1. Here δ′ > 0 can be taken arbitrarily small and
the same for each Uj(α), uniformly for α close to α0,

(ii) κj(α)(γ(α)(t)) = (t, 0) for each t ∈ Ij,
(iii) tj only belongs to Ij and Ij ∩ Ik = ∅ unless |j − k| ≤ 1,
(iv) κj(α) = κk(α) on κ−1

j ((Ij ∩ Ik)×B).
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In particular, the open sets Uj(α) are bounded uniformly in α and contain a fixed
open set.

Following the proof of Theorem 1.12, and making use of the fact that the geodesics
γ(α) do not have self-intersections at αx, for α close to α0, we obtain the statement
of Corollary 4.1. �

Remark 4.2. Let us also note that in general the number of self-intersecting
times N(α) need not depend continuously on α. To this end, assume that the
dimension of the manifold X is > 2 and that the geodesic γ0 in X has a self-
intersection at some point x1 ∈ γ0((−T1, T2)) so that x1 = γ0(t1) = γ0(t2), t1 < t2.
Then one can show that by means of a small perturbation, that one can unwind
the loop in the direction orthogonal to the plane spanned by the velocity vectors
γ̇(t1) and γ̇(t2).

5. Construction of families of harmonic functions based on
Gaussian beam quasimodes

Let (M, g) be a transversally anisotropic manifold of dimension n ≥ 3 with
transversal manifold (M0, g0), and assume that M int

0 and g0|M int
0

are real ana-
lytic.

First assume, as we may, that (M, g) is embedded in a compact smooth manifold
(N, g) without boundary of the same dimension, and let U be open in N such
that M ⊂ U . Our starting point is the following Carleman estimate for −h2∆,
established in [8].

Proposition 5.1. Let φ be a limiting Carleman weight for −h2∆ on U . Then
for all 0 < h� 1, we have

h‖u‖L2(N) ≤ C‖e
φ
h (−h2∆)e−

φ
hu‖L2(N), C > 0, (5.1)

for all u ∈ C∞0 (M int).

Using a standard argument, see [8], we convert the Carleman estimate (5.1) into
the following solvability result.

Proposition 5.2. Let φ be a limiting Carleman weight for −h2∆ on U . If h > 0
is small enough, then for any v ∈ L2(M), there is a solution u ∈ L2(M) of the
equation

e
φ
h (−h2∆)e−

φ
hu = v in M int,

which satisfies

‖u‖L2(M) ≤
C

h
‖v‖L2(M).
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Now asM ⊂⊂ R×M int
0 , there is a compact Riemannian manifold M̃0 of dimension

n− 1 with smooth boundary such that M ⊂⊂ R× M̃0 ⊂⊂ R×M int
0 . Note that

(M int
0 , g0|M int

0
) is an open real analytic manifold with real analytic metric, and

we can use Corollary 4.1 to construct a real analytic family of Gaussian beam

quasimodes along nontangential geodesics on M̃0.

Let us write x = (x1, x
′) for local coordinates in R× M̃0. Let

s =
1

h
+ iλ, λ ∈ R, λ fixed.

Note by [8, Lemma 2.9] that φ(x) = ±x1 is a limiting Carleman weight for −h2∆
on U . We are interested in finding harmonic functions,

−∆gu = 0 in M int, (5.2)

having the form

u = u(x, α;h) = e−sx1(v(x′, α;h) + r(x, α;h)),

where v = v(x′, α;h) is the Gaussian beam quasimode constructed in Corollary

4.1 on the transversal manifold M̃0, associated to a nontangential unit speed

geodesic γ(α) on M̃0 depending analytically on α ∈ neigh(α0, S
∗M̃ int

0 ), and r is a
remainder term. Thus, u is a solution of (5.2) provided that r solves

e
x1
h (−h2∆g)e

−x1
h (e−iλx1r) = −e−iλx1(−h2∆g0 − (hs)2)v(x′, α;h). (5.3)

Proposition 5.2 and Corollary 4.1 imply that there is r = r( · ;α;h) ∈ L2(M)
solving (5.3) such that

‖r‖L2(M) = O(e−
1
Ch ), C > 0,

as h→ 0, uniformly in α ∈ neigh(α0, S
∗M̃ int

0 ).

To summarize, we have the following result.

Proposition 5.3. Let s = 1
h

+ iλ with λ ∈ R being fixed. For all h > 0 small
enough, there are families of harmonic functions u1, u2 ∈ L2(M), i.e. −∆guj = 0
in M int, having the form

u1(x, α;h) = e−sx1(v(x′, α;h) + r1(x, α;h)),

u2(x, α;h) = esx1(v(x′, α;h) + r2(x, α;h)),

where v = v( · , α;h) is the family of Gaussian beam quasimodes constructed in

Corollary 4.1 on M̃0, and r ∈ L2(M) is such that ‖rj‖L2(M) = O(e−
1
Ch ), C > 0,

as h→ 0, uniformly in α ∈ neigh(α0, S
∗M̃ int

0 ), j = 1, 2.
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6. Proofs of Theorem 1.3 and Theorem 1.4

6.1. Some facts about analytic wave front sets. We shall rely on the fol-
lowing characterization of the analytic wave front set, which we recall from [38,
Definition 6.1] for the convenience of the reader. In our applications, we have
m = n− 1.

Definition 6.1. Let α0 = (x0, ξ0) ∈ T ∗Rm \ {0}, and let ϕ(x, α), x ∈ Rm,
α = (αx, αξ) ∈ T ∗Rm \ {0}, be analytic defined in a neighborhood of (x0, α0) such
that

ϕ(x, α)|x=αx = 0, ϕ′x(x, α)|x=αx = αξ, (6.1)

and

Imϕ(x, α) ≥ C0|x− αx|2, x, α real, (6.2)

for some C0 > 0. Let a(x, α;h) be an elliptic classical analytic symbol defined
in a neighborhood of (x0, α0), and let u ∈ D′(X), where X ⊂ Rm is an open set
containing x0. We have α0 /∈ WFa(u) if and only if there is a real neighborhood
U of α0 and C > 0 such that

sup
α∈U
|Tu(α;h)| ≤ Ce−

1
Ch , (6.3)

for 0 < h ≤ 1, where

Tu(α;h) =

∫
e
iϕ(x,α)

h a(x, α;h)χ(x)u(x)dx,

and χ ∈ C∞0 (X) is supported in a small neighborhood of x0 and χ = 1 near x0.

Remark 6.2. It is established in [38, Proposition 6.2] that the condition (6.3) is
independent of the choice of χ, a, and ϕ.

Remark 6.3. Assume that ϕ, a, and u satisfy the same conditions as in Defi-
nition 6.1, and let ψ ∈ C∞0 (Rn) be supported in a small neighborhood of 0 and
ψ = 1 near 0. We have α0 /∈ WFa(u) if and only if there is a real neighborhood

Ũ of α0 and C̃ > 0 such that

sup
α∈Ũ
|T̃ u(α;h)| ≤ C̃e−

1

C̃h , (6.4)

for 0 < h ≤ 1, where

T̃ u(α;h) =

∫
e
iϕ(x,α)

h a(x, α;h)ψ(x− αx)u(x)dx.

The condition (6.4) is independent of the choice of ψ.

Remark 6.4. The condition (6.1) in Definition 6.1 and Remark 6.3 can be re-
placed by the following

ϕ(x, α)|x=αx = f(α) real valued, ϕ′x(x, α)|x=αx = t0αξ, (6.5)
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for some fixed t0 > 0. Indeed, we apply Definition 6.1 and Remark 6.3 with
ϕ(x, α) replaced by 1

t0
(ϕ(x, α)− f(α)) and with h replaced by h/t0.

Remark 6.5. Since the wave front set WFa(u) is conic, we may restrict the
attention in Definition 6.1 to ξ0 ∈ Rm such that |ξ0| = 1.

6.2. Proof of Theorem 1.3. Let α0 = (x′0, ξ
′
0) ∈ S∗M int

0 be generated by
an admissible pair of geodesics γ1(α0) : [−T1(α0), T2(α0)] → M0 and γ2(α0) :
[−S1(α0), S2(α0)] → M0. As M ⊂⊂ R × M int

0 , there is a compact Riemann-

ian manifold M̃0 of dimension n − 1 with smooth boundary such that M ⊂⊂
R × M̃0 ⊂⊂ R ×M int

0 , and x′0 ∈ M̃ int
0 . Furthermore, we can choose M̃0 so that

the geodesics γ1(α0) and γ2(α0) are nontangential on M̃0, and hence, γ1(α0) and

γ2(α0) are admissible on M̃0.

Then by Lemma 3.2, there exists a neighborhood V of α0 in S∗M̃ int
0 such that

every point α = (αx′ , αξ′) ∈ V is generated by an admissible pair of geodesics

γ1(α) : [−T1(α), T2(α)] → M̃0 and γ2(α) : [−S1(α), S2(α)] → M̃0, which depend
real-analytically on α. Thus, for all α ∈ V , we have

γ1(α)(0) = γ2(α)(0) = αx′ , (6.6)

γ̇1(α)(0) + γ̇2(α)(0) = t0αξ′ , (6.7)

for some 0 < t0 < 2 fixed, γ1(α), γ2(α) do not have self-intersections at αx′ , and
αx′ is the only point where γ1(α) and γ2(α) intersect, for all α ∈ V .

Let s1 = 1
h

+ iλ and s2 = 1
h
, where λ ∈ R. Applying Corollary 4.1, we get

vj(x
′, α;h), j = 1, 2, Gaussian beam quasimodes on M̃0, associated to γj(α) on

M̃0, depending real analytically on α ∈ V such that

‖vj( · , α;h)‖L2(M) � 1, ‖(−h2∆g0 − (hs)2)vj( · , α;h)‖L2(M) = O(e−
1
Ch ), (6.8)

as h→ 0, for some C > 0, uniformly in α ∈ V .

An application of Proposition 5.3 gives harmonic functions on M having the form

u1(x, α;h) = e−s1x1(v1(x′, α;h) + r1(x, α;h)),

u2(x, α;h) = es2x1(v2(x′, α;h) + r2(x, α;h)),
(6.9)

where

‖rj‖L2(M) = O(e−
1
Ch ), C > 0, (6.10)

as h→ 0, uniformly in α ∈ V .

Substituting the harmonic functions u1 and u2 given by (6.9) into (1.1), we get∫
M

fe−iλx1(v1(x′, α;h) + r1)(v2(x′, α;h) + r2)dVg = 0. (6.11)
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Using (6.10) and (6.8), we see that∫
M

fe−iλx1v1(x′, α;h)v2(x′, α;h)dVg = O(e−
1
Ch ), C > 0, (6.12)

uniformly in α ∈ V . Let us extend f ∈ L∞(M) by zero to (R×M0) \M and set

f̂(λ, x′) =

∫ ∞
−∞

e−iλx1f(x1, x
′)dx1

for the Fourier transform with respect to x1. Using the fact that dVg = dx1dVg0 ,
we obtain from (6.12) that∫

M̃0

f̂(λ, x′)v1(x′, α;h)v2(x′, α;h)dVg0 = O(e−
1
Ch ), C > 0, (6.13)

uniformly in α ∈ V . Recalling that the geodesics γ1(α) and γ2(α) intersect at αx′
only and that

supp (vj( · , α;h)) ⊂ small neigh(γj(α)), j = 1, 2,

we conclude from (6.13) that∫
neigh(αx′ ,M0)

f̂(λ, x′)v1(x′, α;h)v2(x′, α;h)
√
g0(x′)dx′ = O(e−

1
Ch ), (6.14)

uniformly in α ∈ V . Recalling that the geodesics γ1(α), γ2(α) do not have self-
intersections at αx′ , by Corollary 4.1, we have in a small neighborhood of αx′ ,

v1(x′, α;h) = h−
(n−2)

4 eis1ϕ1(x′,α)a1(x′, α;h),

v2(x′, α;h) = h−
(n−2)

4 eis2ϕ2(x′,α)a2(x′, α;h).
(6.15)

Here ϕj(x
′, α) are real analytic in (x′, α) in a region of the form α ∈ V and |x′ −

αx′ | < 1/c, which is an open neighborhood of (x′0, α0). Furthermore, aj(x
′, α;h)

are elliptic classical analytic symbols in a neighborhood of (x′0, α0), j = 1, 2. It
follows that the neighborhood of αx′ occurring as the domain of integration in
(6.14) can be taken to be fixed and independent of α. We also have for the
geodesic parameters t and s near 0 that

(ϕ1)′x′(γ1(α)(t), α) = γ̇1(α)(t), Im ((ϕ1)′′x′x′(γ1(α)(t), α)) ≥ 0,

Im ((ϕ1)′′x′x′(γ1(α)(t), α)|[γ̇1(α)(t)]⊥) > 0,
(6.16)

and

(ϕ2)′x′(γ2(α)(s), α) = γ̇2(α)(s), Im ((ϕ2)′′x′x′(γ2(α)(s), α)) ≥ 0,

Im ((ϕ2)′′x′x′(γ2(α)(s), α)|[γ̇2(α)(s)]⊥) > 0.
(6.17)

Now substituting (6.15) into (6.14), we see that∫
neigh(αx′ ,M0)

e
iϕ(x′,α)

h f̂(λ, x′)a(x′, α;h)dx′ = O(e−
1
Ch ), h→ 0, (6.18)
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uniformly in α ∈ V . Here

ϕ(x′, α) = ϕ1(x′, α) + ϕ2(x′, α) (6.19)

is analytic in a neighborhood of (x′0, α0), and

a(x′, α;h) = e−λϕ1(x′,α)a1(x′, α;h)a2(x′, α;h)
√
g0(x′)

is an elliptic classical analytic symbol in a neighborhood of (x′0, α0), since the
product of two classical analytic symbols is a classical analytic symbol.

We now claim that the phase function ϕ(x′, α) in (6.19) satisfies the conditions
(6.5) and (6.2). First, in view of (6.6) and (1.4), we have

ϕ(x′, α)|x′=αx′ = ϕ1(γ1(α)(0), α) + ϕ2(γ2(α)(0), α) = 0. (6.20)

Using (6.16), (6.17), and (6.7), we get

ϕ′x′(x
′, α)|x′=αx′ = (ϕ1)′x′(γ1(α)(0), α) + (ϕ2)′x′(γ2(α)(0), α)

= γ̇1(α)(0) + γ̇2(α)(0) = t0αξ′ .
(6.21)

It follows from (6.20) and (6.21) that the condition (6.5) holds. Let us now check
the condition (6.2). To this end, Taylor expanding ϕ(x′, α) at x′ = αx′ , we get

ϕ(x′, α) =ϕ(αx′ , α) + ϕ′x′(αx′ , α) · (x′ − αx′)

+
1

2
ϕ′′x′x′(αx′ , α)(x′ − αx′) · (x′ − αx′) +O(|x′ − αx′|3),

and therefore, in view of (6.20) and (6.21), when x′ and α are real, we see that

Imϕ(x′, α) =
1

2
Imϕ′′x′x′(αx′ , α)(x′ − αx′) · (x′ − αx′) +O(|x′ − αx′|3).

Hence, the condition (6.2) is equivalent the following condition,

Imϕ′′x′x′(αx′ , α) > 0. (6.22)

Using (6.16), (6.17), and the fact that the vectors γ̇1(α)(0) and γ̇2(α)(0) are not
parallel, we have

Imϕ′′x′x′(αx′ , α) = Im (ϕ1)′′x′x′(γ1(α)(0), α) + Im (ϕ2)′′x′x′(γ2(α)(0), α) > 0,

showing (6.22). Thus, by Remarks 6.3 and 6.4, in view of (6.18), we get α0 /∈
WFa(f̂(λ, ·)) = WFa(f̂(−λ, ·)) for all λ ∈ R. Noting that if (1.1) holds for f , it

also holds for f and λ ∈ R is arbitrary, we get α0 /∈ WFa(f̂(λ, ·)) for all λ ∈ R.
This completes the proof of Theorem 1.3.

6.3. Proof of Theorem 1.4. Now since every point (x′0, ξ
′
0) ∈ S∗M int

0 is gener-

ated by an admissible pair of geodesics, by Theorem 1.3, we get f̂(λ, ·) is real-

analytic in M int
0 for all λ ∈ R. The fact that f̂(λ, ·) has a compact support in M int

0

and that M0 is connected implies that f̂(λ, ·) = 0 for all λ ∈ R, and therefore,
f = 0. This completes the proof of Theorem 1.4.
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Appendix A. Discussion related to Example 1.7

Let M0 = S1 × [0, a], with a > 0, be a cylinder with its usual flat metric g0.
The purpose of this Appendix is to show that every point (x0, ξ0) ∈ S∗M int

0 is
generated by an admissible pair of geodesics.

We have

T ∗(S1 × (0, a)) ' T ∗S1 × T ∗(0, a) ' (S1 × R)× ((0, a)× R) ' (S1 × (0, a))× R2,

and therefore, we may identify S∗x0M
int
0 with the unit circle S1 in R2 ' C.

Given S1 3 ξ0 = (ξ01, ξ02) ' ξ01 + iξ02, we set

ξ1 = eiα(ξ01 + iξ02) ∈ S1, ξ2 = e−iα(ξ01 + iξ02) ∈ S1, (A.1)

with α ∈ (0, 2π) to be chosen. The geodesics γ1 and γ2 on M0 such that γj(0) = x0

and γ̇j(0) = ξj, j = 1, 2, are given by

γ1(t) = (x01 + ξ11t, x02 + ξ12t) ∈ R/2πZ× [0, a],

γ2(s) = (x01 + ξ21s, x02 + ξ22s) ∈ R/2πZ× [0, a].

The geodesics γ1 and γ2 are nontangential provided that

ξ12 = Im (eiα(ξ01 + iξ02)) = ξ02 cosα + ξ01 sinα 6= 0,

ξ22 = Im (e−iα(ξ01 + iξ02)) = ξ02 cosα− ξ01 sinα 6= 0.
(A.2)

Note that if γ1 and γ2 are nontangential then they do not have self-intersections.

We have in view of (A.1),

ξ1 + ξ2 = (2 cosα)ξ0, (A.3)

and therefore, the property (ii) of Definition 1.2 follows with t0 = 2 cosα, provided
that

0 < cosα < 1. (A.4)

Note that γ1 and γ2 intersect each other if there exist t and s such that

ξ11t− ξ21s ∈ 2πZ, ξ12t = ξ22s. (A.5)

Now if we choose α so that

|ξ11t− ξ21s| < 2π, ξ12t = ξ22s, (A.6)

then (A.5) implies that ξ1t = ξ2s, and therefore, |t| = |s|. In view of (A.3) and
(A.4), we get t = s = 0, and hence, x0 is the only point of intersections of γ1 and
γ2.



LINEARIZED CALDERÓN PROBLEM 37

To achive (A.6), assuming that (A.2) holds, we estimate

|ξ11t− ξ21s| =
|t|
|ξ22|
|ξ22ξ11 − ξ21ξ12| =

|t|
|ξ22|
|Im (ξ1ξ2)| = |t|

|ξ22|
| sin(2α)|

≤ a

|ξ12||ξ22|
| sin(2α)| = a

|ξ2
02 − sin2 α|

| sin(2α)|,

where we use that 0 ≤ x02 + ξ12t ≤ a, 0 ≤ x02 ≤ a, and (A.2). Thus, to prove
the result, we have to choose α ∈ (0, 2π) so that (A.2), (A.4), and

a

|ξ2
02 − sin2 α|

| sin(2α)| < 2π (A.7)

hold. In doing so let us first consider the case when ξ02 6= 0. In this case choosing
α > 0 small enough, depending on a and ξ02, we see that (A.2), (A.4), and (A.7)
hold. When ξ02 = 0, we choose α = π

2
− β with β > 0 small enough, depending

on a. Then (A.7) becomes
a

| cos2 β|
| sin(2β)| < 2π,

which together with (A.2), (A.4) hold for such small β. This completes the proof
that every point of S∗M int

0 is generated by an admissible pair of geodesics.
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