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Abstract. In this article we consider an inverse boundary value problem for the time-
harmonic Maxwell equations. We show that the electromagnetic material parameters are
determined by boundary measurements where part of the boundary data is measured
on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim-
Uhlmann and Kenig-Sjöstrand-Uhlmann to the Maxwell system. The main contribution
is to show that the Carleman estimate approach to scalar partial data inverse problems
introduced in those works can be carried over to the Maxwell system.

1. Introduction

In this paper we discuss an inverse problem for the time-harmonic Maxwell equations
with partial data, and show that the electromagnetic material parameters are determined
by measurements on certain parts of the boundary. The result is new even for the case
of bounded domains in R3, but it will be convenient to formulate it more generally on
compact manifolds with boundary.

Let (M, g) be a compact oriented Riemannian 3-manifold with C∞ boundary. The
electric and magnetic fields on M are described, respectively, by 1-forms E and H which
satisfy the Maxwell equations in M :

(1.1)

{
∗dE = iωµH,
∗dH = −iωεE.

Here ω > 0 is a fixed frequency, d is the exterior derivative, and ∗ is the Hodge star
operator for the metric g. The material parameters ε and µ are assumed to be complex
valued functions in C3(M) and to satisfy

Re(ε) > 0, Re(µ) > 0.

The inverse problem is formulated in terms of partial measurements of the boundary
tangential traces tE and tH of E and H. Here, the tangential trace of a k-form η is
defined by

t : η 7→ i∗η,

where i : ∂M →M is the inclusion map. If Γ1 and Γ2 are open subsets of ∂M , we define
the partial Cauchy data set

CΓ1,Γ2 = {(tE|Γ1 , tH|Γ2) ; (E,H) ∈ H2(M,Λ1M)2 solves (1.1) and supp(tE) ⊂ Γ1}.
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As described in the end of Section 2, if ω is outside a discrete set of resonant frequencies,
then the knowledge of CΓ1,Γ2 is equivalent with knowing the partial admittance map

ΛΓ1,Γ2 : f 7→ tH|Γ2 ,

where f is a 1-form on ∂M with supp(f) ⊂ Γ1, and (E,H) is the unique solution of (1.1)
satisfying tE = f on ∂M . This corresponds to prescribing tE on Γ1 and measuring tH
on Γ2. The inverse problem is to determine the coefficients ε and µ from the knowledge
of CΓ1,Γ2 for some choices of Γj.

One may think of the above inverse problem for Maxwell equations as a generalization
to systems of the inverse conductivity problem introduced by Calderón [Ca80]. In the
case where M is a bounded domain in R3 and g is the Euclidean metric, it was proved
in [OPS93] that measurements on the full boundary (Γ1 = Γ2 = ∂M) determine ε and
µ uniquely. Earlier results include [SIC92, SU92, CP92], and a simplified proof was pre-
sented in [OS96]. Stability results for this inverse problem are in [Ca10, Ca11], boundary
determination results are in [Mc97, JM00], the case of chiral media is considered in [Mc00],
and a recent uniqueness result for C1 coefficients is given in [CZ13].

The inverse problem for Maxwell equations on manifolds was discussed in [OPS03]. The
first uniqueness results in the non-Euclidean case were given in [KSU09], again for the
full data case Γ1 = Γ2 = ∂M , when M is an admissible manifold in the following sense.

Definition 1.1. A compact Riemannian manifold (M, g) with smooth boundary is called
admissible if (M, g) is embedded in (T, g) where T = R×M0 and g = c(e⊕g0), where c is
a smooth positive function, (R, e) is the Euclidean line, and (M0, g0) is a simple manifold
(a compact manifold with smooth strictly convex boundary such that the exponential map
expp is a diffeomorphism onto M0 for each p ∈M0).

Locally, admissibility implies that in some local coordinates x = (x1, x
′) the metric

takes the form

g(x1, x
′) = c(x1, x

′)

(
1 0
0 g0(x′)

)
where g0(x′) is some positive definite (n − 1) × (n − 1) matrix. Conversely, any metric
that takes this form in some local coordinates is admissible provided that g0 is simple.
Admissible manifolds include compact submanifolds of Euclidean space, hyperbolic space,
and S3 minus a point. They also include sufficiently small submanifolds of conformally
flat manifolds and warped products. For more information see [DKSU09, AFGR14].

In this article we will improve the results of [OPS93, KSU09] by considering the partial
data problem where Γ1 = ∂M but Γ2 is an appropriately chosen open subset of ∂M which
is defined by a limiting Carleman weight (LCW) of the manifold M . The notion of LCWs
was introduced in connection with the Calderón problem with partial data in [KSU07]
in Euclidean space. LCWs were analysed in detail in [DKSU09] also on manifolds. In
particular, the class of admissible manifolds emerged in [DKSU09] as a natural class
where LCWs exist and one may expect to be able to solve related inverse problems. Note
that any admissible manifold has global coordinates (x1, x

′) where x1 is the Euclidean
direction. It was shown in [DKSU09] that ϕ(x) = x1 is a natural LCW in this setting,
and in this paper we will always assume that the LCW is given by ϕ(x) = x1.

We define the “front face” of the boundary with respect to the LCW ϕ by

Fϕ := {p ∈ ∂M | 〈dϕ(p), ν〉 ≥ 0}.
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Here ν is the 1-form corresponding to the unit outer normal of ∂Ω. Our main result is
the following theorem.

Theorem 1.1. Let (M, g) be an admissible 3-manifold and ϕ(x) = x1 a LCW on M . Let
εj, µj ∈ C3(M) be complex functions with positive real part, and let ω > 0. Suppose that
the corresponding Cauchy data sets satisfy

C∂M,F̃
1 = C∂M,F̃

2

for some open neighborhood F̃ of Fϕ in ∂M . Assume in addition that ε1 = ε2 and µ1 = µ2

to second order on ∂M . Then ε1 ≡ ε2 and µ1 ≡ µ2 in M .

We mention a particular case of the above theorem in R3 (ch(Ω) denotes convex hull).

Theorem 1.2. Let Ω ⊂ R3 be a bounded domain with C∞ boundary, let εj, µj ∈ C3(Ω)
be complex functions with positive real part, and let ω > 0. Given x0 ∈ R3 \ ch(Ω), define

F (x0) = {x ∈ ∂Ω ; (x− x0) · ν(x) ≤ 0}.
Suppose that the corresponding Cauchy data sets satisfy

C∂Ω,F̃
1 = C∂Ω,F̃

2

for some open neighborhood F̃ of F (x0) in ∂Ω. Assume in addition that ε1 = ε2 and
µ1 = µ2 to second order on ∂Ω. Then ε1 ≡ ε2 and µ1 ≡ µ2 in Ω.

This result involves the logarithmic Carleman weight in R3 and corresponds to one of
the results of [KSU07] for the partial data problem for the Schrödinger equation. Note
that if Ω is strictly convex, then any open subset of ∂Ω can serve as F̃ above.

A standard method to study such partial data problems is to apply the idea developed
in [BU02, KSU07] for scalar equations, where Carleman estimates with suitable positive
boundary terms were used to suppress the unknown information. The partial data inverse
problem for Maxwell equations presents several challenges when one tries to apply these
methods directly. The first difference is the fact that the principal part of this equation is
a first order system rather than a second order scalar equation, and Carleman estimates
with boundary terms for systems seem to be more involved than those for scalar equations
(see [El08, ST09] for some such estimates). Secondly, the fact that ellipticity is somewhat
”hidden” in the system makes it difficult to obtain a estimate similar to the one used in
[KSU07] which could be directly applied to the Maxwell system.

We circumvent these difficulties by first using ideas from [OS96, OPS03, KSU09] to show
that the problem reduces to constructing suitable solutions to a Hodge Dirac system

(P +W )u = 0, tu|∂M\F̃ = 0.

We will then apply the recent work [CST13] where the authors studied Carleman estimates
and complex geometrical optics solutions for the Hodge Laplace operator with relative
and absolute boundary conditions. The crucial point is that the Carleman estimate with
boundary terms proved in [CST13] for the Hodge Laplacian is sufficiently powerful to yield
information also in the Maxwell case. However, we stress that the present situation for
Maxwell equations does not reduce to that of [CST13], since the boundary measurements
for Maxwell determine in a sense only part of the boundary measurements for the Hodge
system. It is essential to use the special structure of the Maxwell system to show that
the coefficients are uniquely determined.
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The main contribution of this work is to show that the Carleman estimate approach
to scalar partial data inverse problems introduced in [BU02, KSU07] can be carried over
to the Maxwell system. A Carleman estimate approach for a different first order system,
related to the Pauli Dirac operator, was presented in [ST09] where the method involved
decoupling the Pauli Dirac operator into a second order differential operator with the
Laplacian as its principal part. A suitable Carleman estimate was then applied to the
decoupled equation to recover the coefficients. The partial data problem for Maxwell
equations was also studied in [COS09] in the case whenM is Euclidean and the inaccessible
part of the boundary is a portion of a hyperplane or a sphere, following the scalar approach
of [Is07]. Due to the partial symmetry of the domain one can reflect across the flat part
of the boundary and reduce the problem to a full data problem. Partial data results
are also known for a two-dimensional Maxwell system [IY14a] and for Maxwell equations
in a waveguide [IY14b], based on the two-dimensional partial data results of [IUY10],
and in the case where the parameters are known near the boundary [BMR14]. Recently,
extensions of the Carleman estimate and reflection approaches for partial data problems
were introduced in [KS13] and [IY13]; some of these extensions for the Maxwell system
were considered in [IY14c]. We also remark that the methods in the recent paper [DKLS13]
might allow to relax to some extent the admissibility assumption in Theorem 1.1.

Acknowledgements. F.C., P.O. and M.S. were partly supported by the Academy of
Finland (Centre of Excellence in Inverse Problems Research), and F.C. and M.S. were
supported by an ERC Starting Grant (grant agreement no 307023). L.T. was partly sup-
ported by the Academy of Finland (decision no 271929), Vetenskapsr̊adet (decision no
2012-3782), and Australian Research Council Future Fellowship (fellowship no G161397).
F.C. would like to acknowledge the University of Jyväskylä for its hospitality on subse-
quent visits.

2. Reduction to the Hodge Laplacian

In this section we employ ideas from [OS96, OPS03, KSU09] to show that the problem
reduces to constructing suitable solutions of the Hodge Dirac and Schrödinger operator.
The notation follows closely [KSU09] and we refer to that article for more details. If E and
H are complex 1-forms in M , we consider the graded form X = Φ +E + ∗H + ∗Ψ where
Φ and Ψ are complex scalar functions. We write graded forms in the vector notation

X =
(

Φ ∗H ∗Ψ E
)t
.

The line denotes that the forms of even order and odd order are grouped together, which
will result in a block structure for the equation. We define the following Hodge Dirac
operator acting on graded forms in M ,

P =
1

i
(d− δ) =

1

i


−δ

−δ d
d

d −δ

 .

The Dirac equation which is most closely related to Maxwell is

(P + V )X = 0
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where V is the operator acting on graded forms as the matrix operator

V =


−ωµ ∗Dα ∧ ∗

−ωµ ∗Dα ∧ ∗
Dβ∧ −ωε

Dβ∧ −ωε

 .

and where D = 1
i
d, α = log ε, and β = log µ. One easily sees that

(2.1)

{
(P + V )X = 0,

X =
(

0 ∗H ∗0 E
)t ⇔ {

∗dE = iωµH,
∗dH = −iωεE.

The advantage here is that P is an elliptic operator.
For the reduction to the Schrödinger equation with Hodge Laplacian, we consider

rescaled solutions

Y =

(
µ1/2

ε1/2

)
X,

and henceforth relate X and Y in this way. We will write

Y =
(
Y 0 Y 2 Y 3 Y 1

)t
where Y k is the k-form part of the graded form Y . It is easy to see that

(P + V )X = 0 ⇐⇒ (P +W )Y = 0

where W is the potential

W = −κ+
1

2


∗Dα ∧ ∗

∗Dα ∧ ∗ −Dα∧
Dβ∧

Dβ∧ ∗Dβ ∧ ∗

 ,

and κ = ω(εµ)1/2.
The reason for using the rescaled solutions Y is that there is a good reduction of the

Dirac equation (P + W )Y = 0 to a Schrödinger equation with no first order terms (see
[KSU09, Lemma 3.1]).

Lemma 2.1. Denote by −∆ = dδ+ δd the Hodge Laplacian acting on graded forms. We
have

(P +W )(P −W t) = −∆ +Q,

(P −W t)(P +W ) = −∆ +Q′,

(P +W ∗)(P − W̄ ) = −∆ + Q̂,
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where Q, Q′, and Q̂ are continuous potentials (endomorphisms of ΛM) with

Q = −κ2 +
1

2


∆α + 1

2
〈dα, dα〉 0 • •
0 • • •
• • ∆β + 1

2
〈dβ, dβ〉 0

• • 0 •

 ,

Q′ = −κ2 − 1

2


∆β − 1

2
〈dβ, dβ〉 0 0 0
• • • •
0 0 ∆α− 1

2
〈dα, dα〉 0

• • • •

 ,

and • denote bounded coefficients involving derivatives of ε and µ up to second order.

Remarks. The coefficient functions denoted simply by a “bullet” above are not needed
in our argument. They are easy to compute though if one so wishes. Also observe that
due to this lemma, if Z is a solution of (−∆+ Q̂)Z = 0, then Y := (P −W̄ )Z would solve

(P +W ∗)Y = 0. Finally, the precise form of Q̂ is not needed in this work, so we will not
bother the reader by writing it out explicitly.

The above arguments can be used to reduce the Maxwell equations to the Hodge Dirac
and Schrödinger equations. We now want to give a similar reduction on the level of
boundary measurements. In fact, we will prove an integral identity showing - see Lemma
2.3 - that if the partial Cauchy data for two sets of coefficients coincide, then the dif-
ference of the corresponding potentials Qj is orthogonal to a product of solutions to the
Schrödinger and Dirac equations. This result is a version of [KSU09, Lemma 3.2] adapted
to the partial data problem.

If U and V are graded forms on M , we use the notations

(U |V ) =

∫
M

3∑
j=0

〈U j, V
j〉 dV, (U |V )∂M =

∫
∂M

3∑
j=0

〈U j, V
j〉 dS.

for the L2–inner products. We also use the same notation in the case when U and V
are in appropriate dual Sobolev spaces. Note that in the second expression, U and V do
not have be graded forms of the manifold ∂M (for instance, the 1-form parts may have a
normal component). We have the integration by parts formulas ([Ta99, Section 2.10])

(dU |V ) = (ν ∧ U |V )∂M + (U |δV ),(2.2)

(δU |V ) = −(iνU |V )∂M + (U |dV )(2.3)

where ν is the outward normal and iν is the contraction with ν. Also, we define

H∆ = {u ∈ L2(M,ΛM); ∆u ∈ L2(M,ΛM)}
and equip this with the natural graph norm

‖u‖2
H∆

= ‖u‖2 + ‖∆u‖2.

Here and in the rest of this paper, notation of the form ‖ · ‖ and ‖ · ‖M should be taken
to indicate the relevant L2 norm unless otherwise specified.

One feature of the method in this paper is that we need to deal with pairs of solutions,
where one solution can be very nonsmooth (only H−1 in general). For this reason we will
need the following result concerning smooth approximation and traces in the H∆ space.
The proof is given in the appendix.
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Lemma 2.2. The set C∞(M,ΛM) is dense in H∆. The trace maps u 7→ (tu, tδu),
u 7→ (t ∗ u, tδ ∗ u), u 7→ (tu, tdu) and u 7→ (t ∗ u, td ∗ u), initially defined on C∞(M,ΛM),
have unique bounded extensions as maps

H∆ → H−1/2(∂M,Λ∂M)×H−3/2(∂M,Λ∂M).

Given a pair of electromagnetic parameters {εj, µj}, j = 1, 2, we define the correspond-
ing matrix potentials Vj, Qj and Wj be replacing ε and µ respectively with εj and µj in
definitions above. The next result is the main integral identity.

Lemma 2.3. Let εj, µj ∈ C3(M), j = 1, 2, be complex functions with positive real parts,
and assume that

(2.4) ε1 = ε2, µ1 = µ2 to second order on ∂M.

Let Γ2 be any open subset of ∂M , and assume that C∂M,Γ2

1 = C∂M,Γ2

2 . Then

((Q1 −Q2)Z1|Y2) = 0

for any graded forms Z1 ∈ H3 and Y2 ∈ H−1 such that

(−∆ +Q1)Z1 = 0,

Y1 = (P −W t
1)Z1 satisfies Y 0

1 = Y 3
1 = 0,

and

Y2 = (P − W̄2)Z2 for some Z2 ∈ H∆ with (−∆ + Q̂2)Z2 = 0,

supp(tY2) ⊂ Γ2.

Remark. By the assumptions for εj and µj, we have that Q1 − Q2 is C1 and vanishes
on ∂M . Thus (Q1 −Q2)Z1 is H1 and vanishes on ∂M , and the pairing ((Q1 −Q2)Z1|Y2)
where Y2 ∈ H−1 makes sense. Note also that since Z2 ∈ H∆, Lemma 2.2 guarantees that
the boundary value tY2 exists as an element of H−3/2. Here, Z1 and Y1 need to be related
to a solution for Maxwell, but Y2 only needs to solve a Dirac equation. This simplifies
the recovery of coefficients.

Proof of Lemma 2.3. By the discussion earlier in this section, if Y1 is as stated, then

Y1 ∈ H2 solves (P +W1)Y1 = 0 and gives rise to a H2 solution X1 =
(

0 ∗H1 0 E1

)t
of the Maxwell equations (P +V1)X1 = 0. By the assumption on Cauchy data sets, there

is X̃2 =
(

0 ∗H̃2 0 Ẽ2

)t ∈ H2 satisfying

(P + V2)X̃2 = 0,

tẼ2|∂M = tE1|∂M , tH̃2|Γ2 = tH1|Γ2 .

Let Ỹ2 ∈ H2 be the solution of (P +W2)Ỹ2 = 0 corresponding to X̃2.
We first claim that the assumption on Cauchy data sets implies

(2.5) ((W1 −W2)Y1|Y2)M = 0.

Here, Y2 is only in H−1 since Y2 = (P − W̄2)Z2 where Z2 ∈ H∆, but the pairing is well
defined because the quantity (W1−W2)Y1 is in H1 with vanishing boundary values since
ε1 = ε2 and µ1 = µ2 to second order on ∂M . To deal with the nonsmooth solution Y2,
we use Lemma 2.2 and choose Zl ∈ C∞(M,ΛM) with Zl → Z2 in H∆ as l → ∞, which
implies in particular that (P − W̄2)Zl → Y2 in H−1. Noting that

(P +W2)(Y1 − Ỹ2) = (W2 −W1)Y1,
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we compute

((W2 −W1)Y1|Y2)M = lim
l

((W2 −W1)Y1|(P − W̄2)Zl)M

= lim
l

((P +W2)(Y1 − Ỹ2)|(P − W̄2)Zl)M

= lim
l

[
1

i
((ν ∧+iν)(Y1 − Ỹ2)|(P − W̄2)Zl)∂M + (Y1 − Ỹ2|(P +W ∗

2 )(P − W̄2)Zl)M

]
.

In the last line we used (2.2) and (2.3). For the last term, we have

(2.6) (P +W ∗
2 )(P − W̄2)Zl = (−∆ + Q̂2)Zl → (−∆ + Q̂2)Z2 = 0 in L2

so the second term in brackets goes to zero as l →∞. For the boundary term, we claim
that

t(Y1 − Ỹ2) = 0 on ∂M(2.7)

t ∗ (Y1 − Ỹ2) = 0 on Γ2(2.8)

tY2 = 0 on Γc2.(2.9)

Assuming these, one has ν ∧ (Y1 − Ỹ2)|∂M = 0 and iν(Y1 − Ỹ2)|Γ2 = 0, and the boundary
term becomes

lim
l

1

i
(Y1 − Ỹ2|ν ∧ (P − W̄2)Zl)Γc

2
.

Here t(P − W̄2)Zl|Γc
2
→ tY2|Γc

2
= 0 in H−3/2 by Lemma 2.2. Since Y1 − Ỹ2|∂M is in H3/2,

the limit of the pairing on Γc2 is well defined and in fact zero. This proves (2.5) modulo
(2.7)–(2.9). To check (2.7), we see that

ν ∧ (Y1 − Ỹ2) = ( 0 ε
1/2
1 ν ∧ (E1 − Ẽ2) ∗µ1/2

1 〈ν,H1 − H̃2〉 0 ).

From the hypotheses, ν ∧ (E1 − Ẽ2)|∂M = 0, and using the surface divergence as in the
proof of [KSU09, Lemma 3.2], we also have 〈ν,H1 − H̃2〉|∂M = 0. Therefore (2.7) is
satisfied. Meanwhile,

ν ∧ ∗(Y1 − Ỹ2) = ( 0 µ
1/2
1 ν ∧ (H1 − H̃2) ∗ε1/2

1 〈ν, E1 − Ẽ2〉 0 ).

From the hypotheses, ν ∧ (H1 − H̃2)|Γ2 = 0, and using the surface divergence as in the
proof of [KSU09, Lemma 3.2], we also have 〈ν, E1−Ẽ2〉|Γ2 = 0. Therefore (2.8) is satisfied.
The equation (2.9) follows straight from the definition of Y2.

Having proved (2.5), we next claim that

(2.10) ((W1 −W2)Y1|Y2)M = ((Q1 −Q2)Z1|Y2)M .

Note that the pairing on the right is well defined, since (Q1−Q2)Z1 is in H1 with vanishing
boundary values. Since Qj = Wj ◦ P − P ◦W t

j −WjW
t
j , we have

(W1 −W2)Y1 = (W1 −W2)(P −W t
1)Z1

= (Q1 + P ◦W t
1)Z1 − (Q2 + P ◦W t

2 +W2(W t
2 −W t

1))Z1

= (Q1 −Q2)Z1 + (P +W2)W t
1Z1 − (P +W2)W t

2Z1.
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Choosing again Zl ∈ C∞(M,ΛM) with Zl → Z2 in H∆, we have

((W1 −W2)Y1|Y2)M = lim
l

((W1 −W2)Y1|(P − W̄2)Zl)M

= lim
l

[
((Q1 −Q2)Z1|(P − W̄2)Zl)M + ((P +W2)(W t

1 −W t
2)Z1|(P − W̄2)Zl)M

]
.

The first term in brackets has limit ((Q1 −Q2)Z1|Y2)M . After integrating by parts using
(2.2) and (2.3), the second term becomes

lim
l

[
1

i
((ν ∧+iν)(W

t
1 −W t

2)Z1|(P − W̄2)Zl)∂M + ((W t
1 −W t

2)Z1|(−∆ + Q̂2)Zl)M

]
.

Since W t
1 = W t

2 at ∂M to first order, the boundary term vanishes. Also, by (2.6) the
second term has limit zero. This proves (2.10), and combining this with (2.5) proves the
lemma. �

We now explain the connection between the Cauchy data set and the admittance map,
which is a standard way for expressing boundary measurements for Maxwell equations.
First we introduce some function spaces. The surface divergence of f ∈ Hs(∂M,Λ1∂M)
is given by

Div(f) = 〈d∂Mf, dS〉
where dS is the volume form on ∂M . Define the spaces

H2
Div(M) = {u ∈ H2(M,Λ1M) ; Div(tu) ∈ H3/2(∂M)},

TH
3/2
Div(∂M) = {f ∈ H3/2(∂M,Λ1∂M) ; Div(f) ∈ H3/2(∂M)}.

By [KSU09, Theorem A.1 and subsequent remark], there is a discrete set Σ ⊂ C such that

if ω ∈ C \ Σ, then for any f ∈ TH3/2
Div(∂M) the Maxwell equations (1.1) have a unique

solution (E,H) ∈ H2
Div(M)×H2

Div(M) satisfying tE = f on ∂M . Assume that ω is not a

resonant frequency, and let Γ1 and Γ2 be nonempty open subsets of ∂M . If TH
3/2
Div,c(Γ1)

consists of those elements in TH
3/2
Div(∂M) that are compactly supported in Γ1, we may

define the partial admittance map

ΛΓ1,Γ2 : TH
3/2
Div,c(Γ1)→ TH

3/2
Div(Γ2), f 7→ tH|Γ2

where (E,H) is the unique solution of (1.1) satisfying tE = f on ∂M . Note also that any
solution (E,H) ∈ H2 ×H2 of (1.1) is in H2

Div ×H2
Div, by using the surface divergence as

in [KSU09, Lemma 3.2].
Now if ω is not a resonant frequency, it is clear that CΓ1,Γ2 is the graph of ΛΓ1,Γ2 :

CΓ1,Γ2 = {(f,ΛΓ1,Γ2f) ; f ∈ TH3/2
Div,c(Γ1)}.

Thus CΓ1,Γ2 and ΛΓ1,Γ2 are equivalent information in this case.

3. Carleman estimates and CGO solutions

Let (M, g) be an admissible 3-manifold as in Definition 1.1, so that M ⊂⊂ R×M0 and
g = c(e⊕ g0) where (M0, g0) is simple. Let (x1, x

′) be global coordinates in R×M0, and
let ϕ(x1, x

′) = x1 be the natural LCW on M .
It is convenient to begin with a reduction to the case where c ≡ 1. This can be done

using the following lemma from [KSU09].
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Lemma 3.1. ([KSU09], Lemma 7.1) Let (M, g) be a compact Riemannian 3-manifold
with smooth boundary, and let ε and µ be C2 functions on M with positive real part. Let
c be any positive smooth function on M , and let CΓ1,Γ2

g,ε,µ represent the Cauchy data for ε, µ
with respect to the metric g. Then

CΓ1,Γ2
cg,ε,µ = CΓ1,Γ2

g,c1/2ε,c1/2µ
.

Proof. Lemma 7.1 in [KSU09] is actually phrased in terms of the admittance map, which
requires the additional condition that solutions to the Maxwell equations are unique.
However, the same proof works when the lemma is phrased in terms of the Cauchy data.
The key fact is that for a k-form u,

∗cgu = c3/2−k ∗g u,
so (E,H) satisfies (1.1) with metric cg and coefficients ε and µ if and only if (E,H)
satisfies (1.1) with metric g and coefficients c1/2ε and c1/2µ. �

Thus it suffices to prove Theorem 1.1 in the case where c ≡ 1. We will from now on
assume that g = e ⊕ g0 where (M0, g0) is a simple 2-manifold, and that we are working

with the LCW ϕ(x) = x1. We will also assume that (M̂0, g0) is another simple 2-manifold
which is slightly larger than M0.

As indicated in Lemma 2.3, we will need to construct two types of complex geometrical
optics solutions. First we need sufficiently regular solutions to the Maxwell equations, with
no restrictions on their boundary values. By Section 2 it suffices to construct solutions Z
to the equation (−∆ + Q)Z = 0 in M such that Y = (P −W t)Z satisfies Y 0 = Y 3 = 0.
Such solutions were obtained in [KSU09, Theorem 6.1a]. Second, we need solutions of the
Dirac equation (P +W ∗)Y = 0 satisfying tY |Γ = 0. Here Γ ⊂ ∂M is meant to be a open
neighbourhood of ∂M \ F̃ , where F̃ is as in the statement of Theorem 1.1. By proper
choice of Γ, we can ensure that

(3.1) 〈dϕ, ν〉 < 0 on Γ.

The next theorem states the existence and basic properties of both types of complex
geometrical optics solutions.

Theorem 3.1. Let ε, µ ∈ C3(M) have positive real parts, and let W and Q be as in

Section 2. Fix p ∈ M̂0 \M0, and let (r, θ) be polar normal coordinates in (M̂0, g0) with
center p, so that (x1, r, θ) are global coordinates near M . Let s0, t0 be real constants, let
λ > 0, and let b(θ) ∈ C∞(S1).

(a) For |τ | sufficiently large and outside a countable subset of R, one can construct
solutions to the equation (−∆ +Q)Z = 0 in M satisfying

(P +W )Y = 0, Y = (P −W t)Z,

Y 0 = Y 3 = 0

where Z ∈ H3(M,ΛM) has the form

Z = e−τ(x1+ir)|g(r, θ)|−1/4eiλ(x1+ir)b(θ)


s0

0
t0 ∗ 1

0

+ e−τ(x1+ir)R(3.2)

with ‖R‖Hs ≤ Cτ s−1 for 0 ≤ s ≤ 2.
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(b) Let Γ ⊂ ∂M be an open set so that (3.1) holds for ϕ(x) = x1. For τ > 0 sufficiently

large, there exists a solution Z ∈ H∆ to (−∆ + Q̂)Z = 0 in M so that

(P +W ∗)Y = 0, Y = (P − W̄ )Z,

and Y has the form

Y = eτ(x1+ir)|g(r, θ)|−1/4


s0

−is0dx
1 ∧ dr

t0 ∗ 1
it0 ∗ dx1 ∧ dr

+ eτ(x1+ir)(R̃ +R′)(3.3)

with ‖R̃‖H−1 ≤ Cτ−3/2, ‖R′‖L2 ≤ Cτ−1/2, and Y satisfies the boundary condition

tY |Γ = 0.

Proof of Theorem 3.1(a). It is proved in [KSU09, Theorem 6.1a] that there is a solution
Z ∈ H2(M,ΛM) of this form. That theorem only states L2 bounds for R, but the proof
of the theorem relies on [KSU09, Proposition 5.1] which actually gives the Hs bounds for
0 ≤ s ≤ 2. It remains to show that under the assumption ε, µ ∈ C3(M) (which implies
Q ∈ C1) one has in fact Z ∈ H3(M,ΛM). This follows from interior elliptic regularity
since the solution in [KSU09, Theorem 6.1a] is constructed in a neighbourhood of M , and
Z satisfies −∆Z = −QZ where QZ ∈ H1 in this neighbourhood. �

In the remainder of this section we will prove Theorem 3.1(b). This will be done by

constructing a solution for the equation (−∆ + Q̂)Z = 0 of the form

Z = eτx1(A+R), tZ|Γ = t(δ + iW̄ )Z|Γ = 0,(3.4)

for some appropriate amplitude A chosen so that

e−τx1(−∆ + Q̂)eτx1A = OL2(M)(1).

Then Y = (P−W̄ )Z solves (P +W ∗)Y = 0 and satisfies the desired boundary conditions.
The remainder term R in (3.4) will be constructed using the following Carleman esti-

mate for graded forms with suitable boundary conditions. If u is a graded form we write
u⊥ = ν ∧ iνu and u|| = u − u⊥. The proof of the following estimate was first given in
[CST13]. Here ‖ · ‖ = ‖ · ‖M and ‖ · ‖∂M are the relevant L2 norms in M and ∂M .

Proposition 3.2. ([CST13, Theorem 7.2]) Let (M, g) be an admissible manifold as in

Definition 1.1 and ϕ(x) = x1 a LCW. Let Q̂ and σ be L∞ endomorphisms on the space
of graded forms. There is C > 0 such that for all smooth graded forms u satisfying

teτϕδe−τϕu+ tσu⊥|Γ = tu|Γ = 0,

u|∂M\Γ = ∇νu|∂M\Γ = 0,

and for all τ ≥ C, we have the following estimate

τ‖u‖+‖∇u‖+ τ 3/2‖tiνu‖∂M +
√
τ‖∇′tiνu‖∂M +

√
τ‖t∇νu||‖∂M ≤ C‖eτϕ(−∆+ Q̂)e−τϕu‖.

Proposition 3.2 relies on the fact that (3.1) holds on Γ – this is one of the key reasons
for choosing F̃ as we did in Theorem 1.1.
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3.1. Construction of the amplitude. If Q̂ is an L∞ endomorphism of ΛM , we look
for a solution Z of

(−∆ + Q̂)Z = 0 in M

having the form

Z = eτx1(A+R)

where τ > 0 is large. To this end we will construct an amplitude A such that

‖e−τx1∆eτx1A‖M , ‖A‖M = OL2(M)(1).

Recall that since (M, g) is an admissible manifold and we have reduced to the case c = 1,
the metric can be written globally as g = e ⊕ g0 for some conformal factor c and metric
g0 on the simple 2-dimensional manifold M0.

We now construct the amplitude A mentioned above.

Proposition 3.3. For any smooth functions bj, bjr, b
j
θ ∈ C∞(S1) there exist graded forms

A = A0 + A1 + ∗B1 + ∗B0 satisfying

‖e−τx1∆eτx1A‖M = O(1), ‖A‖M = O(1)

of the form

A0 = |g0|−1/4eiτrb0(θ),

A1 = |g0|−1/4eiτrb1(θ)dx1 + eiτr(|g0|−1/4b1
r(θ) dr + |g0|1/4b1

θ(θ) dθ),

B0 = |g0|−1/4eiτrb3(θ),

B1 = |g0|−1/4eiτrb2(θ)dx1 + eiτr(|g0|−1/4b2
r(θ) dr + |g0|1/4b2

θ(θ) dθ).

Proof. Any 1-form A1 on M may be written as

Ã1 = A1
1 dx

1 + (A1)′

with A1
1 = 〈A, dx1〉 and (A1)′ is a 1-form on M0 that contains x1 as a parameter. If A0 is

a 0-form and A1 is a 1-form, we have

∆gA
0 = (∂2

1 + ∆x′)A
0,

∆gA
1 = (∆gA

1
1) dx1 + ∂2

1(A1)′ + ∆x′(A
1)′

where ∆x′ is the Hodge Laplacian on (M0, g0).
We compute the conjugated Hodge Laplacian acting on 0-forms and 1-forms,

e−τx1(−∆g)e
τx1A0 = (−∂2

1 − 2τ∂1 − τ 2 −∆x′)A
0,

e−τx1(−∆g)e
τx1A1 =

[
(−∂2

1 − 2τ∂1 − τ 2 −∆x′)A
1
1

]
dx1

+(−∇2
∂1
− 2τ∇∂1 − τ 2 −∆x′)(A

1)′.

We now make the simplifying assumption that A0 and A1 only depend on x′. Then the
above expressions simplify to

e−τx1(−∆g)e
τx1A0 = (−∆x′ − τ 2)A0,

e−τx1(−∆g)e
τx1A1 =

[
(−∆x′ − τ 2)A1

1

]
dx1 + (−∆x′ − τ 2)(A1)′.
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It is enough to arrange that

‖(−∆x′ − τ 2)A0‖M0 = O(1), ‖A0‖M0 = O(1),(3.5)

‖(−∆x′ − τ 2)A1
1‖M0 = O(1), ‖A1

1‖M0 = O(1),

‖(−∆x′ − τ 2)(A1)′‖M0 = O(1), ‖(A1)′‖M0 = O(1).

The construction for the scalar parts A0 and A1
1 is identical: we look for a WKB type

quasimode

A0 = eiτψa

and note that

(−∆x′ − τ 2)A0 = eiτψ
[
τ 2(|dψ|2 − 1)a− iτ(2∇∇ψa+ (∆ψ)a)−∆a

]
.

In order to satisfy (3.5), we need ψ and a to satisfy the eikonal equation |dψ|2−1 = 0, and

the transport equation 2∇∇ψa + (∆ψ)a = 0. To find ψ, let (M̂0, g0) be a slightly larger

simple manifold than (M0, g0), let p ∈ M̂0 \M0, let (r, θ) be polar normal coordinates in

(M̂0, g0) with center p, and choose

ψ(r, θ) = r.

In these coordinates, the metric has the form

g0(r, θ) =

(
1 0
0 m(r, θ)

)
for some smooth positive function m. It follows that

|dψ|2 = 1.

We also have ∇ψ = ∂r and ∆ψ = 1
2
∂r(log|g0|) where |g0(r, θ)| is the determinant of g0.

The transport equation becomes

2∂ra+
1

2
∂r(log|g0|)a = 0

and it has the solution

a = |g0|−1/4b(θ)

where b can be any function in C∞(S1). Therefore, setting A0 = |g0|−1/4eiτrb0(θ), the first
line of (3.5) is satisfied. A similar choice for A1

1, substituting b1 for b0, would satisfy the
second line of (3.5).

Moving on to (A1)′, we look for an ansatz of the form

(A1)′ = eiτψa′, a′ = ar dr + aθ dθ.

We have

(−∆x′ − τ 2)(A1)′ = eiτψ
[
τ 2(|dψ|2 − 1)a′ − iτ [2∇∇ψa′ + (∆ψ)a′]−∆a′

]
.

Choosing the same function ψ(r, θ) = r as above we have |dψ|2 = 1. Since

∇∂rdr = 0, ∇∂rdθ = −1

2
∂r(log|g0|) dθ,
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the transport equations for ar and aθ become

2∂rar +
1

2
∂r(log|g0|)ar = 0,

2∂raθ −
1

2
∂r(log|g0|)aθ = 0.

These have the solutions

ar = |g0|−1/4br(θ), aθ = |g0|1/4bθ(θ)

for any bθ, br ∈ C∞(S1). Setting Ã′ = eiτr(|g0|−1/4b1
r(θ)dr + |g0|1/4b1

θ(θ)dθ), the third line
of (3.5) is satisfied.

Now we can use the fact that ∗ commutes with ∆ to construct B0 and B1, with the
same asymptotics, and finish the proof. �

3.2. Construction of the remainder. We now construct the remainder term R with
the appropriate boundary conditions and asymptotics in τ . More precisely we need to
construct R to satisfy

e−τx1(−∆ + Q̂)eτx1R = −e−τx1(−∆ + Q̂)eτx1A

with boundary conditions

tR|Γ = −tA|Γ, t
(
e−τx1δ(eτx1R) + iW̄R

)
|Γ = −t

(
e−τx1δ(eτx1A) + iW̄A

)
|Γ.

The first step in constructing such an R is the following solvability result similar to
[CST13, Proposition 7.3], obtained from Proposition 3.2. Here we write ∆ϕ = eτϕ∆e−τϕ.

Proposition 3.4. Let Q̂ and W be C1 endomorphisms on M acting on graded forms.
If τ > 0 is large, for any graded forms F ∈ L2(M,ΛM) and f1, f2 ∈ C∞(M,ΛM) there
exists a solution u ∈ L2(M,ΛM) ∩ e−τϕH∆ to

(−∆−ϕ + Q̂)u = F

tu|Γ = tf1|Γ,
(e−τϕtδeτϕu+ tWu⊥)|Γ = (e−τϕtδeτϕf2 + tW (f2)⊥)|Γ

(3.6)

and which satisfies the estimate

‖u‖M ≤
C

τ

(
‖F‖M +

1√
τ
‖e−τϕtδeτϕf2 + tW (f2)⊥‖∂M +

√
τ‖tf1‖∂M

)
.(3.7)

Note that the boundary conditions in (3.6) make sense because u ∈ e−τϕH∆ guarantees
that the traces in (3.6) are well defined; see Lemma 2.2.

Proof. Let H be the subspace of L2(M,ΛM) defined by

H := {(−∆ϕ + Q̂∗)v | v ∈ C∞, tv = 0, eτϕtδ(e−τϕv) = −tiνW ∗iνv, v|Γc = ∇Nv|Γc = 0}

Define on H the linear operator

L((−∆ϕ + Q̂∗)v) := (v|F )M + (eτϕiνde
−τϕv|tf1)Γ + (iνv|e−τϕtδ(eτϕf2) + tW (f2)⊥)Γ.
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We see that L is well defined and bounded, since by Proposition 3.2 and by the fact that
tiνdv = −∇′tiνv for v as above [CST13, Lemma 3.4], the quantity |L(w)| is bounded by

‖v‖M‖F‖M +
‖teτϕiνde−τϕv‖Γ√

τ

√
τ‖tf1‖Γ +

√
τ‖iνv‖Γ

‖e−τϕtδ(eτϕf2) + tW (f2)⊥‖Γ√
τ

≤ C

τ
‖(−∆ϕ + Q̂∗)v‖M

(
‖F‖M +

√
τ‖tf1‖Γ +

1√
τ
‖e−τϕtδ(eτϕf2) + tW (f2)⊥‖Γ

)
.

By Hahn-Banach, there exists u ∈ L2 with the estimate

‖u‖M ≤
C

τ

(
‖F‖M +

√
τ‖tf1‖Γ +

1√
τ
‖e−τϕtδ(eτϕf2) + tW (f2)⊥‖Γ

)
satisfying

((−∆ϕ + Q̂∗)v|u) = L((−∆ϕ + Q̂∗)v)

= (v|F )M + (iνd(e−τϕv)|t(eτϕf1))Γ + (iν(e
−τϕv)|tδ(eτϕf2) + eτϕtW (f2)⊥)Γ

for all v as in the definition of H.
We consider first those v which are compactly supported in the interior of M to see

that u solves (−∆−ϕ+ Q̂)u = F . Thus in particular u ∈ e−τϕH∆, so the traces of eτϕu are
well defined by Lemma 2.2. Now we can integrate by parts using (2.2), (2.3), the relation
eτϕtδ(e−τϕv) = −iνW ∗iνv, and the fact that v vanishes to first order on Γc, to see that
on the boundary u satisfies

(teτϕu|iνd(e−τϕv))Γ + (te−τϕδ(eτϕu)|tiνv)Γ + (iνu|iνW ∗iνv)Γ

= (teτϕf1|iνd(e−τϕv))Γ + (te−τϕδ(eτϕf2) + tW (f2)⊥|tiνv)Γ

which becomes

(teτϕu|iνd(e−τϕv))Γ + (te−τϕδ(eτϕu) + tWu⊥|tiνv)Γ

= (teτϕf1|iνd(e−τϕv))Γ + (te−τϕδ(eτϕf2) + tW (f2)⊥|tiνv)Γ

for all v as in the definition of H. Now for all ψ ∈ Ωk+1(M) with supp(iνψ) ⊂ Γ, we may
choose v ∈ Ωk(M) such that

v|∂M = 0, tδ(e−τϕv) = 0, iνd(e−τϕv) = iνψ

(See Lemma 3.3.2 of [Sc95].) A brief computation shows that v vanishes to first order on
Γc and can be used in the above identity, which gives

(teτϕu|iνψ)Γ = (teτϕf1|iνψ)Γ

whenever supp(iνψ) ⊂ Γ. Therefore we see that teτϕu = teτϕf1 on Γ and

(te−τϕδ(eτϕu) + tWu⊥|tiνv)Γ = (te−τϕδ(eτϕf2) + tW (f2)⊥|tiνv)Γ

for all v as in the definition of H. Applying an argument similar to [Sc95, Lemma 3.3.2]
(see also Lemma 5.3) again allows us to conclude that

e−τϕtδ(eτϕu) + tWu⊥ = te−τϕδ(eτϕf2) + tW (f2)⊥

on Γ. �

This gives the following existence result for complex geometrical optics solutions with
boundary conditions.
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Proposition 3.5. Let Q̂ and W be C1 endomorphisms acting on graded forms. For τ > 0
sufficiently large there exist solutions to the equation

(−∆ + Q̂)Z = 0

of the form
Z = eτx1(A+R),

with boundary conditions

tZ|Γ = 0, t(δZ + iW̄Z⊥)|Γ = 0

where A is as in Proposition 3.3 with R ∈ L2∩e−τx1H∆ satisfying the estimate ‖R‖ ≤ C√
τ
.

Proof. By Proposition 3.3, the L2 norm of F := e−τx1(−∆ + Q̂)eτx1A is O(1) as τ →∞.
Now apply Proposition 3.4 to obtain R ∈ L2 ∩ e−τx1H∆ solving

e−τx1(−∆ + Q̂)eτx1R = −F,
tR|Γ = −tA|Γ,

t(e−τx1δeτx1R + iW̄R⊥)|Γ = −t(e−τx1δeτx1A+ iW̄A⊥)|Γ

with the estimates

‖R‖M ≤ C

τ

(
‖F‖M +

√
τ‖tA‖∂M +

1√
τ
‖e−τx1tδeτx1A+ tiW̄A⊥‖∂M

)
≤ C√

τ
.

�

Proof of Theorem 3.1(b). By Proposition 3.5, there is a solution Z0 ∈ H∆ of the equation

(−∆ + Q̂)Z0 = 0 satisfying

Z0 = eτx1(A+R), tZ0|Γ = t(δ + iW̄ )Z0|Γ = 0

where the amplitude A is chosen to be

A = eiτr|g|−1/4b(θ)ζ2

with ζ2 = −i(s0 dx
1 + t0 ∗ dx1) where s0, t0 are real constants.

We define Z := 1
τ
Z0, so Z will solve the same equation as Z0 with the same boundary

conditions. Then Y := (P − W̄ )Z will solve (P +W ∗)Y = 0 in the sense of distributions.
Since tZ|Γ = 0, we have Z|Γ = Z⊥|Γ and tdZ|Γ = 0 by Lemma 5.1. Consequently

tY |Γ =
1

i
(tdZ − tδZ − itW̄Z)|Γ = −1

i
t(δZ + iW̄Z⊥)|Γ = 0.

Finally, we observe that

Y =
1

τ
(P − W̄ )(eτ(x1+ir)|g|−1/4b(θ)ζ + eτx1R)

=
1

τ
P (eτ(x1+ir)|g|−1/4b(θ)ζ)− 1

τ
W̄ eτ(x1+ir)|g|−1/4b(θ)ζ +

1

τ
[P, eτx1 ]R

+ eτx1
1

τ
(P − W̄ )(R)︸ ︷︷ ︸

R̃

.
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A direct computation (see [KSU09, Proof of Theorem 6.1(b)]) gives the result. �

4. Recovery of coefficients

Here we use the solutions constructed in Theorem 3.1 to recover the coefficients of the
Maxwell equations from partial boundary measurements. The argument is essentially the
same as in [KSU09].

Proof of Theorem 1.1. Let Z1 be the solution to (−∆+Q1)Z1 = 0 constructed in Theorem
3.1(a) having the form

Z1 = e−τ(x1+ir)|g|−1/4eiλ(x1+ir)b(θ)


s0

0
t0 ∗ 1

0

+ e−τ(x1+ir)R.

Choose an open set F1 ⊂ ∂M such that Fϕ ⊂ F1 ⊂⊂ F̃ , and let Γ = ∂M \F 1. Then (3.1)
holds, and we can take Y2 to be the solution to (P +W ∗

2 )Y2 = 0 constructed in Theorem
3.1(b), satisfying tY2|Γ = 0 and having the form

Y2 = eτ(x1−ir)|g|−1/4


s0

is0dx
1 ∧ dr

t0 ∗ 1
−it0 ∗ dx1 ∧ dr

+ eτ(x1−ir)(R̃ +R′).

(In fact we solve (P − W̄ ∗
2 )Y = 0 where Y is as in Theorem 3.1(b), and we let Y2 = Ȳ .)

Here s0, t0, λ are any real constants with λ > 0, b(θ) is any function in C∞(S1), and τ > 0
can be taken arbitrarily large.

By taking Γ2 = F̃ in Lemma 2.3 we have supp(tY2) ⊂ Γ2. Thus we have the integral
identity

((Q1 −Q2)Z1|Y2) =

∫
M

〈(Q1 −Q2)Z1|Y2〉 dV = 0.

Writing this out term by term we have

(4.1)

∫
M

〈
(Q1 −Q2)eiλ(x1+ir)b(θ)


s0

0
t0 ∗ 1

0

 |


s0

−is0dx
1 ∧ dr

t0 ∗ 1
it0 ∗ dx1 ∧ dr


〉

+

∫
M

〈
(Q1−Q2)R|(R̃+R′)

〉
|g|1/2 +

∫
M

〈
(Q1−Q2)eiλ(x1+ir)b(θ)


s0

0
t0 ∗ 1

0

 |R̃+R′

〉
|g|1/4

+

∫
M

〈
(Q1 −Q2)R|


s0

−is0dx
1 ∧ dr

t0 ∗ 1
it0 ∗ dx1 ∧ dr


〉
|g|1/4 = 0.

Here all integrals are with respect to the 3-form |g|−1/2 dV = dx1 dr dθ.
We will argue that all terms in (4.1) except for the first one vanish as τ →∞. Indeed,

by Theorem 3.1, ‖R‖Hs ≤ Cτ s−1, ‖R̃‖H−1 ≤ Cτ−3/2, and ‖R′‖L2 ≤ Cτ−1/2. Using these
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estimates for s = 1 and s = 0 we see that the second term is O(τ−3/2). Here we use that
ε1 = ε2 and µ1 = µ2 to second order on ∂M , to have Q1 = Q2 on ∂M . By the same
estimates for s = 0 we see that the third term is O(τ−1/2) and the fourth term is O(τ−1).
Thus taking τ →∞ in (4.1) implies that

∫
M

〈
(Q1 −Q2)


s0

0
t0 ∗ 1

0

 |


s0

−is0dx
1 ∧ dr

t0 ∗ 1
it0 ∗ dx1 ∧ dr


〉
eiλ(x1+ir)b(θ) dx1 dr dθ = 0

for all real s0, t0, λ with λ > 0, and all smooth functions b(θ) ∈ C∞(S1).
The rest of the proof is identical with the proof of Theorem 1.1 in [KSU09]; we give

the argument for completeness. Let qα and qβ be the elements of Q1 −Q2, interpreted as
a 8 × 8 matrix, which correspond to the (1, 1)th and (5, 5)th elements, respectively. By
Lemma 2.1

qα =
1

2
∆(α1 − α2) +

1

4
〈dα1, dα1〉 −

1

4
〈dα2, dα2〉 − ω2(ε1µ1 − ε2µ2),

qβ =
1

2
∆(β1 − β2) +

1

4
〈dβ1, dβ1〉 −

1

4
〈dβ2, dβ2〉 − ω2(ε1µ1 − ε2µ2).

With the two choices (s0, t0) = (1, 0) and (s0, t0) = (0, 1), the special form of Q1 and Q2

in Lemma 2.1 shows that we obtain the two identities∫
M
eiλ(x1+ir)b(θ)qα(x) dx1 dr dθ = 0,∫

M
eiλ(x1+ir)b(θ)qβ(x) dx1 dr dθ = 0.

Let T = R ×M0. Since Q1|∂M = Q2|∂M , the zero extensions of qα and qβ to T \M
are continuous functions and the integrals above may be taken over T . Varying b(θ), it
follows that for all θ we have∫ ∞

0

e−λr
[∫ ∞
−∞

eiλx1qα(x1, r, θ) dx1

]
dr = 0

and similarly for qβ. Since (r, θ) are polar normal coordinates in M0, the curves r 7→ (r, θ)
are geodesics in M0. Denoting the expression in brackets by fα(r, θ) and varying the
center of polar normal coordinates in Theorem 3.1 and varying θ, we obtain that∫ ∞

0

fα(γ(r)) exp

[
−
∫ r

0

λ ds

]
dr = 0

for all geodesics γ in M0 which begin and end at points of ∂M0. This shows the vanishing
of the geodesic ray transform of the function fα with constant attenuation −λ. Since this
transform is injective on simple two-dimensional manifolds [SU11], we have fα ≡ 0 for all
λ. Thus ∫ ∞

−∞
eiλx1qα(x1, r, θ) dx1 = 0

for all λ > 0, r and θ. Uniqueness for the Fourier transform in x1 shows that qα ≡ 0 in
M . We obtain qβ ≡ 0 in M by the exact same argument.

We have arrived at the following two equations in M :

−1
2
∆(α1 − α2)− 1

4
〈d(α1 + α2), d(α1 − α2)〉+ ω2(ε1µ1 − ε2µ2) = 0,

−1
2
∆(β1 − β2)− 1

4
〈d(β1 + β2), d(β1 − β2)〉+ ω2(ε1µ1 − ε2µ2) = 0.
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Let u = (ε1/ε2)1/2 and v = (µ1/µ2)1/2. Then 1
2
(α1 − α2) = log u and 1

2
(β1 − β2) = log v,

and the equations become

−∆(log u)− (ε1ε2)−1/2〈d(ε1ε2)1/2, d(log u)〉+ ω2(ε1µ1 − ε2µ2) = 0,

−∆(log v)− (µ1µ2)−1/2〈d(µ1µ2)1/2, d(log v)〉+ ω2(ε1µ1 − ε2µ2) = 0.

Multiplying the first equation by (ε1ε2)1/2 and the second by (µ1µ2)1/2 and using that
δ(a dw) = −a∆w − 〈da, dw〉, we obtain the equations

δ((ε1ε2)1/2d(log u)) + ω2(ε1ε2)1/2ε2µ2(u2v2 − 1) = 0,

δ((µ1µ2)1/2d(log v)) + ω2(µ1µ2)1/2ε2µ2(u2v2 − 1) = 0.

Since d(log u) = u−1du, d(log v) = v−1dv, we see that u and v satisfy the semilinear
elliptic system

δ(ε2du) + ω2ε2
2µ2(u2v2 − 1)u = 0,

δ(µ2dv) + ω2ε2µ
2
2(u2v2 − 1)v = 0.

The assumptions on εj and µj on ∂M imply that u = v = 1 and ∂νu = ∂νv = 0 on ∂M .
Also, the above equations imply that the pair (ũ, ṽ) = (1, 1) is a solution of the semilinear
system in all of M . Unique continuation holds for this system (see for instance [KSU09,
Appendix B]), and we obtain u ≡ 1 and v ≡ 1 in M . This proves that ε1 ≡ ε2 and
µ1 ≡ µ2 in M as required. �

Proof of Theorem 1.2. Assume for simplicity that Ω ⊂ {x3 > 0} and that x0 = 0. Let
ϕ(x) = log |x| be an LCW in R3. As explained in [KS13, Section 3B], if one chooses new
coordinates

y1 = log |x|, y′ =
x

|x|
where y′ ∈ S2

+ = {x ∈ S2 ; x3 > 0}, then the LCW becomes ϕ(y) = y1 and the Euclidean
metric becomes

g(y) = c(y)

(
1 0
0 g0(y′)

)
where g0 is the standard metric on the sphere S2. Since manifolds {x ∈ S2

+ ; x3 ≥ c > 0}
are simple, we have reduced matters to Theorem 1.1. This proves Theorem 1.2. �

5. Appendix

For a compact oriented smooth manifold M with smooth boundary, define

H∆ = {u ∈ L2(M,ΛM) |4u ∈ L2(M,ΛM)},

where 4 is the Hodge Laplacian. We let

‖u‖2
H∆

= ‖u‖2
L2 + ‖4u‖2

L2 .

In this appendix, we will prove the following trace theorem for H∆.

Lemma 5.1. The relative and absolute trace maps u 7→ (tu, tδu) and u 7→ (t ∗ u, tδ ∗ u)
initially defined on the space C∞(M,ΛM) have extensions as bounded linear maps from
H∆ to H−1/2(∂M,Λ∂M)×H−3/2(∂M,Λ∂M). The set C∞(M,ΛM) is dense in H∆ and
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thus these extensions are unique. The trace maps u 7→ (tu, tdu) and u 7→ (t ∗ u, td ∗ u)
have extensions to the same spaces, and one has for any u ∈ H∆

t(du) = d∂M(tu),(5.1)

t(d ∗ u) = d∂M(t ∗ u).(5.2)

Lemma 2.2 follows immediately from this result. To begin the proof of Lemma 5.1, we
will need the following two lemmas. Here ν is meant to signify the normal vector field on
∂M , extended into M in a standard way.

Lemma 5.2. Let j ≥ 0. For any v ∈ Hj(M,ΛM) and f, h ∈ Hj+3/2(∂M,Λ∂M), there
is a unique u ∈ Hj+2(M,ΛM) that solves

∆u = v in M, tu = f, t ∗ u = h.

One has ‖u‖Hj+2 ≤ C(‖v‖Hj + ‖f‖Hj+3/2 + ‖h‖Hj+3/2).

Proof. This is [Sc95, Theorem 3.4.10]. �

Lemma 5.3. For any (f, h) ∈ H 3
2 (∂M,Λ∂M)×H 1

2 (∂M,Λ∂M), there is v ∈ H2(M,ΛM)
such that

‖v‖H2 . ‖f‖H3/2 + ‖h‖H1/2

and tiνv = f , tiν ∗ v = tiνd ∗ v = 0, and tiνdv = h.

Proof. Let first f = 0. Any boundary point has a neighborhood U ⊂M where boundary
normal coordinates (x1, . . . , xn) exist, so that the boundary is given by {xn = 0} and xn
coincides with the direction of ν. We first define v in U using these coordinates. Then v
is represented as a sum of objects of the form

vi1,...,ikdxi1 ∧ . . . ∧ dxik
for 1 ≤ ik ≤ n, where vi1,...,ik are functions. Moreover, h can be represented as a sum of
objects of the form

hi1,...,ikdxi1 ∧ . . . ∧ dxik ,
for 1 ≤ ik < n.

We will define vi1,...,ik to be identically zero if any ik = n, and choose the remaining
vi1,...,ik to be functions such that

vi1,...,ik = 0 and

∂νvi1,...,ik = hi1,...,ik

on U ∩ ∂M . Observe that when chosen this way all components of the form vi1,...,ikdxi1 ∧
. . .∧dxik vanish on the boundary and iνvi1,...,ikdxi1∧ . . .∧dxik vanish in a neighborhood of
the boundary. We can arrange for ‖vi1,...,ik‖H2(U) . ‖hi1,...,ik‖H1/2(U∩∂M), as an inequality
for functions. Using a suitable partition of unity we can define v near ∂M and extend
smoothly as an element v ∈ H2(M,ΛM), and so we will obtain the inequality

‖v‖H2(M,ΛM) . ‖h‖H1/2(∂M,Λ∂M)

for v and h as forms. Note that our definition is made to guarantee that v|∂M = 0,
t∇νv = h, and iνv = 0 in a neighbhorhood of the boundary of M . Now by Lemma 3.4
of [CST13],

tiνdv = t∇νv‖ + Stv‖ − d′tiνv
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where S is a bounded endomorphism on ΛM and d′ denotes the exterior derivative on
∂M . The last two terms vanish because v is zero on ∂M .

Then we are left with
tiνdv = t∇νv‖ = t∇νv = h.

Moreover, tiνv = tiν ∗ v = 0 since v is zero on the boundary of M , and tiνd ∗ v = 0 since

tiνd ∗ v = t∇ν(∗v)‖ + St(∗v)‖ − d′tiν ∗ v.
and (∗v)‖ = ∗v⊥ = 0 in a neighbourhood of the boundary. This proves the lemma when
f = 0. The next step is to consider the case where f is nonzero but h = 0. An argument
in boundary normal coordinates similar to the one above yields a form v with tiνv = f ,
tiν ∗ v = tiνd ∗ v = tiνdv = 0, and ‖v‖H2 . ‖f‖H3/2 . Combining these two cases proves
the lemma. �

Proof of Lemma 5.1. Let u, v ∈ H2(M,ΛM). Then using the integration by parts formu-
las (2.2) and (2.3) we get the identity

(5.3) (u|4v)M − (4u|v)M = (u|iνdv − ν ∧ δv)∂M + (ν ∧ δu− iνdu|v)∂M .

We can rewrite the boundary terms in terms of the relative and absolute boundary values
of u, by using the following formulas valid for any 1-form ξ and any k-form η (see for
example [CST13]):

iξη = (−1)n(k−1) ∗ ξ ∧ ∗η, ∗ ∗ η = (−1)k(n−k)η, δη = (−1)(k−1)(n−k)+1 ∗ d ∗ η,
〈∗u, ∗v〉 = 〈u, v〉, 〈ξ ∧ u, v〉 = 〈u, iξv〉, 〈iνu, v〉|∂M = 〈tiνu, tv〉

After a computation (first assuming that u and v are k-forms and then summing over k),
(5.3) can be written as

(5.4) (u|4v)M − (4u|v)M = (tu|tiνdv)∂M + (t ∗ u|tiνd ∗ v)∂M

+ (tδu|tiνv)∂M + (tδ ∗ u|tiν ∗ v)∂M .

Now if u ∈ H∆, we wish to define the relative boundary values of u by (5.4). Given

any (f, h) ∈ H 3
2 (∂M,Λ∂M)×H 1

2 (∂M,Λ∂M), we use Lemma 5.3 to choose v = vf,h such
that tiνv = f , tiνdv = h, tiν ∗ v = tiνd ∗ v = 0 and ‖v‖H2 . ‖f‖H3/2 + ‖h‖H1/2 . By (5.4)
we have for any u ∈ H2(M,ΛM)

(tu|h)∂M = (u|4v0,h)M − (4u|v0,h)M ,

(tδu|f)∂M = (u|4vf,0)M − (4u|vf,0)M .

Since

‖tu‖H−1/2 = sup
‖h‖

H1/2=1

|(tu|h)∂M |, ‖tδu‖H−3/2 = sup
‖f‖

H3/2=1

|(tδu|f)∂M |,

it follows that

‖tu‖H−1/2 + ‖tδu‖H−3/2 . ‖u‖H∆
, u ∈ H2(M,ΛM).

Thus for any u ∈ H∆, we may use the above formulas to define (tu, tδu) as an element
of H−1/2(∂M,Λ(∂M)) × H−3/2(∂M,Λ(∂M)). Applying this argument to ∗u shows that
(t∗u, tδ ∗u) are well defined for u ∈ H∆ in a similar way. The identity (5.4) then remains
true for any u ∈ H∆ and any w ∈ H2(M,ΛM).

We now claim that C∞(M,ΛM) is dense in H∆. Given this fact, it follows that the
maps u 7→ (tu, tδu) and u 7→ (t∗u, tδ ∗u) are bounded from H∆ to H−1/2×H−3/2 and are



22 CHUNG, OLA, SALO, AND TZOU

uniquely defined by the corresponding maps acting on C∞. Finally, (5.1) and (5.2) are
true for u ∈ C∞(M,ΛM) by the fact that d commutes with the pull-back to the boundary
t and thus they extend to u ∈ H∆ by density.

It remains to show that C∞(M,ΛM) is dense in H∆. Suppose that u ∈ H∆. Then
4u ∈ L2(M,ΛM) and tu, t∗u ∈ H−1/2(∂M,Λ∂M), so for any ε > 0 there exist v ∈ Ω(M)
and f, h ∈ Ω(∂M) such that

‖4u− v‖L2 + ‖f − tu‖H−1/2 + ‖h− t ∗ u‖H−1/2 < ε.(5.5)

Now by Lemma 5.2 there exists a smooth form u′ such that 4u′ = v, with tu′ = f
and t ∗ u′ = h. Then if w ∈ H2(M,ΛM) satisfies tw = t ∗ w = 0, which implies
tiνw = tiν ∗ w = 0, we get by (5.4) that

(u− u′|4w)M = (4(u− u′)|w)M + (t(u− u′)|tiνdw)∂M + (t ∗ (u− u′)|tiνd ∗ w)∂M .

Combining this with inequality (5.5) we obtain

|(u− u′|4w)M | ≤ Cε‖w‖H2 .

Now by Lemma 5.2 every form z ∈ L2(M,ΛM) can be written as 4w for some w with
tw = t ∗ w = 0. Moreover, we will have

‖w‖H2 . ‖z‖L2 .

Thus we get that
‖u− u′‖L2 . ε

and hence
‖u− u′‖H∆

. ε.

Therefore there is a sequence of smooth forms uk such that uk → u in H∆. �
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[CP92] D. Colton, L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for
electromagnetic waves, Arch. Rational Mech. Anal. 119 (1992), 59–70.

[DKSU09] D. Dos Santos Ferreira, C. E. Kenig, M. Salo, and G. Uhlmann, Limiting Carleman weights
and anisotropic inverse problems, Invent. Math. 178 (2009),119–171.

[DKSU07] D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand, and G. Uhlmann, Determining a magnetic
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